• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain

    2022-08-01 06:02:34JunRen任軍JunmingLi李軍明ShengZhang張勝JunLi李駿WenxiaSu蘇文霞DunhuiWang王敦輝QingqiCao曹慶琪andYouweiDu都有為
    Chinese Physics B 2022年7期
    關(guān)鍵詞:張勝王敦

    Jun Ren(任軍), Junming Li(李軍明), Sheng Zhang(張勝), Jun Li(李駿), Wenxia Su(蘇文霞),Dunhui Wang(王敦輝),2,?, Qingqi Cao(曹慶琪), and Youwei Du(都有為)

    1National Laboratory of Solid State Microstructures and Jiangsu Key Laboratory for Nano Technology,Nanjing University,Nanjing 210093,China

    2Hangzhou Dianzi University,Hangzhou,Zhejiang 310018,China

    Keywords: voltage control magnetism, magnetoelectric coupling, magnetic anisotropy, ferromagnetic reso

    1. Introduction

    The study of voltage control magnetism has become one of the most popular research areas due to its potential applications in information storage, sensors and some of the new logical spintronic devices.[1–3]Various magnetic parameters,including magnetic anisotropy, coercivity, saturated magnetic moment and Curie temperature, have been regulated in different systems by different mechanisms, such as charge doping,strain effect and exchange coupling.[4–9]Among them,the multiferroic composite heterojunction composed of ferromagnetic (FM) materials and ferroelectric (FE) materials, which combines a piezoelectric effect and piezomagnetic effect and realizes a magnetoelectric coupling (ME) effect through a strain mechanism,is widely regarded as one of the most likely systems to be applied in practice.[10]In recent years,the ferroelectric single crystal Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT),formed by relaxor ferroelectric Pb(Mg1/3Nb2/3)O3(PMN)and ordinary ferroelectric PbTiO3(PT),has been widely used as the piezoelectric substrate in the study of voltage control magnetism based on the strain mechanism due to its large piezoelectric coefficients.[11–16]For example, Liet al.demonstrated a reversible magnetization rotation and manipulated the tunneling magnetoresistance at room temperature in CoFeB/AlOx/CoFeB/PMN-PT.[8]Liuet al.showed nonvolatile resonance frequency tuning in an FeCoB/PMNPT heterojunction.[17]In addition, our research group reported the related work of electric-field control magnetism based on a PMN-PT piezoelectric substrate,such as Co/PMNPT,[18]FePt/PMN-PT,[19]and NiCoMnIn/PMN-PT,[20]which achieved some meaningful results. However,due to the strain asymmetry of the piezoelectric substrate itself, most studies based on PMN-PT can only study the influence of a single tensile(or compressive)strain on the magnetic properties. There are very few studies which can simultaneously explore the different effects of tensile and compressive stresses on the magnetic properties in a multiferroic FM/FE composite heterojunction.

    Ferromagnetic resonance (FMR), which is known as the collective spin excitation in ferromagnetic materials, has attracted increasing attention due to its wide potential applications in novel voltage tunable RF/microwave magnetic devices,such as filters,resonators,inductors and phase shifters,as well as possible future spintronic devices.[21,22]Besides the study of magnetization change manipulated by voltage,the voltage regulation of FMR became an important field in the research of voltage control magnetism. According to the LLG equation,[23]the saturation magnetization (MS), magnetic anisotropy field(Hk)and spin wave damping coefficient(α) are the most important parameters used to describe the dynamics of FMR.Permalloy(Py)which possesses high permeability,a high Ms,low coercivity,low magnetic anisotropy and lowα,is a good soft magnetic alloy film suitable for microwave devices.[7,24,25]Therefore, in this work, we prepare the Py/PMN-PT ferromagnetic/ferroelectric composite heterojunctions by magnetron sputtering technology using a permalloy target with the composition ratio of Fe19Ni81and a(011)cut PMN-PT single crystal substrate. Since the substrate has both large tensile and compressive strains, the effects of different strains on the magnetic anisotropy are investigated. In addition,the(011)cut PMN-PT has the characteristics of nonvolatile strain with an applied asymmetric voltage,which provides the possibility of studying the voltage control of FMR.Thus, we demonstrate the effect of non-volatile strain on the ferromagnetic resonance excursion. Our results provide new possibilities for voltage adjustable RF/microwave magnetic devices and spintronic devices.

    2. Experiment

    A (011) cut PMN-PT single crystal (10 mm×5 mm×0.5 mm in size)was used as the substrate,and an Fe19Ni81film with a thickness of 25 nm was deposited on it by sputtering using an alloy target with the composition ratio of Fe19Ni81.The background vacuum of the chamber was less than 1×10-5Pa.During the deposition,the substrate was kept at room temperature and the argon pressure was 0.3 Pa. The DC sputtering power was 16 W. To apply a voltage to the PMN-PT, a layer of Au was deposited on the back of the substrate as the bottom electrode and the Fe19Ni81film was directly used as the top electrode.

    The surface morphology and film thickness of the samples were measured using a scanning probe microscope(AFM). The magnetic properties of the samples were measured using a vibrating sample magnetometer(VSM),and the strain curves of the PMN-PT substrate were measured by the resistance strain gauge on an electrical measuring platform.During the magnetic measurements, a Keithley 2410 voltage source meter was used to apply a voltage to the PMN-PT substrate. FMR spectra measurements were performed using a coplanar waveguide and electromagnet. The electromagnet provides an in-plane magnetic fieldH, which is perpendicular to the microwave fieldh.

    3. Result and discussion

    Figure 1(a) shows a schematic diagram of the Fe19Ni81/PMN-PT/Au sample, in which the electric field is applied along the thickness [011] direction of the PMN-PT.The AFM surface morphology of Fe19Ni81film is shown in Fig. 1(b). It is observed that the surface of the film sample is very smooth, in which the average roughness is less than 0.1 nm and the root mean square roughness is less than 0.3 nm.The good surface quality of the film provides a good base for us to investigate the magnetoelectric(ME)coupling effect.

    Fig.1. (a)A schematic diagram of a typical Fe19Ni81/PMN-PT/Au sample.(b)An AFM image of the sample with an area of 2 μm×2 μm.

    Fig.2.(a)The in-plane strain curve along the[100]direction with symmetric bipolar voltages. The inset shows a schematic diagram of the stress measurement for PMN-PT. (b) Nonvolatile strain curves with different asymmetric bipolar voltages.

    Figure 2 shows a typical schematic diagram of the strain measurement of the PMN-PT substrate.An electric field along the thickness of the substrate is applied and the strain gauge is attached to the surface of an electrode to detect the strain. Figures 2(a)and 2(b)show the relationship between the measured strain and the applied symmetric bipolar and asymmetric bipolar voltages in the direction of [100], respectively. It is clear that the strain–voltage (S–V) curve shows a typical butterfly shape for bipolar strain along the[100]direction in Fig.2(a),which is consistent with earlier reports.[26]Two considerable nonlinear tensile strains are observed along the [100] directions near±70 V, which correspond to the coercive field of the PMN-PT substrate.It is noted that the tensile strain around the coercive field is up to+3000 ppm. When we continue to apply the voltage beyond the coercive field, the strain gradually decreases and then increases in the opposite direction.Two compressive strains reaching up to-2000 ppm are observed around the voltage of±250 V. After slowly removing the electric field, the strains gradually decrease and recover to zero, showing volatile behavior (shown as the A state in Fig.2(b)).When an asymmetric bipolar voltage is applied(i.e.the applied positive voltage is larger than the coercive field and the negative voltage is smaller than the coercive field),in contrast to the situation of the bipolar symmetrical electric field,the substrate strain does not return to the initial zero state and shows a nonvolatile residual strain when the voltage is reduced to zero. More importantly,by applying different negative voltages,different residual strain states can be obtained.As shown in Fig.2(b),three different residual strain states of B,C,and D reaching up to+3000 ppm,+2000 ppm,and+1200 ppm are observed in the S–V curves,corresponding to the asymmetric negative voltages of-70 V,-60 V, and-40 V,respectively.Therefore,by precisely regulating the magnitude of the asymmetric negative voltage, stable and different residual strains can be obtained in the PMN-PT substrate.

    Since both compressive and tensile strains can be simultaneously obtained with the PMN-PT substrate, two distinct deformations can be induced in the sample. Figure 3(a) illustrates the deformation of the sample at different voltages.When a voltage of-70 V is applied to the sample,according to the S–V curve,the sample is equivalent to being stretched in the direction of[100]and compressed in the direction of[01-1], as shown by the dotted line in Fig. 3(a). When a voltage of+100 V is applied,in contrast to the situation at-70 V,the sample is equivalent to being compressed in the direction of[100]and elongated in the direction of[01-1]. Figure 2 shows the S–V curves for both symmetric and asymmetric bipolar voltages of the PMN-PT substrate in the direction of [100].These two different residual strain states are due to different ferroelectric polarization in the PMN-PT substrate. Electricfield-induced ferroelectric polarization switching between the in-plane direction and the out-of-plane directions is clearly demonstrated in Figs. 3(b) and 3(c). There are eight equivalent directions of spontaneous polarization in the rhombohedral PMN-PT single crystal. For the[011]tangential PMN-PT substrate, there are four spontaneous polarization directions pointing out of the plane,and the remaining four spontaneous polarization directions in the plane.When a symmetric bipolar voltage is applied, the out-of-plane ferroelectric polarization may experience a polarization reversal of 109°and 180°. The direction of the ferroelectric polarization still points out of the plane(such as state A shown in Fig.2(b)),which fails to create residual strain in the plane.As the applied voltage continues to increase,the substrate will produce large in-plane anisotropic biaxial strain. This is caused by the linear piezoelectric effect of the PMN-PT substrate.[27]When an asymmetric voltage is applied to the substrate, the ferroelectric polarization undergoes reversals of 71°and 109°,resulting in the dynamic reversal of the ferroelectric polarization from out-of-plane to in-plane.[17]Thus, a residual strain is obtained in the plane,which corresponds to state B in Fig.2(b).

    Fig.3. (a)A schematic diagram of deformation of samples at different voltages. Schematics of domain structures about the (011) PMN-PT under various applied voltages: (b) the residual strain state A with a positive poling state of polarization pointing out of the plane,and(c)the residual strain state B(after applying a negative voltage of-60 V and then switching it off).

    To explore the effect of different compressive and tensile strains on the magnetic properties of the sample, the roomtemperature magnetic hysteresis loops for the Fe19Ni81film under different voltages were measured. Figure 4 shows the in-plane magnetic hysteresis loops(M–H)of the sample under different voltages along the[01-1]direction. It is obvious that theMSof the FeNi film is about 840 emu/cm3,which is comparable to the value in the literature.[28]The coercivity of the sample is less than 5 Oe and the initial magnetic susceptibility is very high, indicating typical soft magnetic behavior of the Fe19Ni81film.When a voltage of+100 V is applied to the substrate, not only does the remanent magnetization (Mr) of the sample increase but the magnetic anisotropy also changes considerably, indicating that the magnetization process becomes easier for the[01-1]direction. In contrast, when a voltage of-70 V is applied,the remanence decreases markedly and the magnetization curve becomes a slant loop. The inset of Fig.4 is an enlarged view of the remanence curve, which allows us to see the variation of theMrunder different voltages more clearly. TheMrof the sample increases to 825 emu/cm3under the voltage of +100 V, which is almost the same as theMS. In contrast, theMrof the sample decreases sharply to 450 emu/cm3when a voltage of-70 V is applied. The relative change inMr(Mr(+100 V)-Mr(-70 V))/Mr(-70 V))reaches 83%. It is worth noting that the saturated magnetization of the sample remains unchanged, despite application of the positive and negative voltages,suggesting that different tensile and compressive strains of the substrate have no effect on the intrinsic magnetic interaction of the permalloy. In the study of voltage control of an FM/FE composite heterojunction, it is generally believed that there are two main mechanisms: the strain mechanism, and the polarization charge mechanism. As we know,the electrostatic shielding length of the metal is within 1 nm, while the thickness of the Fe19Ni81film in this work is about 25 nm. Therefore, the influence of the polarization charge at the interface can be ignored for the film. Here,we believe that the voltage regulation effect of our Fe19Ni81/PMN-PT heterojunction is mainly attributed to the strain caused by the piezoelectric effect of the PMN-PT substrate. Figure 3(a)illustrates the deformation of the sample at different voltages. Due to the influence of strain anisotropy,the sample becomes more easily magnetized in the direction of tensile strain while, in the direction of compression strain,the magnetization of the sample becomes difficult. This is in good agreement with our experimental results. Therefore,the variation ofMris mainly attributed to the change in magnetic anisotropy caused by the strain anisotropy.

    Fig.4. In-plane magnetic hysteresis loops for Fe19Ni81/PMN-PT under different voltages along the [01-1] direction at room-temperature. The inset shows an enlarged view of the Mr curve.

    It is known that the magnetic anisotropy of the sample has a great influence on the microwave performance. Therefore, it is meaningful to study the voltage control FMR of the Fe19Ni81/PMN-PT device. If we want to use the voltageinduced volatile strain to manipulate FMR,the voltage needs to be applied to the device all the time, which is disadvantageous to the FMR measurement. Due to the non-volatile properties of the PMN-PT substrate,the non-volatile behavior of voltage control FMR in the Fe19Ni81film can be investigated in this work. During the measurement, the sample is placed face down on a coplanar waveguide and the measured microwave frequencies are in the range of 6 GHz–10 GHz.An electromagnet provides an in-plane magnetic fieldH,which is perpendicular to the microwave fieldh. The FMR measurement is performed in field-sweeping mode,in which the external bias magnetic field is parallel to the sample surface along the[01-1]direction. Figure 5 shows the normalized FMR absorption spectra of samples in the initial state and non-volatile strain states at different frequencies.It is obvious that,with the increasing voltage,the resonance field shifts to the direction of the high fields and the maximum shift of the FMR field(from 1000 Oe to 1070 Oe) is observed with the applied voltage of-70 V at the frequency of 10 GHz.

    According to Kittel’s formula,[29,30]the resonance frequency of in-plane ferromagnetic resonance can be described as follows:

    wherefis the FMR frequency,γis the gyromagnetic ratio(the value is about 2.8 MHz/Oe),Hris the FMR field andMsis the saturation magnetization. Here,Heffis the effective field induced by the voltage,which could be positive or negative and can be described as:

    Here,λsis the magnetostriction constant of FeNi, andσEis the voltage-induced biaxial stress (compressive along [01-1]and tensile along [100] with the applied voltage of-70 V).According to Eq. (1) and the resonance field data measured at different frequencies,the fitting results are shown in Fig.6,in which the experimental data and theoretical calculation fit well in the frequency range of 6 GHz–10 GHz.

    Fig. 5. The normalized FMR absorption spectra of samples in the initial state and non-volatile strain states at different frequencies when the magnetic field is parallel to the [01-1] direction: (a) f =7 GHz, (b) f =8 GHz, (c)f =9 GHz,and(d) f =10 GHz.

    Fig.6.The resonance frequency as a function of the field for Fe19Ni81/PMNPT.The points are experimental data and the solid lines are fitted to Kittel’s formula.

    In the Fe19Ni81/PMN-PT heterojunction, after treatment at-40 V and-70 V,nonvolatile compressive strains are then generated along [01-1]. As shown in theM–Hcurves of the Fe19Ni81sample with different strain states, the anisotropy field will be enhanced under the strain. According to Eq.(2),the compressive strain along[01-1]will induce a negativeHeff.As a result,the FMR field shows adjustability and shifts to the higher fields,which can be understood using Eq.(1). Furthermore, it is worth noting that the Fe19Ni81film retains strong absorption over a small linewidth of approximatively 40 Oe,even at the high frequency of 10 GHz,indicating a small magnetic loss of the film. This excellent figure of merit is conducive to the practical application of low-loss magnetic tunable microwave devices,such as filters.

    4. Conclusion

    The study of voltage control magnetism in Fe19Ni81/PMN-PT composite heterojunctions is demonstrated in this article. By applying a voltage, the PMN-PT substrate can generate volatile or nonvolatile strains which can transfer to the Fe19Ni81film. The magnetic behavior of the Fe19Ni81film is manipulated through the reverse magnetoelectric coupling effect dominated by the strain mechanism. When a positive voltage is applied to the PMN-PT substrate,the magnetization process becomes easier along the [01-1] direction and theMrincreases. When a small negative voltage not exceeding the coercivity is applied,the rectangular degree of the hysteresis loop along the direction of [01-1] becomes lower,and theMrdecreases significantly. This is attributed to the different in-plane anisotropic biaxial strains caused by different voltages. Moreover, we successfully achieve the regulation of the FMR field of Fe19Ni81films by the nonvolatile strain effect of[011]cut PMN-PT substrate and the resonance field shifts to the direction of the high field with the treatment of the voltage. These research results have potential applications in the development of novel voltage tunable RF/microwave magnetic devices.

    猜你喜歡
    張勝王敦
    探析跟蹤審計在工程造價審計中的應(yīng)用
    CJ-1型齒輪箱箱體強度分析
    扁桃體切除術(shù)后常規(guī)行術(shù)腔縫合對預防術(shù)后出血的療效評價
    小羲之帳中保命
    今日文摘(2018年9期)2018-05-19 04:59:50
    放低姿態(tài)的智慧
    放低姿態(tài)的智慧
    Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field?
    內(nèi)心善良,自然陽光
    琴童(2017年3期)2017-04-05 18:14:27
    村長家的狗
    《在詩意中行走》
    文學自由談(2016年1期)2016-03-16 19:39:17
    最近中文字幕高清免费大全6| 丰满饥渴人妻一区二区三| 国产精品一区www在线观看| 下体分泌物呈黄色| 嫩草影院新地址| 国语对白做爰xxxⅹ性视频网站| 精品卡一卡二卡四卡免费| 国产精品久久久久成人av| 18禁裸乳无遮挡动漫免费视频| 日韩av免费高清视频| 汤姆久久久久久久影院中文字幕| 亚洲久久久国产精品| 亚洲美女视频黄频| 日韩一本色道免费dvd| 内射极品少妇av片p| 国产av一区二区精品久久| 中文字幕制服av| 最新的欧美精品一区二区| 国产男女超爽视频在线观看| 另类亚洲欧美激情| 中文在线观看免费www的网站| 超碰97精品在线观看| 中文乱码字字幕精品一区二区三区| 久久6这里有精品| 国产亚洲欧美精品永久| 少妇人妻 视频| 国产免费福利视频在线观看| 成人免费观看视频高清| 欧美高清成人免费视频www| 美女大奶头黄色视频| 另类精品久久| 精品一区二区三区视频在线| av卡一久久| 欧美性感艳星| 精品久久国产蜜桃| 黄片无遮挡物在线观看| 中文字幕人妻丝袜制服| 人妻一区二区av| 成人综合一区亚洲| 中文字幕免费在线视频6| 美女视频免费永久观看网站| 在线 av 中文字幕| 国产91av在线免费观看| 日韩在线高清观看一区二区三区| 色94色欧美一区二区| 日韩av在线免费看完整版不卡| 成年美女黄网站色视频大全免费 | h视频一区二区三区| 国产精品不卡视频一区二区| 夜夜看夜夜爽夜夜摸| 亚洲av中文av极速乱| 国产伦精品一区二区三区视频9| 国产黄色免费在线视频| 欧美bdsm另类| av天堂久久9| 毛片一级片免费看久久久久| 在线观看www视频免费| 中文在线观看免费www的网站| 另类亚洲欧美激情| 成人毛片60女人毛片免费| www.av在线官网国产| 成人亚洲欧美一区二区av| 国产亚洲精品久久久com| 在线免费观看不下载黄p国产| 男人狂女人下面高潮的视频| 精品亚洲成国产av| 蜜桃在线观看..| 成年美女黄网站色视频大全免费 | 亚洲综合色惰| 欧美性感艳星| 亚洲欧美一区二区三区国产| 免费看日本二区| 免费黄频网站在线观看国产| 国产白丝娇喘喷水9色精品| 精品人妻偷拍中文字幕| 久久久久视频综合| 久久国产亚洲av麻豆专区| 国产 精品1| 国产深夜福利视频在线观看| 国产在线视频一区二区| 午夜福利网站1000一区二区三区| 精品久久久久久电影网| 在线观看免费高清a一片| 国产精品久久久久久精品电影小说| 久久久久精品性色| 久久久久久久大尺度免费视频| 久久精品熟女亚洲av麻豆精品| 伊人久久精品亚洲午夜| 国产极品天堂在线| 国产亚洲午夜精品一区二区久久| 99九九在线精品视频 | 99久国产av精品国产电影| 九九在线视频观看精品| 精品一区二区三区视频在线| 高清不卡的av网站| 日韩强制内射视频| 中文精品一卡2卡3卡4更新| 桃花免费在线播放| 亚洲欧美精品专区久久| 亚洲经典国产精华液单| 一个人看视频在线观看www免费| 色5月婷婷丁香| 国产男女超爽视频在线观看| 久久精品久久久久久噜噜老黄| 黑人猛操日本美女一级片| 亚洲精品国产av成人精品| 麻豆精品久久久久久蜜桃| 97精品久久久久久久久久精品| 男人狂女人下面高潮的视频| 欧美一级a爱片免费观看看| 亚洲欧美成人精品一区二区| 亚洲精品乱码久久久久久按摩| 99热网站在线观看| 欧美国产精品一级二级三级 | 国产成人精品一,二区| 看免费成人av毛片| 免费人妻精品一区二区三区视频| 青春草亚洲视频在线观看| 最近手机中文字幕大全| 日本黄色片子视频| 久久亚洲国产成人精品v| 在线看a的网站| 久久精品国产自在天天线| 日韩伦理黄色片| 国产精品欧美亚洲77777| 欧美 亚洲 国产 日韩一| 欧美成人午夜免费资源| 黄色配什么色好看| 亚洲天堂av无毛| 伦理电影免费视频| 午夜老司机福利剧场| 久久久久视频综合| 欧美高清成人免费视频www| 精品一品国产午夜福利视频| 国产在线男女| 男的添女的下面高潮视频| 少妇人妻 视频| 久久青草综合色| 九九爱精品视频在线观看| 在线天堂最新版资源| 一边亲一边摸免费视频| 国产精品国产三级国产专区5o| 亚洲国产日韩一区二区| 我的女老师完整版在线观看| 乱系列少妇在线播放| 一个人看视频在线观看www免费| 精品一区二区免费观看| 国产成人aa在线观看| 国产伦理片在线播放av一区| 汤姆久久久久久久影院中文字幕| 精品一区在线观看国产| 国产亚洲一区二区精品| 国产伦理片在线播放av一区| 亚洲精品视频女| 又粗又硬又长又爽又黄的视频| 日韩成人av中文字幕在线观看| 一级毛片久久久久久久久女| 一个人看视频在线观看www免费| 午夜免费男女啪啪视频观看| 亚洲人成网站在线观看播放| h视频一区二区三区| 国产伦精品一区二区三区四那| 日日摸夜夜添夜夜添av毛片| 国产精品国产三级专区第一集| 亚洲自偷自拍三级| 国产av国产精品国产| 成年人午夜在线观看视频| 水蜜桃什么品种好| 国产色婷婷99| 一级,二级,三级黄色视频| 婷婷色综合大香蕉| 卡戴珊不雅视频在线播放| 国产无遮挡羞羞视频在线观看| 少妇的逼水好多| 99久久精品一区二区三区| 色网站视频免费| 99久久精品热视频| 免费观看的影片在线观看| 伊人久久国产一区二区| 夜夜看夜夜爽夜夜摸| av免费在线看不卡| 免费观看的影片在线观看| 晚上一个人看的免费电影| 午夜福利,免费看| 欧美亚洲 丝袜 人妻 在线| √禁漫天堂资源中文www| 亚州av有码| 午夜福利视频精品| 精品一区二区三区视频在线| 国产精品久久久久久久久免| 久久狼人影院| 欧美精品一区二区大全| 欧美另类一区| 久久久久精品性色| 丝袜喷水一区| 午夜福利网站1000一区二区三区| 色哟哟·www| 精品一区二区三区视频在线| a级一级毛片免费在线观看| a级毛片在线看网站| 国产精品欧美亚洲77777| 国产精品久久久久久精品电影小说| 日韩电影二区| 国产精品国产三级专区第一集| 成人18禁高潮啪啪吃奶动态图 | 亚洲av中文av极速乱| 国产精品免费大片| 国产日韩欧美视频二区| 在线精品无人区一区二区三| 国产精品无大码| 亚洲怡红院男人天堂| 亚洲欧美日韩卡通动漫| 中文字幕精品免费在线观看视频 | 久久久久久久国产电影| 99re6热这里在线精品视频| 久久国产乱子免费精品| 国产男女内射视频| 人妻少妇偷人精品九色| 亚洲精品一二三| 日本黄大片高清| 极品人妻少妇av视频| 国产免费一区二区三区四区乱码| 青春草视频在线免费观看| 久久国产乱子免费精品| 插阴视频在线观看视频| 涩涩av久久男人的天堂| 你懂的网址亚洲精品在线观看| 最近最新中文字幕免费大全7| 婷婷色综合www| 欧美一级a爱片免费观看看| 在线看a的网站| 亚洲av.av天堂| 嫩草影院新地址| 黄片无遮挡物在线观看| 精品少妇黑人巨大在线播放| 亚洲,欧美,日韩| 国产精品一区二区在线观看99| 国产成人精品久久久久久| 久久99蜜桃精品久久| 最近最新中文字幕免费大全7| 亚洲人成网站在线观看播放| 99精国产麻豆久久婷婷| 亚洲精品日韩在线中文字幕| 国内少妇人妻偷人精品xxx网站| 99久久精品热视频| 国产日韩一区二区三区精品不卡 | 国产精品久久久久久av不卡| 晚上一个人看的免费电影| 成人免费观看视频高清| 精品国产一区二区久久| 国产老妇伦熟女老妇高清| 欧美精品高潮呻吟av久久| 国产亚洲最大av| 国产精品熟女久久久久浪| 99久久精品一区二区三区| 一级,二级,三级黄色视频| 又粗又硬又长又爽又黄的视频| 水蜜桃什么品种好| 久久久久久久久久成人| 久久国产乱子免费精品| 午夜老司机福利剧场| 国产色婷婷99| 老司机影院毛片| 精品久久久久久电影网| 国产老妇伦熟女老妇高清| 男女无遮挡免费网站观看| 亚洲激情五月婷婷啪啪| 成人漫画全彩无遮挡| 中文字幕亚洲精品专区| 免费观看av网站的网址| 好男人视频免费观看在线| 在线精品无人区一区二区三| 日本猛色少妇xxxxx猛交久久| 老熟女久久久| 国内少妇人妻偷人精品xxx网站| 欧美日韩国产mv在线观看视频| 尾随美女入室| 久久久精品94久久精品| 久久狼人影院| 久久人人爽人人爽人人片va| 人人妻人人爽人人添夜夜欢视频 | 99热6这里只有精品| 精品熟女少妇av免费看| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久久免费av| 国产高清有码在线观看视频| 不卡视频在线观看欧美| 亚洲精品国产成人久久av| 国产成人精品无人区| 国产精品女同一区二区软件| 新久久久久国产一级毛片| 日本免费在线观看一区| 嫩草影院入口| 日韩欧美一区视频在线观看 | 欧美日韩亚洲高清精品| 日本午夜av视频| 免费黄色在线免费观看| 交换朋友夫妻互换小说| 亚洲国产精品成人久久小说| 永久网站在线| 99久国产av精品国产电影| 老司机影院毛片| 亚洲,一卡二卡三卡| 色5月婷婷丁香| 免费av中文字幕在线| 一个人免费看片子| 七月丁香在线播放| 中文字幕制服av| 街头女战士在线观看网站| 久久久久国产精品人妻一区二区| 91午夜精品亚洲一区二区三区| 免费观看的影片在线观看| av天堂中文字幕网| 成人无遮挡网站| 女人久久www免费人成看片| 人人妻人人添人人爽欧美一区卜| 亚洲在久久综合| 91久久精品国产一区二区三区| 成人美女网站在线观看视频| 国产一区亚洲一区在线观看| tube8黄色片| 一区二区av电影网| 国产乱人偷精品视频| 久久精品久久久久久噜噜老黄| 免费看日本二区| 国产精品偷伦视频观看了| 亚洲欧美日韩另类电影网站| 日韩av在线免费看完整版不卡| 成年人午夜在线观看视频| 日本-黄色视频高清免费观看| av国产久精品久网站免费入址| 伦理电影大哥的女人| av在线播放精品| 久久精品国产亚洲av涩爱| 美女xxoo啪啪120秒动态图| 成人午夜精彩视频在线观看| 伦理电影免费视频| 中文资源天堂在线| 人人妻人人添人人爽欧美一区卜| 日本黄色日本黄色录像| 日日爽夜夜爽网站| 人人妻人人澡人人爽人人夜夜| 天美传媒精品一区二区| 日韩在线高清观看一区二区三区| 97在线视频观看| 久久久国产欧美日韩av| 最新中文字幕久久久久| 亚洲精品456在线播放app| 亚洲精品视频女| 国产老妇伦熟女老妇高清| 精品国产一区二区三区久久久樱花| av国产精品久久久久影院| kizo精华| 精品久久久久久久久av| 老女人水多毛片| 最新中文字幕久久久久| 亚洲av不卡在线观看| 这个男人来自地球电影免费观看 | 成人18禁高潮啪啪吃奶动态图 | 国产爽快片一区二区三区| 91aial.com中文字幕在线观看| 国产精品99久久99久久久不卡 | 国产淫语在线视频| 亚洲精品乱久久久久久| 三上悠亚av全集在线观看 | 天堂俺去俺来也www色官网| 伊人亚洲综合成人网| 亚洲va在线va天堂va国产| 免费大片黄手机在线观看| 18禁在线播放成人免费| 色5月婷婷丁香| 91久久精品国产一区二区三区| 一个人免费看片子| 日韩大片免费观看网站| 亚洲av在线观看美女高潮| 天天操日日干夜夜撸| 亚洲国产精品一区三区| 日韩在线高清观看一区二区三区| 一边亲一边摸免费视频| 国产91av在线免费观看| 亚洲精品久久久久久婷婷小说| 色婷婷久久久亚洲欧美| av天堂中文字幕网| 国模一区二区三区四区视频| 大陆偷拍与自拍| 热re99久久国产66热| 少妇被粗大的猛进出69影院 | 国产一级毛片在线| 熟女电影av网| 国产av国产精品国产| kizo精华| 国产男女内射视频| 观看免费一级毛片| 精品久久久久久久久亚洲| 如何舔出高潮| 国产白丝娇喘喷水9色精品| 在线观看美女被高潮喷水网站| 在线播放无遮挡| 国产亚洲最大av| 国产av一区二区精品久久| 日本猛色少妇xxxxx猛交久久| 乱人伦中国视频| 少妇人妻一区二区三区视频| 下体分泌物呈黄色| 22中文网久久字幕| 曰老女人黄片| 中文字幕人妻丝袜制服| 夜夜骑夜夜射夜夜干| 波野结衣二区三区在线| 成人无遮挡网站| 在线天堂最新版资源| videossex国产| 免费av不卡在线播放| 免费观看性生交大片5| 人人妻人人爽人人添夜夜欢视频 | 最近的中文字幕免费完整| 大陆偷拍与自拍| 一区二区三区免费毛片| 亚洲,欧美,日韩| 人人澡人人妻人| 另类亚洲欧美激情| 日韩强制内射视频| 免费看光身美女| 久久 成人 亚洲| 一个人看视频在线观看www免费| 午夜免费鲁丝| 国产精品国产av在线观看| 夫妻午夜视频| 80岁老熟妇乱子伦牲交| 久久久精品94久久精品| 中国美白少妇内射xxxbb| 久久影院123| 91精品一卡2卡3卡4卡| a级毛片免费高清观看在线播放| 一级毛片aaaaaa免费看小| 午夜久久久在线观看| 久久久精品免费免费高清| 国产国拍精品亚洲av在线观看| 免费人成在线观看视频色| 国产亚洲午夜精品一区二区久久| 国产欧美日韩精品一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产亚洲欧美精品永久| 秋霞伦理黄片| 一本色道久久久久久精品综合| 亚洲不卡免费看| 亚洲精品日韩av片在线观看| 最近2019中文字幕mv第一页| 午夜日本视频在线| 亚洲av综合色区一区| 日韩制服骚丝袜av| 日韩视频在线欧美| 一级毛片久久久久久久久女| 全区人妻精品视频| 精品少妇久久久久久888优播| 看免费成人av毛片| 亚洲欧美清纯卡通| 亚洲av国产av综合av卡| 久久久久久人妻| 黑人高潮一二区| 人妻 亚洲 视频| 欧美日韩视频高清一区二区三区二| 日韩,欧美,国产一区二区三区| 少妇猛男粗大的猛烈进出视频| 欧美日韩一区二区视频在线观看视频在线| 51国产日韩欧美| 国产精品福利在线免费观看| 亚洲国产精品国产精品| 夫妻午夜视频| 欧美激情极品国产一区二区三区 | 91在线精品国自产拍蜜月| 女性生殖器流出的白浆| 久久久精品94久久精品| 免费看不卡的av| 欧美另类一区| av视频免费观看在线观看| 少妇被粗大的猛进出69影院 | 精华霜和精华液先用哪个| 少妇的逼好多水| 新久久久久国产一级毛片| 又大又黄又爽视频免费| 欧美 日韩 精品 国产| 亚洲熟女精品中文字幕| 性色av一级| 在线观看免费日韩欧美大片 | 色视频www国产| 亚洲精品,欧美精品| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区黑人 | 精品人妻一区二区三区麻豆| 久久精品国产自在天天线| 晚上一个人看的免费电影| 成人黄色视频免费在线看| 99热这里只有是精品在线观看| 午夜日本视频在线| 免费黄色在线免费观看| 一级,二级,三级黄色视频| 乱系列少妇在线播放| 国产永久视频网站| 亚洲国产色片| 纵有疾风起免费观看全集完整版| 最近手机中文字幕大全| 欧美三级亚洲精品| 99热全是精品| 一区二区av电影网| 国产淫语在线视频| 最近中文字幕高清免费大全6| 日本-黄色视频高清免费观看| 在线免费观看不下载黄p国产| 精品久久久久久久久亚洲| 日本欧美视频一区| 亚洲情色 制服丝袜| av福利片在线观看| 国产精品熟女久久久久浪| 蜜臀久久99精品久久宅男| 91精品国产九色| 大码成人一级视频| 伦精品一区二区三区| 黄色毛片三级朝国网站 | 亚洲成人一二三区av| 中国三级夫妇交换| 日韩成人伦理影院| 国产成人免费无遮挡视频| 纵有疾风起免费观看全集完整版| 女的被弄到高潮叫床怎么办| 少妇的逼好多水| 十八禁网站网址无遮挡 | 日韩一本色道免费dvd| 蜜桃久久精品国产亚洲av| 男女边吃奶边做爰视频| 麻豆成人av视频| 插阴视频在线观看视频| 亚洲美女黄色视频免费看| tube8黄色片| 欧美日韩视频高清一区二区三区二| 免费观看av网站的网址| 男人狂女人下面高潮的视频| 欧美精品国产亚洲| 大香蕉久久网| 下体分泌物呈黄色| 亚洲美女视频黄频| 蜜桃在线观看..| 一区二区三区乱码不卡18| 自拍偷自拍亚洲精品老妇| 国产日韩欧美亚洲二区| 我要看日韩黄色一级片| 大陆偷拍与自拍| 国产亚洲一区二区精品| 国产一区亚洲一区在线观看| 成年人免费黄色播放视频 | 日本免费在线观看一区| 亚洲av综合色区一区| 啦啦啦在线观看免费高清www| www.av在线官网国产| 熟女人妻精品中文字幕| 最新中文字幕久久久久| 另类亚洲欧美激情| 亚洲精品国产av成人精品| 深夜a级毛片| 成人美女网站在线观看视频| 久久6这里有精品| 在线观看av片永久免费下载| 亚洲美女搞黄在线观看| 久久久精品94久久精品| 熟女电影av网| 91精品国产九色| 午夜久久久在线观看| .国产精品久久| 天堂俺去俺来也www色官网| 亚洲精品色激情综合| 国产欧美亚洲国产| 精品人妻熟女av久视频| 美女国产视频在线观看| 亚洲国产精品999| 日韩亚洲欧美综合| 日韩不卡一区二区三区视频在线| kizo精华| 在现免费观看毛片| 亚洲欧洲国产日韩| 熟女av电影| 色婷婷久久久亚洲欧美| 亚洲欧洲国产日韩| 尾随美女入室| 男人爽女人下面视频在线观看| 一区在线观看完整版| 日韩电影二区| 国模一区二区三区四区视频| 午夜av观看不卡| 秋霞伦理黄片| 国语对白做爰xxxⅹ性视频网站| 久久国产乱子免费精品| 成人午夜精彩视频在线观看| 亚洲va在线va天堂va国产| 观看av在线不卡| 国产成人午夜福利电影在线观看| 我要看黄色一级片免费的| 久久精品国产自在天天线| 国产精品人妻久久久久久| 国产在视频线精品| 欧美日韩精品成人综合77777| 亚洲人成网站在线观看播放| 国产精品久久久久成人av| 最新中文字幕久久久久| 国产伦理片在线播放av一区| 亚洲国产精品成人久久小说| 久久久久久伊人网av| 亚洲欧美日韩东京热| 国产中年淑女户外野战色| 亚洲精品色激情综合| 亚洲经典国产精华液单| 国产无遮挡羞羞视频在线观看| 男女边吃奶边做爰视频| 日本免费在线观看一区| 成年av动漫网址| 亚洲av电影在线观看一区二区三区|