• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Pressure Structural Instability and Thermal Properties of Rutile TiO2from First-principles

    2014-07-19 11:17:08CuiHuZhoyiZengChunyngKongYutingCuiLinZhngLingcngCi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Cui-e Hu,Zho-yi Zeng?,Chun-yng Kong,Yu-ting Cui,Lin Zhng,Ling-cng Ci

    a.College of Physics and Electronic Engineering,Chongqing Normal University,Chongqing 400047, China

    b.National Key Laboratory for Shock Wave and Detonation Physics Research,Institute of Fluid Physics, Chinese Academy of Engineering Physics,Mianyang 621900,China

    High Pressure Structural Instability and Thermal Properties of Rutile TiO2from First-principles

    Cui-e Hua,b,Zhao-yi Zenga,b?,Chun-yang Konga,Yu-ting Cuia,Lin Zhangb,Ling-cang Caib

    a.College of Physics and Electronic Engineering,Chongqing Normal University,Chongqing 400047, China

    b.National Key Laboratory for Shock Wave and Detonation Physics Research,Institute of Fluid Physics, Chinese Academy of Engineering Physics,Mianyang 621900,China

    We report a f i rst-principles calculation to investigate the structural instability of rutile TiO2. The high pressure structural parameters are well reproduced.The calculated phonon dispersion curves agree with experiments at zero pressure.Under compression,we capture a large softening around Γ point,which indicates the structural instability.From the high pressure elastic constants,we f i nd that the rutile TiO2is unstable when the applied pressure is larger than 17.7 GPa.Within the quasi-harmonic approximation,the thermal equation of state, thermal expansion coefficient,bulk modulus,and entropy are well reproduced.The thermal properties conf i rm the available experimental data and are extended to a wider pressure and temperature range.

    TiO2,Phonon dispersion,Thermodynamics,Density functional theory

    I.INTRODUCTION

    Titanium dioxide(TiO2)has been widely used due to its versatile physical and chemical properties,such as in photoactive devices and biomaterials,high efficiency solar cells,super-hard materials,pigment,catalyst support,and photocatalyst[1-4].TiO2crystallizes in several di ff erent forms:the rutile(space group P42/mn), anatase(I4/amd),brookite(Pbca),columbite(Pbcn), baddeleyite(P21/c),and cotunnite(Pnma)structures. The phase transitions of TiO2under pressure are of particular interest in Earth science,as these phases are an accessible analog of minerals in the Earth’s mantle. Its physical properties have been vigorously pursued [5-15].Montanari and Harrison[5]reported the infl uence of gradient corrections in density functional calculations,and they compared the local-density approximation(LDA)and two the generalized gradient approximation(GGA)results,including equilibrium structure, bulk modulus,and Γ-point phonons of bulk rutile TiO2. Recently,Mei et al.investigated the lattice dynamics and thermodynamics of six TiO2polymorphs[16]. Mikami et al.studied the atomic and electronic structures of anatase and rutile phases of TiO2[17].The pressure-induced phase transitions of TiO2were investigated by Wu et al.[7].The calculated electronic properties show that all fi ve polymorphs of TiO2they considered are semiconductors,and the lower conduction band is dominated by the 3d states of Ti that are sensitive to the coordination number of titanium.

    Rutile TiO2is the most common natural form of TiO2,and it is expected to undergo a sequence of phase transformations with increasing pressure.Rutile derives its name from the Latin rutilus,red,in reference to the deep red color observed in some specimens viewed by transmitted light.Rutile has the highest refractive indices of any known mineral and exhibits high dispersion.Its very high refractive index makes it an ideal white pigment and opacif i er.Furthermore,rutile is a strong absorber of ultraviolet(UV)light,and is therefore used in solar cell technology.The rutile TiO2has been extensively studied from different aspects[5, 17-19].

    The thermal equation of state(EOS)is a measurement of relationship between pressure,volume and temperature(P-V-T),which is a fundamental equation in many areas of basic and applied condensed-matter research.The pressure responses of the structural parameters and the phase transition induced by hydrostatic pressure in materials have been investigated extensively in the last decade[20],except the investigations on high pressure and high temperature.And we provide a systematic study of the thermal EOS of rutile TiO2.In this work,we focus on the structure instability and thermodynamics of rutile TiO2under high pressure and high temperature through plane-wave pseudopotential density functional theory(DFT)method.The high pressure structures,elastic constants,phonon dispersions and thermodynamics of TiO2are presented and analyzed.

    II.THEORETICAL METHOD

    The high pressure structures,elastic constants and lattice dynamics calculations are implemented through the Cambridge Serial Total Energy Package(CASTEP) scheme[21].The exchange and correlation potentials were treated within GGA of Perdew-Burke-Ernzerhof (PBE)[22].The calculations were conducted with 18×18×18 Γ-centered k meshs.The plane-wave energy cutof fwas 700 eV and the self-consistence convergence of the energy was set to 10-6eV/atom.For the elastic constants,they are calculated as the second derivatives of the internal energy with respect to the strain tensor. These elastic constants can be determined by computing the stress generated by applying a small strain to an optimized unit cell.In practice,the maximum strain amplitude is set from-0.003 to 0.003 and all forces on atoms are converged to less than 0.006 eV/?A.For the phonon dispersion calculations,the dynamical matrices are computed at 66 wave(q)vectors in the irreducible wedge of Brillouin zone.

    To obtain thermodynamic properties,we calculate the Helmholtz free energy F as follows

    where Estatic(V)is the energy of a static lattice at zero temperature T and volume V,Felec(V,T)is the thermal free energy arising from electronic excitations, and Fphon(V,T)is the phonon contribution.Both Estatic(V)and Felec(V,T)can be obtained from static fi rst-principles calculations directly.The phonon vibrational contribution Fphon(V,T)has been calculated in the quasi-harmonic approximation(QHA)

    where ?=(2π)3/V is the volume of the Brillouin zone, kBis the Boltzmann constant,~is the Plank constant divided by 2π,and ωqsis the phonon frequencies.

    III.RESULTS AND DISCUSSION

    A.Static structural properties

    For rutile TiO2,there are three independent structural parameters,i.e.the lattice paramerters a,c,and the cell-internal dimensionless parameter u,which denotes the position of the second atom along the c-axis. The calculated equilibrium lattice parameters are as follows:a=4.653?A,c=2.975?A,and u=0.305.Our results agree with the available experimental data[23,24]and other theoretical results[7,9,16,25,26].In comparison with the experimental data[23](a=4.587?A,c=2.954?A, and u=0.305),the present lattice parameters are overestimated slightly(about 1%).

    FIG.1 Static lattice parameters of TiO2under high pressure,together with the experimental data.

    The static equation of state of rutile TiO2are obtained by fitting the energy-volume(E-V)data to the fourth-order f i nite strain EOS[27].In Fig.1,we present the dependence of calculated normalized lattice parameters,including V/V0,a/a0,and c/c0(V0,a0,and c0are the zero pressure equilibrium lattice parameters)on pressure at zero temperature.It is seen that as pressure increases,the relative lattice parameters decrease linearly.Our results agree with the experimental data below 15 GPa[28-30].From Fig.1,we can also f i nd that the a-axis is much easier to compress than c-axis, which may be due to metal-metal repulsion parallel to c across the sharing doctahedral edge.As a consequence, the axial ratio c/a becomes larger under compression. For the internal parameter u,it shows a slight dependence on the pressure.By fitting the u-P data to a second-order polynomial,we have the following relations u=0.305-1.164×10-4P+1.867×10-6P2.As the pressure increases to 25 GPa,u only decreases 0.57%.

    We calculate the phonon dispersions of rutile TiO2at different pressures.As there are 6 atoms in a primitive cell,there should be 15 optical modes and 3 acoustic modes.Figure 2 shows the obtained high pressure phonon dispersion curves of rutile TiO2along several high symmetry directions in the Brillouin zone.From Fig.2,one can see that the phonon frequencies at zero pressure agree with the inelastic neutron scattering data [31].As pressure increases,most of the phonon frequencies increase,except the values around Γ point. As pressure increases,the softening of dispersions becomes more and more obvious.Under ultra compression(~20 GPa),the frequencies around Γ point soften to imaginary frequencies,indicating a structural instability.Actually,under this pressure,the rutile phase is mechanically instable.

    B.Elastic properties

    Elastic moduli are the material constants that connect stress with strain and are therefore crucial to engineer applications.They also determine the long wavelength vibrational modes,or sound waves,in a solid. We calculate the elastic constants of TiO2under highpressure(Table I).The theoretical polycrystalline elastic modulus can be determined from the independent elastic constants.

    FIG.2 The phonon dispersion curves of rutile TiO2under different pressure of 0,5,10,15,20,and 25 GPa,together with the experimental data at zero pressure(solid spheres)[31].

    TABLEI Calculated high pressure elastic constants Cij(in GPa).The CS=C11-C12-2P(in GPa)is the mechanical instability criterion.

    TABLE II Aggregate elastic moduli B,G,Y,the Poisson’s ratio σ,and sound velocities VP,VS,and VBof rutile TiO2.

    The average isotropic shear modulus G and bulk modulus B of polycrystalline(Table II)can be calculated according to Voigt-Reuss-Hill approximations [32].Then the isotropically averaged aggregate velocities can be obtained as follows

    where ρ is the density,VP,VS,and VBare the compressional,shear,and bulk sound velocities,respectively (Table II).The VPand VBincrease monotonously with the increasing pressure.But for the VS,the abnormal variation locates between 15 and 20 GPa,which results in the variation of shear modulus.

    The polycrystalline Young’s modulus Y and the Pois-son’s ratio σ are then calculated from B and Gas follows

    FIG.3 The normalized volume V/V0(V0is the volume at 300 K)versus temperature at 0 GPa,together with the previous theoretical results[20]and experimental data[35,36].

    From Tables I and II,we can f i nd all the elastic constants Cijand bulk modules B increase as pressure rises.But the shear modulus G and Young’s modulus Y decrease with the increasing pressure up to 15 GPa. When the pressure is larger than 20 GPa,the two moduli increase with the increasing pressure.The calculated σ is also shown in Table II.At zero pressure,σ is 3.36. As the pressure rise,σ increases to 0.41 at 15 GPa.The value at 20 GPa nearly equals to that at 15 GPa.But when the pressure increases to 25 GPa,σ is larger than the liquid value of 0.5,which is physically implausible since TiO2is a solid.

    Under isotropic pressure,the mechanical stability is judged by the following condition[33]

    Though these criterions are suited for rutile TiO2in the whole applied pressure range,the CS(C11-C12-2P), can be divided into two opposite variations with the pressure rising.At the pressure range from 0 GPa to 15 GPa,the CSdecreases monotonously with the increasing pressure.If we extrapolate the CSto high pressure,when P=17.7 GPa,CS=0,indicating that the rutile TiO2is unstable when the applied pressure is larger than 17.7 GPa.From the high pressure elastic constants,we can judge that the phase transition of TiO2from rutile structure to the other structure should occur around 17.7 GPa.Actually,at room temperature, according to the X-ray experiments,rutile is stable up to 12 GPa,where a direct transition to baddeleyite-type phase takes place[34].

    FIG.4 The normalized volume V/V0versus pressure at different temperatures,together with the experimental data [28-30].

    C.Thermodynamics

    Then we focus on the thermodynamic properties of rutile TiO2under high pressure and temperature. The accurate thermodynamic properties as functions of pressure and temperature can directly provide the valuable information for understanding the phase diagram and dynamical response of materials under extreme conditions.The inclusion of temperature makes P-V-T EOS more important than P-V EOS.The normalized volume V/V0(V0is the volume at 300 K)at zero pressure is shown in Fig.3.The volume increases with the increasing temperature.Considering the temperature contribution to the free energy at 300 K,it increases the equilibrium volume by 0.27%with respect to the static value.When the temperature reaches up to 2000 K(near the melting point),the volume expands 6%compared with the static value.The present results agree well with the previous theoretical results[20]and experimental data[35,36](see Fig.3).The volumes of rutile TiO2under high pressure and high temperature are shown in Fig.4.One notes the 300 K isotherm is almost the same as the one at 0 K(shown in Fig.1)and this is due to the small free energy contribution from the lattice vibrations at 300 K.Our isotherms agree well with the experimental data[28-30]with increasing pressure.When the temperature goes from 300 K to 1800 K,the contribution of vibrational free energy becomes larger and larger.

    The volume thermal expansion coefficient is determined from the equilibrium volume variation with respect to the temperature at each pressure.

    FIG.5 Thermal expansion coefficient αVversus temperature at 0 GPa,together with the previous theoretical results [20],and experimental data[35,36].

    FIG.6 Thermal expansion coefficient αVversus pressure at different temperatures.

    FIG.7 Entropy S versus temperature at 0 GPa,together with the theoretical results[16]and experimental data[37].

    FIG.8 Entropy S versus pressure at different temperatures.

    In Fig.5,we plot the thermal expansion coefficient as a function of temperature at 0 GPa.At zero pressure, the predicted temperature dependence of the thermal expansion coefficient appears to be signif i cantly based on the QHA.Our results agree with the previous theoretical results[20]and experimental data[35,36].At 300 K,the calculated αVis 1.88×10-5K-1.At high temperature(above 1400 K),our results seem much better than that from Francisco et al.[20].The thermal expansion coefficients as functions of pressure at different temperatures are shown in Fig.6.As pressure rises, the thermal expansion is suppressed quickly.That is to say the pressure can suppress part of anharmonicity by strengthening the bondings among atoms and lowering the vibration of atoms.Thus under pressure,the validity of quasi-harmonic approximation can be extended to much higher temperature.

    The investigation on the entropy S of crystals is an old topic of condensed matter physics,which can provide essential insight into the vibrational properties.As shown in Fig.7,the calculated S of rutile TiO2are in general agreement with the theoretical results[16]and the experimental data[37].The entropies are somewhat underestimated.However,the largest difference between our results and the experimental data is less than 7%.Figure 8 shows the predicted entropy S under pressure.The entropies decrease slightly with the increasing pressure.

    IV.CONCLUSION

    In summary,we employe f i rst-principles calculations to investigate the structural instability and thermodynamics of rutile TiO2.The high pressure structural parameters of TiO2are well reproduced.The calculated phonon dispersion curves agree with experiments at zero pressure.Under compression,we capture a large softening around Γ point.When the pressure is raised to 20 GPa,the frequencies around Γ point in transverse acoustical branches become imaginary,indicating the structural instability.From the high pressure elastic constants obtained,we f i nd that the rutile TiO2is unstable when the applied pressure is larger than 17.7 GPa.Within the quasi-harmonic approximation,the thermal equation of state,thermal expansion coefficient,bulk modulus and entropy are well reproduced.The thermal properties conf i rm the available experimental data and are extended to a wider pres-sure and temperature range.

    V.ACKNOWLEDGMENTS

    This work was supported by the National NaturalScienceFoundationofChina(No.11247316, No.11247317,and No.11304408),the Science and Technology Research Project of Chongqing Education Committee(No.KJ120613 and No.KJ130607),and the Natural Science Foundation of Chongqing City (No.cstc2012jjA50019 and No.cstc2013jcyjA0733).

    [1]V.Swamy,B.C.Muddle,and Q.Dai,Appl.Phys.Lett. 89,163118(2006).

    [2]R.Asahi,T.Morikawa,T.Ohwaki,K.Aoki,and Y. Taga,Science 293,269(2001).

    [3]Y.Gai,J.Li,S.S.Li,J.B.Xia,and S.H.Wei,Phys. Rev.Lett.102,036402(2009).

    [4]H.G.Yang,C.H.Sun,S.Z.Qiao,J.Zou,G.Liu,S.C. Smith,H.M.Cheng,and G.Q.Lu,Nature 453,638 (2008).

    [5]B.Montanari and N.M.Harrison,Chem.Phys.Lett. 364,528(2002).

    [6]J.S.Olsen,L.Gerward,and J.Z.Jiang,J.Phys.Chem. Solids 60,229(1999).

    [7]X.Wu,E.Holbig,and G.Steinle-Neumann,J.Phys.: Condens.Matter 22,295501(2010).

    [8]Y.Al-Khatatbeh,K.K.M.Lee,and B.Kiefer,Phys. Rev.B 79,134114(2009).

    [9]B.Montanari and N.M.Harrison,J.Phys.:Condens. Matter 16,273(2004).

    [10]M.Giarola,A.Sanson,F.Monti,and G.Mariotto, Phys.Rev.B 81,174305(2010).

    [11]E.Shojaee,M.Abbasnejad,M.Saeedian,and M.R. Mohammadizadeh,Phys.Rev.B 83,174302(2011).

    [12]M.Mattesini,J.S.D.Almeida,L.Dubrovinsky,N. Dubrovinskaia,B.Johansson,and R.Ahuja,Phys.Rev. B 70,115101(2004).

    [13]H.Sato,S.Endo,M.Sugiyama,T.Kikegawa,and O. Shimomura,Science 251,786(1991).

    [14]T.Mashimo,K.Nagayama,and A.Sawaoka,J.Appl. Phys.54,5043(1983).

    [15]R.Miloua,Z.Kebbab,N.Benramdane,M.Khadraoui, and F.Chiker,Comp.Mater.Sci.50,2142(2011).

    [16]Z.G.Mei,Y.Wang,S.L.Shang,and Z.K.Liu,Inorg. Chem.50,6996(2011).

    [17]M.Mikami,S.Nakamura,O.Kitao,H.Arakawa,and X.Gonze,Jpn.J.Appl.Phys.39,L847(2000).

    [18]R.Sikora,J.Phys.Chem.Solids 66,1069(2005).

    [19]P.D.Mitev,K.Hermansson,B.Montanari,and K. Refson,Phys.Rev.B 81,134303(2010).

    [20]E.Francisco,M.Bermejo,V.G.Baonza,L.Gerward, and J.M.Recio,Phys.Rev.B 67,064110(2003).

    [21]M.D.Segall,P.J.D.Lindan,M.J.Probert,C.J. Pickard,P.J.Hasnip,S.J.Clark,and M.C.Payne,J. Phys.:Condens.Matter 14,2717(2002).

    [22]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [23]J.K.Burdett,T.Hughbanks,G.J.Miller,J.W. Richardson,and J.V.Smith,J.Am.Chem.Soc.109, 3639(1987).

    [24]Y.Kudoh and H.Takeda,Physica B+C 139,333 (1986).

    [25]J.X.Yu,M.Fu,G.F.Ji,and X.R.Chen,Chin.Phys. B 18,0269(2009).

    [26]R.Shirley,M.Kraft,and O.R.Inderwildi,Phys.Rev. B 81,075111(2010).

    [27]F.Birch,J.Geophys.Res.91,4949(1986).

    [28]Y.Al-Khatatbeh,K.K.M.Lee,and B.Kiefer,Phys. Rev.B 79,134114(2009).

    [29]L.Gerward and J.S.Olsen,J.Appl.Crystallogr.30, 259(1997).

    [30]L.Ming,and M.H.Manghnani,J.Geophys.Res.84, 4777(1979).

    [31]J.G.Traylor,H.G.Smith,R.M.Nicklow,and M.K. Wilkinson,Phys.Rev.B 3,3457(1971).

    [32]R.Hill,Proc.Phys.Soc.London 65,350(1952).

    [33]G.V.Si′nko and N.A.Smirnov,J.Phys.:Condens. Matter 14,6989(2002).

    [34]J.S.Olsen,L.Gerward,and J.Z.Jiang,J.Phys.Chem. Solids 60,229(1999).

    [35]S.K.Saxena,N.Chatterjee,Y.Fei,and G.Shen,Thermodynamic Data on Oxides and Silicates:An Assessed Data Set Based on Thermochemistry and High-Pressure Phase Equilibrium,Berlin:Springer-Verlag,(1993).

    [36]Y.S.Touloukian,R.K.Kirby,R.E.Taylor,and T. Y.R.Lee,Thermophysical Properties of Matter,New York:IFI/Plenum,13,(1977).

    [37]M.W.Chase,NIST-JANAF Thermochemical Tables, Washington,DC:American Institute of Physics,2 (1998).

    ceived on August 15,2013;Accepted on November 11,2013)

    ?Author to whom correspondence should be addressed.E-mail:zhaoyizeng@126.com

    丝袜脚勾引网站| 十分钟在线观看高清视频www| 黑人高潮一二区| 青青草视频在线视频观看| 日本欧美国产在线视频| 日日啪夜夜爽| 国产有黄有色有爽视频| 一本色道久久久久久精品综合| 看免费av毛片| 国产69精品久久久久777片| 亚洲精品久久成人aⅴ小说| 在线精品无人区一区二区三| 国产一级毛片在线| 午夜福利网站1000一区二区三区| 伦精品一区二区三区| 人妻一区二区av| 久久鲁丝午夜福利片| 91精品三级在线观看| 亚洲成av片中文字幕在线观看 | 一二三四中文在线观看免费高清| 人人妻人人澡人人看| 在线看a的网站| 最近最新中文字幕大全免费视频 | 亚洲熟女精品中文字幕| 国产福利在线免费观看视频| 亚洲久久久国产精品| 乱码一卡2卡4卡精品| 蜜桃在线观看..| 国产精品一区二区在线观看99| 欧美精品人与动牲交sv欧美| 精品久久久久久电影网| 男女国产视频网站| 午夜老司机福利剧场| 亚洲,一卡二卡三卡| 欧美 亚洲 国产 日韩一| 建设人人有责人人尽责人人享有的| 丝袜喷水一区| 亚洲三级黄色毛片| 色5月婷婷丁香| 成年人免费黄色播放视频| 制服丝袜香蕉在线| 久久久久精品久久久久真实原创| 在线观看三级黄色| 天美传媒精品一区二区| 美女福利国产在线| 99热这里只有是精品在线观看| 老女人水多毛片| 国产精品麻豆人妻色哟哟久久| 另类亚洲欧美激情| 欧美激情极品国产一区二区三区 | av一本久久久久| 亚洲色图综合在线观看| 国产精品一区www在线观看| 高清在线视频一区二区三区| 久久久久久久久久成人| 国产成人精品福利久久| 午夜福利网站1000一区二区三区| 91aial.com中文字幕在线观看| 日韩中字成人| 亚洲综合色网址| 视频中文字幕在线观看| 五月天丁香电影| 18禁裸乳无遮挡动漫免费视频| 极品人妻少妇av视频| 中国三级夫妇交换| 国产成人av激情在线播放| 国产老妇伦熟女老妇高清| 性色av一级| 韩国精品一区二区三区 | 午夜久久久在线观看| 人人澡人人妻人| 国产老妇伦熟女老妇高清| 亚洲国产欧美日韩在线播放| 精品一区二区三卡| 久久久久久久久久人人人人人人| 国产一区二区三区av在线| 午夜久久久在线观看| 精品久久久精品久久久| 秋霞在线观看毛片| 如何舔出高潮| 日韩电影二区| 90打野战视频偷拍视频| 视频在线观看一区二区三区| 亚洲国产av影院在线观看| 精品第一国产精品| 成年人午夜在线观看视频| 亚洲精品国产av蜜桃| 国产精品人妻久久久久久| 免费观看在线日韩| 男人操女人黄网站| 啦啦啦在线观看免费高清www| 一二三四中文在线观看免费高清| 亚洲人与动物交配视频| 亚洲国产精品国产精品| 免费少妇av软件| 亚洲经典国产精华液单| 欧美亚洲 丝袜 人妻 在线| 国产欧美另类精品又又久久亚洲欧美| 国产成人a∨麻豆精品| 韩国av在线不卡| 巨乳人妻的诱惑在线观看| 欧美日本中文国产一区发布| 天天躁夜夜躁狠狠久久av| 日韩不卡一区二区三区视频在线| 国产视频首页在线观看| 9191精品国产免费久久| 国产精品国产三级国产专区5o| 在线观看一区二区三区激情| 亚洲精品美女久久av网站| 亚洲激情五月婷婷啪啪| www.色视频.com| xxxhd国产人妻xxx| 下体分泌物呈黄色| 一个人免费看片子| 黄色配什么色好看| 欧美日韩成人在线一区二区| 国产国拍精品亚洲av在线观看| 18禁在线无遮挡免费观看视频| 国产av国产精品国产| 亚洲欧美一区二区三区国产| 免费黄频网站在线观看国产| 亚洲国产日韩一区二区| 只有这里有精品99| xxx大片免费视频| 久久国产亚洲av麻豆专区| 一二三四在线观看免费中文在 | 天堂中文最新版在线下载| 亚洲国产av新网站| 人人妻人人添人人爽欧美一区卜| 51国产日韩欧美| 日本欧美视频一区| 99国产综合亚洲精品| 欧美bdsm另类| 两个人看的免费小视频| 下体分泌物呈黄色| 久久国产精品男人的天堂亚洲 | 日日摸夜夜添夜夜爱| 99热全是精品| 欧美变态另类bdsm刘玥| 欧美精品一区二区大全| 一本色道久久久久久精品综合| 美女内射精品一级片tv| 妹子高潮喷水视频| 少妇被粗大的猛进出69影院 | 亚洲情色 制服丝袜| 免费黄色在线免费观看| 久久婷婷青草| 永久免费av网站大全| 黑人高潮一二区| 亚洲国产最新在线播放| 久久久久久久国产电影| 伦精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 多毛熟女@视频| 人妻人人澡人人爽人人| 成年av动漫网址| 人人妻人人爽人人添夜夜欢视频| 久久久亚洲精品成人影院| 大码成人一级视频| 又黄又粗又硬又大视频| 亚洲少妇的诱惑av| 亚洲精品美女久久av网站| 男人操女人黄网站| 成人影院久久| 亚洲欧美一区二区三区国产| 日韩精品免费视频一区二区三区 | 中国三级夫妇交换| 久久热在线av| 97人妻天天添夜夜摸| 美女中出高潮动态图| 永久网站在线| av片东京热男人的天堂| 天堂8中文在线网| 国产精品一二三区在线看| 久久婷婷青草| 精品福利永久在线观看| 国产一区亚洲一区在线观看| 精品国产国语对白av| 在线亚洲精品国产二区图片欧美| 99国产精品免费福利视频| 免费av不卡在线播放| 亚洲av成人精品一二三区| 国产成人免费无遮挡视频| 国产爽快片一区二区三区| 看十八女毛片水多多多| 极品人妻少妇av视频| 日本欧美国产在线视频| 欧美精品高潮呻吟av久久| 肉色欧美久久久久久久蜜桃| 国产精品人妻久久久影院| 在现免费观看毛片| 日韩一区二区视频免费看| 国产日韩欧美在线精品| 中文字幕人妻丝袜制服| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频精品| 欧美日韩亚洲高清精品| 亚洲成av片中文字幕在线观看 | 在线天堂中文资源库| 香蕉国产在线看| 欧美精品av麻豆av| 2021少妇久久久久久久久久久| 国产亚洲精品第一综合不卡 | 9191精品国产免费久久| av黄色大香蕉| 九九在线视频观看精品| 精品一区二区三区四区五区乱码 | 国语对白做爰xxxⅹ性视频网站| 亚洲精品第二区| 日韩一区二区视频免费看| 一级,二级,三级黄色视频| 一级a做视频免费观看| 欧美精品亚洲一区二区| 久久久欧美国产精品| 最新的欧美精品一区二区| 黄色怎么调成土黄色| 美女视频免费永久观看网站| 欧美人与善性xxx| 免费在线观看黄色视频的| 在线观看美女被高潮喷水网站| 成人无遮挡网站| 亚洲美女搞黄在线观看| 香蕉丝袜av| 一边亲一边摸免费视频| av不卡在线播放| 亚洲欧美色中文字幕在线| 国产成人午夜福利电影在线观看| 十八禁网站网址无遮挡| 久久99蜜桃精品久久| 久久久国产一区二区| www日本在线高清视频| 夜夜爽夜夜爽视频| 男女免费视频国产| 国产成人91sexporn| 91在线精品国自产拍蜜月| 性色av一级| 日本黄色日本黄色录像| 两性夫妻黄色片 | 国产精品国产三级国产av玫瑰| 一级毛片我不卡| 一区二区日韩欧美中文字幕 | 久久99热这里只频精品6学生| 亚洲五月色婷婷综合| 久久精品熟女亚洲av麻豆精品| 亚洲av电影在线进入| 亚洲国产av影院在线观看| 大香蕉97超碰在线| 午夜视频国产福利| 日本av免费视频播放| 免费大片18禁| 三上悠亚av全集在线观看| 久久av网站| 视频在线观看一区二区三区| 伦理电影免费视频| 免费日韩欧美在线观看| 国产xxxxx性猛交| 秋霞伦理黄片| 你懂的网址亚洲精品在线观看| 草草在线视频免费看| 国产精品免费大片| 最黄视频免费看| 日韩中字成人| 欧美国产精品一级二级三级| 一本大道久久a久久精品| 午夜福利视频在线观看免费| 全区人妻精品视频| 最新的欧美精品一区二区| 亚洲av.av天堂| 国产av国产精品国产| 精品第一国产精品| 亚洲伊人色综图| 大香蕉久久成人网| 亚洲欧美一区二区三区国产| 久久久久精品人妻al黑| 国产综合精华液| 巨乳人妻的诱惑在线观看| 亚洲欧洲国产日韩| 在线亚洲精品国产二区图片欧美| 波多野结衣一区麻豆| 水蜜桃什么品种好| 在线天堂最新版资源| 高清不卡的av网站| 久久久久国产网址| 国产精品女同一区二区软件| 免费看不卡的av| 亚洲精品乱久久久久久| 老女人水多毛片| 26uuu在线亚洲综合色| 天堂俺去俺来也www色官网| 大话2 男鬼变身卡| 最近手机中文字幕大全| 熟女电影av网| 最后的刺客免费高清国语| 国产在线视频一区二区| 色视频在线一区二区三区| 亚洲丝袜综合中文字幕| 精品午夜福利在线看| 高清毛片免费看| 街头女战士在线观看网站| 欧美xxxx性猛交bbbb| 日本免费在线观看一区| 春色校园在线视频观看| 全区人妻精品视频| 热re99久久国产66热| 精品人妻熟女毛片av久久网站| 只有这里有精品99| 成年人午夜在线观看视频| 国产熟女欧美一区二区| 亚洲国产最新在线播放| 色网站视频免费| 日日摸夜夜添夜夜爱| 欧美+日韩+精品| 久久久精品94久久精品| 国产av一区二区精品久久| 午夜激情久久久久久久| 国产xxxxx性猛交| 七月丁香在线播放| 国产亚洲av片在线观看秒播厂| 久久精品久久久久久噜噜老黄| 热re99久久精品国产66热6| 母亲3免费完整高清在线观看 | 爱豆传媒免费全集在线观看| 国产日韩欧美亚洲二区| 人人妻人人澡人人看| 丝袜在线中文字幕| 亚洲熟女精品中文字幕| 欧美 日韩 精品 国产| 国产精品国产三级专区第一集| a级毛片黄视频| 成年美女黄网站色视频大全免费| 我要看黄色一级片免费的| 成年人免费黄色播放视频| 多毛熟女@视频| 成人综合一区亚洲| 啦啦啦在线观看免费高清www| 精品亚洲成a人片在线观看| 国产精品秋霞免费鲁丝片| 欧美 日韩 精品 国产| 久久人妻熟女aⅴ| 天堂8中文在线网| 黑人巨大精品欧美一区二区蜜桃 | 一二三四中文在线观看免费高清| av线在线观看网站| 国产黄色免费在线视频| 久久久久久久精品精品| 熟女人妻精品中文字幕| 精品人妻在线不人妻| 91aial.com中文字幕在线观看| 热re99久久国产66热| 久久人人97超碰香蕉20202| 满18在线观看网站| √禁漫天堂资源中文www| 美女视频免费永久观看网站| 精品人妻偷拍中文字幕| 日韩 亚洲 欧美在线| 午夜福利网站1000一区二区三区| 国产精品99久久99久久久不卡 | 亚洲成人av在线免费| 丝袜美足系列| 国产精品久久久久久久电影| 高清欧美精品videossex| 香蕉丝袜av| 婷婷色综合www| 狠狠婷婷综合久久久久久88av| 久久精品国产综合久久久 | 免费日韩欧美在线观看| 交换朋友夫妻互换小说| 久久久久国产精品人妻一区二区| 亚洲av国产av综合av卡| 热re99久久精品国产66热6| 91国产中文字幕| 99热这里只有是精品在线观看| 只有这里有精品99| 欧美亚洲日本最大视频资源| 免费播放大片免费观看视频在线观看| 日日啪夜夜爽| 黑人高潮一二区| 日本欧美视频一区| √禁漫天堂资源中文www| 午夜视频国产福利| 久久人人爽av亚洲精品天堂| 国产探花极品一区二区| 午夜福利视频精品| 全区人妻精品视频| 最近中文字幕高清免费大全6| 成人二区视频| 最近中文字幕高清免费大全6| 日本91视频免费播放| 中文字幕人妻丝袜制服| 成人影院久久| 久热久热在线精品观看| 男女下面插进去视频免费观看 | 男人添女人高潮全过程视频| 亚洲天堂av无毛| 久久久久精品性色| freevideosex欧美| 啦啦啦啦在线视频资源| 免费在线观看黄色视频的| 日韩制服丝袜自拍偷拍| 女人精品久久久久毛片| 成年女人在线观看亚洲视频| 久久影院123| 99re6热这里在线精品视频| 天美传媒精品一区二区| 国产一区二区激情短视频 | 一个人免费看片子| 一级a做视频免费观看| 国产又色又爽无遮挡免| 欧美日韩视频高清一区二区三区二| 不卡视频在线观看欧美| 美女内射精品一级片tv| 免费观看av网站的网址| 国产老妇伦熟女老妇高清| 天天操日日干夜夜撸| 少妇 在线观看| 最新的欧美精品一区二区| 久久精品久久久久久久性| 日本与韩国留学比较| 欧美日韩亚洲高清精品| 一级毛片 在线播放| 一个人免费看片子| 欧美少妇被猛烈插入视频| 18+在线观看网站| 国产亚洲最大av| 国产伦理片在线播放av一区| 少妇猛男粗大的猛烈进出视频| 国产高清不卡午夜福利| 色婷婷久久久亚洲欧美| 日产精品乱码卡一卡2卡三| 久久99热6这里只有精品| 99香蕉大伊视频| 伊人久久国产一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区日韩欧美中文字幕 | 久热这里只有精品99| 久久午夜综合久久蜜桃| 成人免费观看视频高清| 高清欧美精品videossex| av网站免费在线观看视频| 建设人人有责人人尽责人人享有的| av免费观看日本| 久久久久久人妻| 亚洲av男天堂| 80岁老熟妇乱子伦牲交| 亚洲 欧美一区二区三区| 国产成人精品在线电影| a级毛片黄视频| 免费高清在线观看视频在线观看| 久久人人爽人人片av| 久久久亚洲精品成人影院| av不卡在线播放| 国产一区二区三区综合在线观看 | 一本—道久久a久久精品蜜桃钙片| 在线观看www视频免费| 一级毛片黄色毛片免费观看视频| 国产成人免费无遮挡视频| 国产又爽黄色视频| 永久网站在线| 最近手机中文字幕大全| 欧美xxⅹ黑人| 亚洲国产精品一区三区| h视频一区二区三区| 国产成人91sexporn| 中文字幕亚洲精品专区| 亚洲精品久久久久久婷婷小说| 久久精品夜色国产| 日韩av在线免费看完整版不卡| 欧美人与性动交α欧美软件 | 天堂8中文在线网| 日韩欧美一区视频在线观看| av天堂久久9| 欧美亚洲日本最大视频资源| 视频在线观看一区二区三区| 亚洲国产精品成人久久小说| 天堂中文最新版在线下载| 最近手机中文字幕大全| 99精国产麻豆久久婷婷| 亚洲国产最新在线播放| 亚洲成色77777| 成人无遮挡网站| 亚洲国产精品一区二区三区在线| 丰满少妇做爰视频| 久久久久久久久久成人| 久久热在线av| 久久婷婷青草| 搡老乐熟女国产| 色5月婷婷丁香| 一级a做视频免费观看| 高清在线视频一区二区三区| 一区在线观看完整版| 国产免费一区二区三区四区乱码| 国产精品久久久久久久电影| 美国免费a级毛片| 看十八女毛片水多多多| 一区二区三区四区激情视频| 亚洲国产精品999| 久久99热这里只频精品6学生| 国产在线免费精品| 亚洲情色 制服丝袜| a级毛片在线看网站| av一本久久久久| 新久久久久国产一级毛片| av又黄又爽大尺度在线免费看| 国产精品久久久av美女十八| 国产麻豆69| 伊人久久国产一区二区| 少妇人妻久久综合中文| 久久精品国产a三级三级三级| 99香蕉大伊视频| 建设人人有责人人尽责人人享有的| 大话2 男鬼变身卡| 国产片特级美女逼逼视频| 久久久亚洲精品成人影院| 日韩一区二区三区影片| 日韩一本色道免费dvd| 少妇熟女欧美另类| 国产精品 国内视频| 日本欧美国产在线视频| 亚洲一区二区三区欧美精品| av女优亚洲男人天堂| 国产成人精品久久久久久| 午夜福利影视在线免费观看| 99国产综合亚洲精品| 日本欧美国产在线视频| 18在线观看网站| 免费看av在线观看网站| 69精品国产乱码久久久| 久久精品国产亚洲av天美| 99热网站在线观看| 国产亚洲精品第一综合不卡 | 晚上一个人看的免费电影| 国产精品国产三级专区第一集| 在线观看www视频免费| 日产精品乱码卡一卡2卡三| 建设人人有责人人尽责人人享有的| 亚洲精品,欧美精品| 青春草国产在线视频| 街头女战士在线观看网站| 国产无遮挡羞羞视频在线观看| 美女主播在线视频| 纯流量卡能插随身wifi吗| 亚洲伊人久久精品综合| 自线自在国产av| 视频区图区小说| 自线自在国产av| 国产欧美日韩综合在线一区二区| 久久久久久人妻| 亚洲一级一片aⅴ在线观看| 国产一区有黄有色的免费视频| 欧美少妇被猛烈插入视频| 免费看不卡的av| 久久影院123| 在线天堂中文资源库| 在线观看免费高清a一片| 久久精品人人爽人人爽视色| 高清欧美精品videossex| 2022亚洲国产成人精品| 秋霞在线观看毛片| 午夜av观看不卡| 亚洲精品国产av蜜桃| 亚洲美女视频黄频| 99久久中文字幕三级久久日本| 亚洲av在线观看美女高潮| 精品一区二区三区四区五区乱码 | 七月丁香在线播放| 少妇熟女欧美另类| 18在线观看网站| 在线免费观看不下载黄p国产| 亚洲美女黄色视频免费看| 精品亚洲乱码少妇综合久久| 国产国语露脸激情在线看| 高清在线视频一区二区三区| 日韩三级伦理在线观看| 亚洲国产看品久久| 国产精品欧美亚洲77777| 日韩在线高清观看一区二区三区| 啦啦啦视频在线资源免费观看| 精品国产露脸久久av麻豆| 少妇 在线观看| 婷婷色麻豆天堂久久| 建设人人有责人人尽责人人享有的| 国产国语露脸激情在线看| 亚洲国产精品国产精品| av片东京热男人的天堂| 丁香六月天网| 欧美少妇被猛烈插入视频| 性高湖久久久久久久久免费观看| 黄色毛片三级朝国网站| 亚洲欧美一区二区三区黑人 | 在线观看www视频免费| 交换朋友夫妻互换小说| 在线 av 中文字幕| 波多野结衣一区麻豆| 乱码一卡2卡4卡精品| 青春草亚洲视频在线观看| 亚洲av电影在线进入| 亚洲高清免费不卡视频| 国产成人精品久久久久久| 熟女人妻精品中文字幕| av播播在线观看一区| 国产精品久久久久久久久免| 成人国产麻豆网| 日韩视频在线欧美| 亚洲精品国产色婷婷电影| 日韩在线高清观看一区二区三区| 一区二区三区四区激情视频| 成人亚洲欧美一区二区av| 老司机影院成人| 免费观看在线日韩| 女性被躁到高潮视频| 亚洲精品自拍成人| 国产精品久久久久久精品古装| 国产成人91sexporn| 日韩一区二区视频免费看| 久久青草综合色|