• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同長度的棒狀有序介孔炭的雙電層電容性能

    2016-11-02 06:14:02余呂強(qiáng)陳曉紅廖麗芳周繼升馬兆昆宋懷河
    新型炭材料 2016年3期
    關(guān)鍵詞:棒狀電化學(xué)模板

    劉 娜,余呂強(qiáng),陳曉紅,廖麗芳,周繼升,馬兆昆,宋懷河

    (北京化工大學(xué) 化工資源有效利用國家重點(diǎn)實(shí)驗(yàn)室,材料電化學(xué)過程與技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室,北京100029)

    ?

    不同長度的棒狀有序介孔炭的雙電層電容性能

    劉娜,余呂強(qiáng),陳曉紅,廖麗芳,周繼升,馬兆昆,宋懷河

    (北京化工大學(xué) 化工資源有效利用國家重點(diǎn)實(shí)驗(yàn)室,材料電化學(xué)過程與技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室,北京100029)

    將三嵌段共聚物P123既充當(dāng)結(jié)構(gòu)導(dǎo)向劑又作為碳源,通過硫酸處理,并采用直接炭化硅/ P123復(fù)合材料的方法制備出棒狀有序介孔炭,避免了傳統(tǒng)硬模板法中需要除去昂貴的表面活性劑與反復(fù)浸漬的過程。通過改變合成參數(shù),制備出不同長度的、從一微米到幾十微米變化的棒狀有序介孔炭材料。采用SEM,HR-TEM,XRD與N2吸脫附等對有序介孔炭材料的形態(tài)、結(jié)構(gòu)以及孔特點(diǎn)進(jìn)行表征,并將其作為雙電層電容器的電極材料進(jìn)行電化學(xué)測試,以期關(guān)聯(lián)形貌、結(jié)構(gòu)(尤其是棒長度)與其電化學(xué)性能的關(guān)系。結(jié)果表明在這些炭材料中,最長的介孔炭具有最高的比容量170 F/g。在2 000 mA/g電流密度下,具有雙孔徑的介孔炭表現(xiàn)出最高的容量保持率(92%)。

    有序介孔炭;棒狀;模板;三嵌段共聚物;超級電容器

    1 Introduction

    Electric double-layer capacitor (EDLC) is a next-generation energy storage device,which can be applied to an auxiliary power supply and space flight technology.The double layer is formed at electrode/electrolyte interface,where electric charges are accumulated on the electrode surfaces[1,2].Compared with conventional capacitors,EDLCs can store much more energy because there is a very small charge separation distance at the interface between electrode and electrolyte and a large amount of charges on electrode of the large surface area[3].On the basis of the double-layer energy-storage mechanism,the key to enhance the specific capacitance is to enlarge the specific surface area[4]and to control the pore size and its distribution of the electrode materials[5].

    Since the first report in 1999[6],ordered mesoporous carbons (OMCs) have been widely studied as the electrode materials for EDLC owing to their well-ordered pore channels,high specific surface areas and narrow pore size distributions[7-10].Recently,Tang et al[11]synthesized an OMC through a facile way without any templates and the carbon showed a high specific capacitance (259 F·g-1) and high rate capability (189 F·g-1at 100 A·g-1).Jurewicz et al[12]investigated the electrochemical performance of carbon materials with a highly ordered mesoporous structure.The highest capacitance values are obtained for the carbons with the highest total surface area,the highest total pore volume and the most marked microporous character.It is obvious that the presence of interconnected mesopores and micropores makes the active surface more available for charge accumulation on EDLC than in a strictly microporous material.Xing et al[13]presented the EDLC performance of the OMCs with 3-D cubic and 2-D hexagonal mesopore structures.It was found that the 2-D hexagonal OMC exhibited better high-rate capability than the 3-D cubic OMC.This is attributed to the favorable ion transport in mesopores of the 2-D hexagonal OMC.Gao[14]synthesized a 3-D cubic OMC with a high energy density of 6.53 Wh·kg-1at a power density of 5 000 W·kg-1,indicating a promising application for the high performance supercapacitors.Wang et al[15]studied the ion transport behavior in hexagonal OMC rods with diverse mesopore diameters and lengths by evaluating the dynamic process of inner-pore electric double layer formation.They considered that the ion transport behavior was affected by the ratio between mesopore length and diameter,and the behavior can be enhanced by minimizing the aspect ratio of the mesopores.Xiao[16]studied the fiber-like and rod-like OMC performance in EDLC and the latter showed a better property because the short rod-like morphology and the well-defined pore size distribution favor the ions penetration into their pores.Liang et al[17]compared the EDLC performance of the OMC with an interconnected channel structure to the OMC with an unconnected channel structure,and found that the former has better performance than the latter owing to rapid mass transport in the former.

    Our group have compared the EDLC behavior of three types of OMCs with different pore characteristics and found that the OMC with a high surface area and appropriate pore size distribution (centered at 3.6 nm) exhibits the lowest resistance and highest specific capacitance[5].In this work,we fabricated four types of OMC rods from the carbonization of silica/triblock copolymer composites.By changing the synthesis parameters,the rod length of the carbons can be controlled from one to tens of micrometers.The electrochemical performance of the capacitor electrodes prepared from the OMC rods have been investigated and are tentatively correlated with their structures and pore characteristics

    2 Experimental

    2.1Preparation of OMCs

    Rod-type OMCs were synthesized using a triblock copolymer P123 as the carbon source and tetraethoxysilicon (TEOS) as the silica source.The P123 (EO20PO70EO20,Mav= 5 800) was purchased from Sigma.All commercial chemicals were used without further purification.The typical experiment[18-20]procedure is shown in the Fig.1.

    Fig.1 Synthesis of OMCs.

    The micelle was formed after the P123 was dissolved in water.The P123/SiO2composite was formed in the presence of the inorganic precursor and sulfuric acid.OMCs were obtained after carbonization of the composites and etching of the SiO2with a HF solution.In a typical run,5.0 g P123 was dissolved in 130 mL distilled water at 38 ℃,then 6.4 mL sulfuric acid (98 wt%) and 9.2 mL TEOS were added to the solution under vigorous stirring.After the stirring for 5 min,the mixture was kept statically at 38 ℃ for 24 h,followed by aging at 100 ℃ for 24 h.The solid product was filtered and dried at 100 ℃ for 6 h and 160 ℃ for 6 h,respectively to get the P123/silica composite.The dark powder was carbonized under N2flow at 850 ℃ for 2 h.The obtained silica/carbon composite was treated by a diluted HF solution to remove the silica to get the OMC.By changing the adding order of sulfuric acid and P123,we obtained two samples,C1 (sulfuric acid added at the same time with P123) and C2 (sulfuric acid added after P123 dissolved).By varying the amount of TEOS with the same adding order as C1 but stop stirring 5 min after the addition of TEOS,two samples were synthesized,C3 (9.2 mL TEOS) and C4 (13.8 mL TEOS) and.

    2.2Characterization

    The OMCs were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),high resolution transmission electron microscopy (HR-TEM) and nitrogen adsorption.XRD patterns were recorded on a Rigaku D/max-2500B2+/PCX system operating at 40 kV and 20 mA using CuKαradiation (λ= 0.154 06 nm).The interplanar spacings of the OMCs are calculated from the Bragg’s equation:λ= 2dhklsinθ.SEM images were obtained using a Zeiss Supra 55 electron microscope operating at 20 kV.Nitrogen adsorption were performed with an ASAP 2020 Micromeritics Instrument at 77 K.The pore size distributions were calculated from the desorption branch of the isotherms using the BJH (Barrett-Joyner-Halenda) method.The specific surface areas were calculated from the adsorption data in the relative pressure interval from 0.04 to 0.2 using the Brunauer-Emmett-Teller (BET) method.The total pore volumes were estimated at a relative pressure of 0.98.HR-TEM images were obtained using a JEOL JEM-2100 electron microscope operating at 200 kV.The samples were prepared by dispersing the products in ethanol with an ultrasonic bath for 20 min and then a few drops of the resulting suspension were spread on a copper grid.

    The EDLC electrodes were obtained by pressing a mixture of the OMC (80 wt%),graphite (10 wt%),and polytetrafluoroethylene (10 wt%) to the nickel foam as a current collector.The electrodes had a surface of 100 mm2and thickness of 0.4 mm.A platinum wire and the Hg/HgO electrode were used as the counter and reference electrodes,respectively.The electrolyte was a 30 wt% KOH aqueous solution.The galvanostatic charge/discharge capacitance (C) of the electrode was measured using a Program Testing System (produced by Wuhan LAND Co.Ltd.,China).Charge and discharge were carried out between 0.9 and 0.01 V.The C in Farad was calculated on the basis of the equation:C = (IΔt)/(mΔV)[21],where C is the capacitance,I the constant discharge current,△t the discharge time,m is the mass of active material within the electrode andΔVis the potential range.

    The cyclic voltammetry and AC impedance were carried out with a CHI 660B electrochemical working station.For the cyclic voltammetric measurements,the sweep rate ranged from 1 to 10 mV·s-1within a potential range of -0.3 to 0.2 V.For the AC impedance measurements,the potential amplitude of AC was kept as 30 mV and the frequency range was from 10 kHz to 1 Hz.The impedance spectra were fitted to an equivalent circuit model[22]by ZView software.

    3 Results and discussion

    3.1Pore characteristics of the OMCs

    Small-angle XRD patterns of C1,C2,C3 and C4 are shown in Fig.2.As can be seen,the powder XRD patterns of the samples exhibit one intense peak indexed as (100) reflection and two weak peaks indexed as (110) and (200) reflections,associated with a 2-D hexagonal symmetry (p6mm)[23],implying the long range order of the OMCs.The (100) diffraction peaks of the samples are all around 2θ= 1.00°,which indicates that the samples have the similar interplanar spacings (d100) and unit cell parameters (a).The interplanar spacing (d100) and unit cell parameter (a) of C4 are calculated to be 8.83 nm and 10.2 nm,respectively.

    Fig.2 XRD patterns of samples (a) C1,(b) C2,(c) C3, (d) C4 and (e) an enlarged XRD pattern of C4 from 2θ= 1.3-2.3°.

    Fig.3 shows the SEM images of the samples.From the images we can see that the rod lengths of the OMCs are very sensitive to the synthesis parameters.As can be seen,C1 (Fig.3a) consists of bundles of rods with the length up to tens of micrometers.By changing the adding order of sulfuric acid and TEOS,dramatic change happens with its morphology.Short and bended rods with the length of 1-4 μm can be observed in C2 (Fig.3b).In the case of C3 (Fig.3c),the rods become shorter and more straight than C2,and the rod length is about 2-3 μm.C4 (Fig.3d) shows the shortest rod in the four samples with a length of about 1 μm.The HRTEM images of the samples are shown in Fig.4.The images show well-ordered mesopores with a 2-D hexagonal mesoporous structure in all the four samples.C1,C2 and C3 exhibit a rod-like morphology with the channels paralleling along the long axis.For 2-D hexagonal OMCs,their mesopore lengths correspond with their rod lengths[24,25].Pore lengths of samples are summarized in Table 1.The pore sizes of the samples are estimated to be about 3-4 nm,which is in good agreement with the following nitrogen sorption analysis.

    Fig.3 SEM images of samples (a) C1,(b) C2,(c) C3 and (d) C4.

    Fig.4 HRTEM images of samples (a) C1,(b) C2,(c) C3 and (d) C4.

    The pore structures of the samples were further analyzed using nitrogen sorption.Fig.5 displays the nitrogen adsorption-desorption isotherms and BJH pore size distributions.Whatever the synthesis route was,the isotherms of the OMCs exhibit a typical IV shape,indicating their mesoporous characteristics[26].C3 presents two pore systems with sizes centered at 3.7 and 14.2 nm.The small mesopores may be derived from the removal of template skeleton and the large mesopores originate from the coalescence of pores once the template was removed[27].C1,C2 and C4 contain narrow pore size distributions with pore sizes mainly centered at 3.7,3.6 and 3.6 nm,respectively.The BET surface areas,average pore sizes and pore volumes of samples are summarized in Table 1.

    Table 1 Pore parameters of samples calculated from the nitrogen sorption isotherms.

    Note:SBET,BET surface area; Smeso,mesopore surface area; Smic,micropore surface area; DBJH,average pore diameter; Vt,total pore volume.

    Fig.5 (a) Nitrogen adsorption-desorption isotherms and BJH pore size distributions of samples (b) C1,(c) C2,(d) C3 and (e) C4.

    3.2Electrochemical characterization

    To investigate the electrochemical performance of the OMCs as electrodes for supercapacitors,galvanostatic charge/discharge cycling measurements were performed.The result for carbon C1 at a current load of 100 mA/g is shown in Fig.6a.A direct apparent feature is that the electrode exhibits an ideal capacitor behavior from the typical triangular-shaped curve.Another important characteristic is the well-retained shape during cycling,reflecting a good reversibility and demonstrating that double layer behavior results from electrostatic attraction without Faradaic reactions.Fig.6b displays the capacitance versus cycle number of the OMCs under a current density of 100 mA/g,and all the electrodes exhibit stable capacitances with little fading after 500 cycles.The good cycle performance of the OMCs implies their stable energy-storage performance during the long cycle charging/discharging.

    The specific capacitances of the OMCs at various current densities are shown in Fig.6c.Theoretically,in order to achieve a high capacitance,the electrode material should have a high surface area,since the charge storage ability (expressed as capacitance) is proportional to surface area[28].However,actually,materials may have different porosities and pore structures.Not all the surface area is electrochemically accessible,and there are many factors affecting the double-layer capacitor behavior,such as untramicropore volume[29]and pore size distribution[30].

    For the four OMCs,the specific surface areas are in the range of 1 069-1 282 m2/g,the specific capacitances are 140 to 176 F/g at the current density of 100 mA·g-1,correspondingly to the specific surface capacitances in the range of 12-15 μF/cm2,which are higher than the value 7-10 μF/cm2for the general microporous activated carbons[31],implying the mesoporous structure is more accessible for ions.C1 exhibits the highest specific capacitance of 176 F·g-1among the four samples at the current density of 100 mA·g-1,and decreases from 176 to 150 F·g-1with the increase of current density from 100 to 2 000 mA·g-1.Although the surface areas of C1 and C2 are very close,the capacitance of C2 (159 F·g-1at the current density of 100 mA·g-1) is lower than that of C1,implying that the ion-accessible surface area of C2 is lower than C1.C3 with the highest surface area of 1 282 m2/g shows a capacitance of 152 F·g-1at the current density of 100 mA·g-1,which is lower than that of C1,suggesting that the accessible ratio of the surface area of C3 with two pore systems is much lower than that of C1.C4 with the lowest surface area of 1 069 m2/g has the lowest capacitance among the carbon materials,which decreases from 140 to 127 F·g-1with the increase of current density from 100 to 2 000 mA·g-1.

    Fig.6 Electrochemical performance of the OMCs.(a) galvanostatic charge/discharge cycling for C1 at a current density of 100 mA/g; (b) capacitances of the OMCs at a current density of 100 mA/g; (c) the specific capacitance and (d) capacitance retention ratio of OMCs at various current densities.

    The capacitance retention ratio is used to evaluate the ion transport behavior of the carbon materials,and the larger the retention ratio,the better the ion transport behavior[13].The ion transport behavior of the material is affected by many factors,such as pore size[15],pore length[15],pore order[32],and pore continuity[32].The capacitance retention ratios (relative to capacitance at a current density of 100 mA·g-1) of the OMCs at various current densities are shown in Fig.6d.As the current density rises to 2 000 mA/g,the capacitance retention ratios of the four samples are all above 85%,while the retention ratio of the activated carbons is only about 60%[33,34],which suggests that the OMCs have better ion transport behavior than activated carbons.The capacitance retention ratio of C3 is the highest among the four samples at the current density of 2 000 mA/g,retaining 92% of its initial capacitance at 100 mA/g,which is a little higher than that of C4 (91%).Besides the existence of similar pore size with C4 (3.6 nm),C3 contains larger pores (14.2 nm),which would make the ion transport more easily in C3 and thus a better ion transport behavior.Although C1,C2 and C4 have similar pore sizes (3.6 nm),the rank of capacitance retention ratio at the current density of 2 000 mA/g is C4 > C2 (86%) > C1 (85%),which could be partly ascribed to their different pore lengths.Shorter pore length needs shorter transport time when the ion transport coefficient is prescribed.The rank of pore length is C4 < C2 < C1,so the ion transport behavior in the rapid charging/discharging operation at high current densities is C4 > C2 > C1.

    Cyclic voltammetry measurements were carried out within the potential range of -0.3-0.2 V to analyze the electrochemical behavior of the supercapacitors.Fig.7a exhibits the cyclic voltammograms of C1 recorded at different sweep rates.It is known that an ideal mesostructure should be capable of providing very fast ion transport pathways,and thus the electrical double layer can be re-organized quickly at the switching potentials,resulting in a rectangular-shaped CV curve[35].

    Fig.7 (a) Cycle voltammograms of C1 at different scan rates and (b) Nyquist impedance plots for different electrodes (insert:equivalent circuit model.)

    The rectangle degree of CV curve can reflect the ion diffusion rate within a carbon mesostructure.The higher the rectangle degree has,the faster the ion diffusion rate is.It can be found that from 1 to 10 mV/s,the sample gives a good rectangular-shaped CV curve,indicating that the mesopores are able to provide fast ion transport pathways at such sweep rates.The current clearly increases with sweep rate,indicating a good rate capability.

    Electrochemical impedance spectroscopy has also been used to check the ability of carbon materials to store electrical energy[36,37].The impedance plots (Fig.7b) exhibit two distinct parts,a semicircle in the high frequency range and a sloped line in the low frequency range.The magnitude of the resistance can be estimated from the curvature of the high-frequency loop,whereas the diffusion is characterized by the linear area at low frequencies.The impedances on electrode/electrolyte interface (Rs) of C1,C2,C3 and C4 are 0.36,0.34,0.32 and 0.33 Ω,respectively.Lower impedance leads to better ion transport behavior,thus the rank of ion transport behavior is C3> C4 > C2 > C1,which is in accordance with the results from capacitance retention ratios.

    4 Conclusions

    OMCs with different rod lengths were synthesized by changing the operational parameters during the synthesis,using TEOS as the silica source and P123 as the carbon precursor.Their electrochemical performance was investigated in alkaline electrolytic solution using galvanostatic charge-discharge test and AC impedance spectroscopy.It was found that the OMCs exhibit ideal capacitor behaviors.The ion transport behavior of the carbons is affected by pore structures,such as pore length and pore size.Materials with two pore systems and shorter pore channels show better ion transport behavior.

    [1]K?tz R,Carlen M.Principles and applications of electrochemical capacitors[J].Electrochimica Acta,2000,45(15):2483-2498.

    [2]Frackowiak E,Beguin F.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39(6):937-950.

    [3]Pandolfo A G,Hollenkamp A F.Carbon properties and their role in supercapacitors[J].Journal of Power Sources,2006,157(1):11-27.

    [4]Lewandowski A,Galinski M.Practical and theoretical limits for electrochemical double-layer capacitors[J].Journal of Power Sources,2007,173(2):822-828.

    [5]Li L,Song H,Chen X.Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors[J].Electrochimica Acta,2006,51(26):5715-5720.

    [6]Ryoo R,Joo S H,Jun S.Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J].The Journal of Physical Chemistry B,1999,103(37):7743-7746.

    [7]Leyva-García S,Lozano-Castelló D,Morallón E,et al.Silica-templated ordered mesoporous carbon thin films as electrodes for micro-capacitors[J].Journal of Materials Chemistry A,2016,4(12):4570-4579.

    [8]Alvarez S,Blanco-Lopez M C,Miranda-Ordieres A J,et al.Electrochemical capacitor performance of mesoporous carbons obtained by templating technique[J].Carbon,2005,43(4):866-870.

    [9]WANG Da-wei,LI Feng,LIU Min,et al.Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation[J].New Carbon Materials,2007,22(4):307-314.

    (王大偉,李峰,劉敏,等.硝酸氧化改性SBA-15 模板合成的中孔炭電容性能研究[J].新型炭材料,2007,22(4):307-314.)

    [10]宋懷河,李麗霞,陳曉紅.有序介孔炭的模板合成進(jìn)展[J].新型炭材料,2006,21(4):374-383.

    (SONG Huai-he,LI Li-xia,CHEN Xiao-hong.The synthesis of ordered mesoporous carbons via a template method[J].New Carbon Materials,2006,21(4):374-383.)

    [11]Tang D,Hu S,Dai F,et al.Self-templated synthesis of mesoporous carbon from carbon tetrachloride precursor for supercapacitor electrodes[J].ACS Applied Materials & Interfaces,2016,8(11):6779-6783.

    [12]Jurewicz K,Vix-Guterl C,Frackowiak E,et al.Capacitance properties of ordered porous carbon materials prepared by a templating procedure[J].Journal of Physics and Chemistry of Solids,2004,65(2):287-293.

    [13]Xing W,Qiao S Z,Ding R G,et al.Superior electric double layer capacitors using ordered mesoporous carbons[J].Carbon,2006,44(2):216-224.

    [14]Gao J,Wang X,Zhao Q,et al.Synthesis and supercapacitive performance of three-dimensional cubic-ordered mesoporous carbons[J].Electrochimica Acta,2015,163:223-231.

    [15]Wang D W,Li F,Liu M,et al.Mesopore-aspect-ratio dependence of ion transport in rod type ordered mesoporous carbon[J].The Journal of Physical Chemistry C,2008,112(26):9950-9955.

    [16]Xiao Y,Dong H,Lei B,et al.Ordered mesoporous carbons with fiber-and rod-like morphologies for supercapacitor electrode materials[J].Materials Letters,2015,138:37-40.

    [17]Liang Y,Wu D,Fu R.Preparation and electrochemical performance of novel ordered mesoporous carbon with an interconnected channel structure[J].Langmuir,2009,25(14):7783-7785.

    [18]Yan X,Song H,Chen X.Synthesis of spherical ordered mesoporous carbons from direct carbonization of silica/triblock-copolymer composites[J].Journal of Materials Chemistry,2009,19(26):4491-4494.

    [19]Liu C,Li L,Song H,et al.Facile synthesis of ordered mesoporous carbons from F108/resorcinol-formaldehyde composites obtained in basic media[J].Chemical Communications,2007(7):757-759.

    [20]張煜,王同華,米盼盼.雙模板結(jié)構(gòu)導(dǎo)向劑制備有序介孔炭[J].新型炭材料,2012,27(4):301-306.

    (ZHANG Yu,WANG Tong-hua,MI Pan-pan.Synthesis of ordered mesoporous carbon with dual templates as structure directing agents[J].New Carbon Materials,2012,27(4):301-306.)

    [21]Lin G,Wang F,Wang Y,et al.Enhanced electrochemical performance of ordered mesoporous carbons by a one-step carbonization/activation treatment[J].Journal of Electroanalytical Chemistry,2015,758:39-45.

    [22]Pr?bstle H,Schmitt C,Fricke J.Button cell supercapacitors with monolithic carbon aerogels[J].Journal of Power Sources,2002,105(2):189-194.

    [23]Zhu J,Yang J,Miao R,et al.Nitrogen-enriched,ordered mesoporous carbons for potential electrochemical energy storage[J].Journal of Materials Chemistry A,2016,4:2286-2292.

    [24]Li H Q,Luo J Y,Zhou X F,et al.An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications[J].Journal of the Electrochemical Society,2007,154(8):A731-A736.

    [25]Wang D W,Li F,Fang H T,et al.Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport[J].The Journal of Physical Chemistry B,2006,110(17):8570-8575.

    [26]Tang Y,Yuan S,Guo Y,et al.Highly ordered mesoporous Si/C nanocomposite as high performance anode material for Li-ion batteries[J].Electrochimica Acta,2016,200:182-188.

    [27]Fuertes A B,Pico F,Rojo J M.Influence of pore structure on electric double-layer capacitance of template mesoporous carbons[J].Journal of Power Sources,2004,133(2):329-336.

    [28]Osaka T,Liu X,Nojima M,et al.An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder[J].Journal of the Electrochemical Society,1999,146(5):1724-1729.

    [29]Vix-Guterl C,Frackowiak E,Jurewicz K,et al.Electrochemical energy storage in ordered porous carbon materials[J].Carbon,2005,43(6):1293-1302.

    [30]Gryglewicz G,Machnikowski J,Lorenc-Grabowska E,et al.Effect of pore size distribution of coal-based activated carbons on double layer capacitance[J].Electrochimica Acta,2005,50(5):1197-1206.

    [31]Du X,Guo P,Song H,et al.Graphene nanosheets as electrode material for electric double-layer capacitors[J].Electrochimica Acta,2010,55(16):4812-4819.

    [32]Wu D,Chen X,Lu S,et al.Study on synergistic effect of ordered mesoporous carbon and carbon aerogel during electrochemical charge-discharge process[J].Microporous and Mesoporous Materials,2010,131(1):261-264.

    [33]Tamai H,Kouzu M,Morita M,et al.Highly mesoporous carbon electrodes for electric double-layer capacitors[J].Electrochemical and Solid-state Letters,2003,6(10):A214-A217.

    [34]Alvarez S,Blanco-Lopez M C,Miranda-Ordieres A J,et al.Electrochemical capacitor performance of mesoporous carbons obtained by templating technique[J].Carbon,2005,43(4):866-870.

    [35]Fang B,Binder L.A novel carbon electrode material for highly improved EDLC performance[J].The Journal of Physical Chemistry B,2006,110(15):7877-7882.

    [36]王六平,周穎,邱介山.硝酸氧化對瀝青烯基有序介孔炭電化學(xué)性能的影響[J].新型炭材料,2011,26(3):204-210.

    (WANG Liu-ping,ZHOU Ying,QIU Jie-shan.The influence of nitric acid oxidation on the electrochemical performance of asphaltene-based ordered mesoporous carbon[J].New Carbon Materials,2011,26(3):204-210.)

    [37]Frackowiak E,Beguin F.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39(6):937-950.

    Electrochemical performance of rod-type ordered mesoporous carbons with different rod lengths for electric double-layer capacitors

    LIU Na,YU Lv-qiang,CHEN Xiao-hong,LIAO Li-fang,ZHOU Ji-sheng,MA Zao-kun,SONG Huai-he

    (State Key Laboratory of Chemical Resource Engineering,Beijing Key Laboratory of Electrochemical Process and Technology for Materials,Beijing University of Chemical Technology,Beijing100029)

    Rod-type ordered mesoporous carbons were synthesized by the direct carbonization of sulfuric-acid-treated silica/triblock copolymer composites,followed by etching the silica with a HF solution.The morphologies,microstructures and pore structures of the mesoporous carbons were investigated by scanning electron microscopy,high resolution transmission electron microscopy,X-ray diffraction and nitrogen sorption.Their electrochemical performance as electrodes for supercapacitors was investigated by impedance spectroscopy and charge/discharge tests.It was found that the rod length of the mesoporous carbons can be changed from one to tens of micrometers by changing the synthesis parameters.The sample with the longest rod length has the highest specific capacitance.The sample with two pore sizes has the highest capacitance retention ratio of 92% at a high current density of 2 A/g.

    Ordered mesoporous carbon; Rod-type; Template; Triblock copolymer; Supercapacitor

    date:2016-05-08;Revised date:2016-06-10

    National Natural Science Foundation of China (50872006,51272016).

    SONG Huai-he.Professor.E-mail:songhh@mail.buct.edu.cn

    introduction:LIU Na.Ph.D.E-mail:1552881023@qq.com

    1007-8827(2016)03-0328-08

    TQ127.1+1

    A

    國家自然科學(xué)基金(50872006,51272016).

    宋懷河,教授.E-mail:songhh@mail.buct.edu.cn

    劉娜,博士.E-mail:1552881023@qq.com

    English edition available online ScienceDirect (http:www.sciencedirect.comsciencejournal18725805).

    10.1016/S1872-5805(16)60016-1

    猜你喜歡
    棒狀電化學(xué)模板
    雪花不只有六邊形片狀的
    大自然探索(2023年5期)2023-06-19 08:08:53
    鋁模板在高層建筑施工中的應(yīng)用
    鋁模板在高層建筑施工中的應(yīng)用
    電化學(xué)中的防護(hù)墻——離子交換膜
    關(guān)于量子電化學(xué)
    電化學(xué)在廢水處理中的應(yīng)用
    Na摻雜Li3V2(PO4)3/C的合成及電化學(xué)性能
    鋁模板在高層建筑施工中的應(yīng)用
    城市綜改 可推廣的模板較少
    巰基-端烯/炔點(diǎn)擊反應(yīng)合成棒狀液晶化合物
    在线视频色国产色| 日本五十路高清| 人人妻人人看人人澡| 成人一区二区视频在线观看| 精品久久久久久久人妻蜜臀av| 人人妻人人看人人澡| 国产av麻豆久久久久久久| 婷婷丁香在线五月| 亚洲国产中文字幕在线视频| 国产亚洲欧美98| 首页视频小说图片口味搜索| 在线免费观看不下载黄p国产 | 叶爱在线成人免费视频播放| 免费高清视频大片| 亚洲狠狠婷婷综合久久图片| 香蕉丝袜av| 亚洲欧美日韩卡通动漫| 亚洲精品美女久久av网站| 热99在线观看视频| 午夜影院日韩av| 亚洲精品一区av在线观看| 人人妻,人人澡人人爽秒播| 老汉色∧v一级毛片| 国产毛片a区久久久久| 亚洲国产精品合色在线| 日韩国内少妇激情av| 亚洲欧美精品综合一区二区三区| 在线a可以看的网站| 成年版毛片免费区| 黑人巨大精品欧美一区二区mp4| 不卡一级毛片| 欧美在线黄色| 91av网站免费观看| 亚洲av电影不卡..在线观看| 国产精品一区二区精品视频观看| 久久99热这里只有精品18| 欧美成人性av电影在线观看| 熟女少妇亚洲综合色aaa.| 熟妇人妻久久中文字幕3abv| av国产免费在线观看| 观看美女的网站| 在线看三级毛片| 一级毛片精品| 日韩精品青青久久久久久| 亚洲精品粉嫩美女一区| 99久久国产精品久久久| 99国产精品99久久久久| 亚洲精品在线观看二区| 叶爱在线成人免费视频播放| 精品久久蜜臀av无| 两性午夜刺激爽爽歪歪视频在线观看| 国产真人三级小视频在线观看| 观看美女的网站| 亚洲一区高清亚洲精品| 欧美激情久久久久久爽电影| 久久这里只有精品中国| 亚洲五月婷婷丁香| 国产久久久一区二区三区| 成人国产综合亚洲| 欧美午夜高清在线| tocl精华| 怎么达到女性高潮| 亚洲 国产 在线| 国产一区二区激情短视频| 久9热在线精品视频| 夜夜躁狠狠躁天天躁| 我的老师免费观看完整版| АⅤ资源中文在线天堂| 亚洲欧美激情综合另类| 日韩国内少妇激情av| 国产一区在线观看成人免费| 国模一区二区三区四区视频 | 精品乱码久久久久久99久播| 成年人黄色毛片网站| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| 淫秽高清视频在线观看| 国内精品久久久久久久电影| 在线观看舔阴道视频| 午夜免费成人在线视频| 狠狠狠狠99中文字幕| 天天躁日日操中文字幕| 黑人巨大精品欧美一区二区mp4| 亚洲精品在线美女| 亚洲美女黄片视频| 巨乳人妻的诱惑在线观看| 男人舔女人的私密视频| 久久精品人妻少妇| 欧美一区二区精品小视频在线| 身体一侧抽搐| 欧美三级亚洲精品| 国产视频内射| 91麻豆av在线| 99国产极品粉嫩在线观看| 精品熟女少妇八av免费久了| 欧美色欧美亚洲另类二区| 在线看三级毛片| 免费看日本二区| 熟女人妻精品中文字幕| 国产成人av教育| 欧美xxxx黑人xx丫x性爽| 一本一本综合久久| 美女高潮的动态| 级片在线观看| 好看av亚洲va欧美ⅴa在| 一二三四在线观看免费中文在| 成人av一区二区三区在线看| 美女大奶头视频| 日本精品一区二区三区蜜桃| 国产麻豆成人av免费视频| 99久久99久久久精品蜜桃| 国产三级在线视频| 嫩草影院入口| 日本一本二区三区精品| 999久久久国产精品视频| 久久久久久国产a免费观看| 久久这里只有精品19| 久久久久免费精品人妻一区二区| 美女免费视频网站| 中亚洲国语对白在线视频| 天堂影院成人在线观看| 亚洲精品在线美女| a级毛片a级免费在线| av片东京热男人的天堂| 亚洲国产精品合色在线| 国产精品久久久久久精品电影| 亚洲五月婷婷丁香| 亚洲中文日韩欧美视频| 最新中文字幕久久久久 | www.精华液| 国产精品一区二区精品视频观看| 久久久久久国产a免费观看| 色视频www国产| 老熟妇乱子伦视频在线观看| 久久精品影院6| 狂野欧美白嫩少妇大欣赏| 久久精品国产综合久久久| 五月伊人婷婷丁香| 十八禁人妻一区二区| 国内精品久久久久精免费| 神马国产精品三级电影在线观看| 嫩草影院入口| 亚洲av片天天在线观看| 一进一出好大好爽视频| 国产欧美日韩一区二区精品| 成人高潮视频无遮挡免费网站| 亚洲美女视频黄频| 精品熟女少妇八av免费久了| 欧美日韩精品网址| 久久久久久国产a免费观看| 少妇的丰满在线观看| 一个人看的www免费观看视频| 欧美黑人欧美精品刺激| xxxwww97欧美| 国产精品99久久99久久久不卡| 日韩欧美三级三区| 亚洲第一欧美日韩一区二区三区| 不卡一级毛片| 岛国在线免费视频观看| 免费一级毛片在线播放高清视频| 美女午夜性视频免费| 日韩高清综合在线| 国产免费男女视频| 国内揄拍国产精品人妻在线| 狂野欧美白嫩少妇大欣赏| 成人高潮视频无遮挡免费网站| 色吧在线观看| 成年女人毛片免费观看观看9| 国产乱人伦免费视频| 国产欧美日韩精品亚洲av| 精品一区二区三区四区五区乱码| 国语自产精品视频在线第100页| 国产成年人精品一区二区| 国产成人一区二区三区免费视频网站| 国产精品99久久99久久久不卡| 亚洲熟妇中文字幕五十中出| 两人在一起打扑克的视频| 手机成人av网站| 美女高潮喷水抽搐中文字幕| 久久久久国产一级毛片高清牌| 麻豆成人av在线观看| 变态另类丝袜制服| 在线播放国产精品三级| 精品电影一区二区在线| 欧美成人一区二区免费高清观看 | 俄罗斯特黄特色一大片| 伦理电影免费视频| 亚洲国产精品999在线| 成人无遮挡网站| 国产欧美日韩精品一区二区| 国产精品久久久久久精品电影| 国产成人av教育| h日本视频在线播放| 19禁男女啪啪无遮挡网站| 久久精品国产99精品国产亚洲性色| 在线a可以看的网站| 久久久久久大精品| 久久国产精品人妻蜜桃| 女人高潮潮喷娇喘18禁视频| 国产精华一区二区三区| 亚洲欧美日韩东京热| 亚洲av成人av| 国产精品 欧美亚洲| 伊人久久大香线蕉亚洲五| 99久久无色码亚洲精品果冻| 在线国产一区二区在线| 久久99热这里只有精品18| 一进一出抽搐动态| 国产黄片美女视频| 久久久精品欧美日韩精品| 午夜成年电影在线免费观看| 老熟妇仑乱视频hdxx| 国产成人精品久久二区二区91| 夜夜躁狠狠躁天天躁| 美女大奶头视频| 亚洲欧美日韩高清专用| 国产精品98久久久久久宅男小说| 日本免费a在线| 国产又黄又爽又无遮挡在线| 精华霜和精华液先用哪个| 久久九九热精品免费| 特级一级黄色大片| 亚洲av免费在线观看| 成人鲁丝片一二三区免费| 国产精品一区二区精品视频观看| 欧美日韩乱码在线| 国产成人精品久久二区二区免费| 男人舔女人的私密视频| 国产精品九九99| 国模一区二区三区四区视频 | 精品国产亚洲在线| 99re在线观看精品视频| 精品国产乱码久久久久久男人| 色哟哟哟哟哟哟| 中文字幕人妻丝袜一区二区| 午夜福利在线在线| 男人舔女人下体高潮全视频| 两个人视频免费观看高清| 99久久成人亚洲精品观看| 啦啦啦观看免费观看视频高清| 亚洲欧洲精品一区二区精品久久久| 国产一区二区三区视频了| 国产高清激情床上av| www.www免费av| 亚洲在线观看片| 婷婷精品国产亚洲av在线| 欧美性猛交黑人性爽| 日本撒尿小便嘘嘘汇集6| 国产午夜精品论理片| 美女午夜性视频免费| 欧美xxxx黑人xx丫x性爽| 九色国产91popny在线| 国产一级毛片七仙女欲春2| 国产高清视频在线观看网站| 1024手机看黄色片| 色综合婷婷激情| 最好的美女福利视频网| 哪里可以看免费的av片| 欧美日韩福利视频一区二区| 亚洲av片天天在线观看| 日韩成人在线观看一区二区三区| 91av网站免费观看| 美女扒开内裤让男人捅视频| 熟女电影av网| 久久精品影院6| 国产日本99.免费观看| 老司机深夜福利视频在线观看| 亚洲片人在线观看| 丝袜人妻中文字幕| 成人一区二区视频在线观看| 美女免费视频网站| 色播亚洲综合网| 国产人伦9x9x在线观看| 99视频精品全部免费 在线 | 亚洲第一欧美日韩一区二区三区| 国产乱人伦免费视频| 黄片小视频在线播放| 亚洲色图 男人天堂 中文字幕| 少妇的逼水好多| 午夜福利18| a级毛片在线看网站| 日本撒尿小便嘘嘘汇集6| 嫩草影院入口| 天堂影院成人在线观看| 日本成人三级电影网站| 无遮挡黄片免费观看| 免费搜索国产男女视频| 国产人伦9x9x在线观看| 国产激情偷乱视频一区二区| 欧美三级亚洲精品| 亚洲人成网站在线播放欧美日韩| 国产爱豆传媒在线观看| 国内毛片毛片毛片毛片毛片| 人妻久久中文字幕网| 久久精品91蜜桃| 一进一出好大好爽视频| 久久九九热精品免费| 窝窝影院91人妻| 久久国产乱子伦精品免费另类| 最近最新免费中文字幕在线| 亚洲国产精品久久男人天堂| 一个人看的www免费观看视频| 18禁国产床啪视频网站| 十八禁人妻一区二区| 欧美最黄视频在线播放免费| 国产乱人视频| 成年女人永久免费观看视频| 97超级碰碰碰精品色视频在线观看| 又黄又粗又硬又大视频| 黄色女人牲交| 一本久久中文字幕| 一级毛片高清免费大全| 亚洲欧美日韩无卡精品| 亚洲精品久久国产高清桃花| 久久久久久久久免费视频了| 欧美一区二区精品小视频在线| 亚洲性夜色夜夜综合| 欧美中文日本在线观看视频| 日本成人三级电影网站| 国产成人福利小说| 九色国产91popny在线| 在线观看66精品国产| 免费观看人在逋| 99久久精品一区二区三区| 免费电影在线观看免费观看| 中文字幕最新亚洲高清| 国产蜜桃级精品一区二区三区| 色av中文字幕| 男女下面进入的视频免费午夜| 两人在一起打扑克的视频| 伊人久久大香线蕉亚洲五| av女优亚洲男人天堂 | 日韩av在线大香蕉| 欧美日韩精品网址| 最近最新免费中文字幕在线| 变态另类成人亚洲欧美熟女| 丝袜人妻中文字幕| 久久精品91蜜桃| a在线观看视频网站| 免费av不卡在线播放| 狠狠狠狠99中文字幕| 亚洲自偷自拍图片 自拍| 亚洲九九香蕉| 亚洲无线观看免费| 男女之事视频高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 91在线精品国自产拍蜜月 | 午夜福利18| 亚洲欧美激情综合另类| 色在线成人网| 色综合欧美亚洲国产小说| 成人三级黄色视频| 亚洲第一欧美日韩一区二区三区| 亚洲国产看品久久| 法律面前人人平等表现在哪些方面| 国产又色又爽无遮挡免费看| 久久伊人香网站| 在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲片人在线观看| 日韩欧美国产在线观看| 日本精品一区二区三区蜜桃| 国产精品电影一区二区三区| 亚洲无线在线观看| 欧美日韩国产亚洲二区| 亚洲七黄色美女视频| 国产精品亚洲美女久久久| 中文字幕熟女人妻在线| 人人妻人人看人人澡| 综合色av麻豆| 亚洲无线观看免费| 欧美成人性av电影在线观看| 黄色日韩在线| 美女cb高潮喷水在线观看 | 国产亚洲欧美98| 国产三级在线视频| 久久久久国产一级毛片高清牌| 97人妻精品一区二区三区麻豆| 久久草成人影院| 日韩欧美精品v在线| 免费观看的影片在线观看| 久久精品国产综合久久久| 亚洲国产精品sss在线观看| 日韩高清综合在线| 中文字幕久久专区| 亚洲精品一区av在线观看| 久久天躁狠狠躁夜夜2o2o| 天堂av国产一区二区熟女人妻| 亚洲国产看品久久| 男插女下体视频免费在线播放| 9191精品国产免费久久| 久久精品aⅴ一区二区三区四区| 午夜精品久久久久久毛片777| 天天一区二区日本电影三级| АⅤ资源中文在线天堂| 欧美另类亚洲清纯唯美| 日本成人三级电影网站| 亚洲性夜色夜夜综合| 91老司机精品| 美女免费视频网站| 亚洲人与动物交配视频| 久久香蕉精品热| a级毛片a级免费在线| 久久国产精品人妻蜜桃| 日韩成人在线观看一区二区三区| 精品熟女少妇八av免费久了| 精品不卡国产一区二区三区| 黄频高清免费视频| 国产精品98久久久久久宅男小说| 美女cb高潮喷水在线观看 | 亚洲人成伊人成综合网2020| 在线视频色国产色| svipshipincom国产片| 91麻豆精品激情在线观看国产| 中文在线观看免费www的网站| 18禁国产床啪视频网站| 丁香六月欧美| av在线天堂中文字幕| 日韩国内少妇激情av| 亚洲七黄色美女视频| 丁香六月欧美| 亚洲自拍偷在线| 国产男靠女视频免费网站| 真人一进一出gif抽搐免费| 久久精品91蜜桃| a级毛片在线看网站| 亚洲国产精品合色在线| 久久久久久大精品| 男女那种视频在线观看| 亚洲国产精品999在线| 欧美色欧美亚洲另类二区| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 久久精品91蜜桃| 国产亚洲精品久久久com| 成人国产综合亚洲| 91在线精品国自产拍蜜月 | 精品久久久久久久人妻蜜臀av| 哪里可以看免费的av片| svipshipincom国产片| 搡老岳熟女国产| 色视频www国产| 男女午夜视频在线观看| 老司机午夜十八禁免费视频| 国产精品综合久久久久久久免费| 亚洲成av人片免费观看| 亚洲中文字幕一区二区三区有码在线看 | 岛国视频午夜一区免费看| 亚洲欧美一区二区三区黑人| 一区二区三区国产精品乱码| 欧美黑人欧美精品刺激| 国内久久婷婷六月综合欲色啪| 精华霜和精华液先用哪个| av女优亚洲男人天堂 | 日韩高清综合在线| h日本视频在线播放| 亚洲av第一区精品v没综合| 亚洲av片天天在线观看| 久久久久久国产a免费观看| 亚洲av成人精品一区久久| 久久天堂一区二区三区四区| 国产久久久一区二区三区| 岛国视频午夜一区免费看| 波多野结衣巨乳人妻| 欧美一级毛片孕妇| 丰满的人妻完整版| 99久久精品一区二区三区| 免费看美女性在线毛片视频| 精品不卡国产一区二区三区| 女警被强在线播放| 国产一区在线观看成人免费| 亚洲第一电影网av| 久久久久久久午夜电影| 免费看光身美女| 亚洲精品久久国产高清桃花| 日韩人妻高清精品专区| 人妻久久中文字幕网| 日韩欧美三级三区| 黑人操中国人逼视频| 色播亚洲综合网| 亚洲人成网站在线播放欧美日韩| 无人区码免费观看不卡| 美女免费视频网站| 亚洲av成人精品一区久久| 国产一区二区三区在线臀色熟女| 欧美日韩精品网址| 亚洲人成电影免费在线| 国产成人系列免费观看| 99热这里只有是精品50| 俄罗斯特黄特色一大片| 精品不卡国产一区二区三区| 国产成人一区二区三区免费视频网站| 午夜a级毛片| 怎么达到女性高潮| 国产伦人伦偷精品视频| 精品国产亚洲在线| 国产97色在线日韩免费| 宅男免费午夜| 在线观看舔阴道视频| 亚洲欧美日韩卡通动漫| 免费无遮挡裸体视频| 91久久精品国产一区二区成人 | 九色成人免费人妻av| 亚洲国产欧洲综合997久久,| 亚洲人成网站高清观看| 日韩三级视频一区二区三区| 亚洲av成人一区二区三| 国产三级黄色录像| 99久久精品一区二区三区| 久久天堂一区二区三区四区| 成人18禁在线播放| avwww免费| 最新美女视频免费是黄的| 老汉色av国产亚洲站长工具| 看片在线看免费视频| 天天添夜夜摸| 少妇熟女aⅴ在线视频| 午夜亚洲福利在线播放| 国产乱人伦免费视频| 美女cb高潮喷水在线观看 | 一本久久中文字幕| 在线观看66精品国产| 日韩高清综合在线| 全区人妻精品视频| 1024手机看黄色片| 人人妻,人人澡人人爽秒播| 亚洲第一欧美日韩一区二区三区| 日本 av在线| 熟女少妇亚洲综合色aaa.| 最新中文字幕久久久久 | 日本黄色视频三级网站网址| 男女视频在线观看网站免费| 窝窝影院91人妻| 久久精品综合一区二区三区| 午夜精品一区二区三区免费看| 99精品欧美一区二区三区四区| 精品久久久久久久久久久久久| 十八禁网站免费在线| 国产欧美日韩精品一区二区| 久久精品国产亚洲av香蕉五月| 亚洲国产精品久久男人天堂| 一进一出好大好爽视频| 国产欧美日韩精品一区二区| www.999成人在线观看| 国产精品一区二区免费欧美| 91在线观看av| 精品国产乱码久久久久久男人| 亚洲成av人片在线播放无| 制服丝袜大香蕉在线| 亚洲色图av天堂| 美女cb高潮喷水在线观看 | 亚洲aⅴ乱码一区二区在线播放| 手机成人av网站| 午夜免费激情av| 大型黄色视频在线免费观看| 一本久久中文字幕| 国产精品乱码一区二三区的特点| 久久中文字幕人妻熟女| 亚洲自偷自拍图片 自拍| 观看美女的网站| 一个人看视频在线观看www免费 | av视频在线观看入口| 免费在线观看视频国产中文字幕亚洲| 亚洲av熟女| 在线观看66精品国产| 久9热在线精品视频| 国产三级在线视频| 欧美色欧美亚洲另类二区| 国产精品 欧美亚洲| 老熟妇仑乱视频hdxx| 久久草成人影院| 久久精品国产亚洲av香蕉五月| 久久热在线av| 久久久精品欧美日韩精品| 国产乱人伦免费视频| 欧美色视频一区免费| 男人舔女人的私密视频| 人妻久久中文字幕网| 岛国视频午夜一区免费看| 人妻丰满熟妇av一区二区三区| 中文字幕熟女人妻在线| 不卡av一区二区三区| 免费看美女性在线毛片视频| 窝窝影院91人妻| 久久精品综合一区二区三区| 国产亚洲精品一区二区www| 岛国在线免费视频观看| 精品不卡国产一区二区三区| 别揉我奶头~嗯~啊~动态视频| 波多野结衣高清无吗| 精品久久蜜臀av无| 国产伦精品一区二区三区视频9 | 亚洲国产精品成人综合色| 亚洲中文字幕日韩| 久久午夜亚洲精品久久| 波多野结衣高清无吗| 成熟少妇高潮喷水视频| 18禁国产床啪视频网站| 成人欧美大片| 男女之事视频高清在线观看| h日本视频在线播放| 香蕉国产在线看| 亚洲精品在线观看二区| 欧美日韩亚洲国产一区二区在线观看| 国产伦精品一区二区三区视频9 | 国产v大片淫在线免费观看| 国产精品av视频在线免费观看| 精品久久久久久久久久久久久| 日韩三级视频一区二区三区| 无限看片的www在线观看| 亚洲精品久久国产高清桃花| 日本免费一区二区三区高清不卡| 精品99又大又爽又粗少妇毛片 | 婷婷精品国产亚洲av| 欧美3d第一页|