摘 要:【目的】為探討石灰用量對(duì)檀香人工幼林生長(zhǎng)及光合特性的影響,提出適宜的石灰用量范圍,為檀香人工林的高效培育提供理論參考?!痉椒ā恳?個(gè)月齡的檀香幼苗為研究對(duì)象,在野外設(shè)置不同石灰添加量(0、2.5、5、10 kg/植穴)控制試驗(yàn)進(jìn)行定期觀測(cè)?!窘Y(jié)果】與對(duì)照組(0 kg/植穴)相比,添加石灰可顯著提高檀香的苗高、地徑和胸徑(P<0.05),促進(jìn)檀香幼林的生長(zhǎng)。添加石灰處理33個(gè)月時(shí),2.5 kg/植穴處理組檀香的苗高、地徑和胸徑較對(duì)照組分別提高了20.54%、25.19%和35.12%,5 kg/植穴處理組檀香的苗高、地徑和胸徑較對(duì)照組分別提高了31.70%、36.59%和50.78%,10 kg/植穴處理組檀香的苗高、地徑和胸徑較對(duì)照組分別提高了17.34%、27.72%和41.02%。添加石灰提高了檀香葉片的長(zhǎng)寬比、葉綠素SPAD值和凈光合速率。檀香生長(zhǎng)速度隨石灰用量的增加呈先上升后下降的變化趨勢(shì),以5 kg/植穴處理組為最大值,處理33個(gè)月后,檀香苗高、地徑和胸徑值分別為340.35、5.74和2.64 cm,顯著高于2.5 kg/植穴和10 kg/植穴處理組(P<0.05)。檀香葉片凈光合速率、面積、長(zhǎng)寬比以及葉綠素SPAD值隨著石灰用量的增加亦表現(xiàn)出先上升后下降的變化趨勢(shì),5 kg/植穴處理的值最高,分別為6.72 μmol·m-2·s-1、14.50 cm2、2.95和45.55。檀香葉片凈光合速率與檀香高度呈顯著正相關(guān)(P<0.05),與檀香胸徑和地徑呈極顯著正相關(guān)(P<0.01);檀香的高度、地徑和胸徑3個(gè)指標(biāo)之間極顯著正相關(guān);SPAD與檀香胸徑呈顯著正相關(guān),與檀香高度和地徑呈極顯著正相關(guān)?!窘Y(jié)論】酸性立地條件下添加石灰有利于檀香人工幼林的生長(zhǎng),添加量以5 500~6 500 kg/hm2較為適宜。
關(guān)鍵詞:石灰;檀香;人工林;光合特性
中圖分類號(hào):S718.43 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2025)01-0018-08
基金項(xiàng)目:廣東省林業(yè)科技創(chuàng)新項(xiàng)目(2020KJCX007);廣州市生態(tài)園林科技協(xié)同創(chuàng)新中心項(xiàng)目(202206010058)。
Effects of lime addition on growth and of photosynthesis characteristics of young Santalum album plantation
ZHANG Qilei1,2, ZHU Shiming1, XU Daping1, XIAN Ganbiao3, LI Chao3, XIONG Yongmei4, LIU Xiaojin1,2
(1. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China; 2. State Key Laboratory of Efficient Production of Forest Resources, Beijing 100091, China; 3. Foshan Yunyong Forest Farm, Foshan 528518, Guangdong, China; 4. Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510080, Guangdong, China)
Abstract:【Objective】Soil acidification is one of the important factors affecting plant growth and development. To explore the effect of lime application on the growth and photosynthetic characteristics of Santalum album plantation, and then propose a suitable range of lime dosage and provide reference for efficient cultivation of S. album plantations.【Method】Regular observation was conducted on six months old sandalwood seedlings after adding different concentrations of lime (0 kg/planting hole, 2.5 kg/planting hole, 5 kg/planting hole, 10 kg/planting hole).【Result】Results showed that lime significantly (P<0.05) increased the seedling height, ground diameter, and diameter at breast height of S. album, promoting the growth of S. album plantations. 33 months after adding lime, the height, ground diameter, and diameter at breast height of S. album in the 2.5 kg/planting group increased by 20.54%, 25.19%, and 35.12% compared to the control group, respectively. The height, ground diameter, and diameter at breast height of S. album in the 5 kg/planting group increased by 31.70%, 36.59%, and 50.78% compared to the control group, respectively. The height, ground diameter, and diameter at breast height of S. album in the 10 kg/planting group increased by 17.34%, 27.72%, and 41.02% compared to the control group, respectively. Lime increased the aspect ratio, chlorophyll SPAD value, and net photosynthetic rate of S. album leaves. As the amount of lime added increased, the growth rate of S. album increased first and then decreased. After 33 months, the height, ground diameter, and diameter at breast height of S. album was the highest in 5 kg/planting group, which were 340.35, 5.74, and 2.64 cm, respectively. The net photosynthetic rate, area, aspect ratio, and chlorophyll SPAD value of S. album leaves increased first and then decreased with the increased of lime addition. Among them, the value of 5 kg/planting hole treatment was the highest, which was 6.72 μmol·m-2·s-1, 14.50 cm2, 2.95, 45.55, respectively. Correlation analysis found that the net photosynthetic rate of S. album leaves was significantly positively correlated with the height (P<0.05), and extremely significantly positively correlated with the diameter at breast height and ground diameter (P<0.01). There was a highly significant positive correlation between the height, ground diameter, and diameter at breast height of S. album. SPAD was significantly positively correlated with the diameter at breast height, and extremely significantly positively correlated with the height and ground diameter.【Conclusion】The results indicate that lime application was beneficial for the growth of S. album plantations, and 5 500-6 500 kg/hm2 were more suitable under strong acid sites.
Keywords: lime; Santalum album; plantation; photosynthesis characteristics
由于人為活動(dòng)范圍和強(qiáng)度的不斷增加,導(dǎo)致外源氫離子不斷進(jìn)入土壤,加速了土壤的酸化過(guò)程,使得我國(guó)土壤酸化問(wèn)題日益嚴(yán)重,尤其在我國(guó)南方地區(qū)[1]。土壤酸化對(duì)農(nóng)作物、林木的生長(zhǎng)和發(fā)育均會(huì)產(chǎn)生一系列不利影響:一方面通過(guò)加重土壤板結(jié),致使根系伸展困難[2];另一方面酸性土壤會(huì)誘導(dǎo)土壤中含鋁礦物質(zhì)釋放出鋁離子,對(duì)根系產(chǎn)生鋁毒害,同時(shí)還會(huì)誘發(fā)土壤中重金屬離子活性增強(qiáng)從而引發(fā)中毒現(xiàn)象[3]。此外,在低pH值環(huán)境下還會(huì)導(dǎo)致土壤中陽(yáng)離子(如Ca2+、Mg2+等)流失,從而無(wú)法滿足植物正常生長(zhǎng)所需的營(yíng)養(yǎng)[4-5]。最后,土壤酸化還會(huì)影響土壤微生物群落結(jié)構(gòu)和活性[6-7],并最終影響植物的正常生長(zhǎng)發(fā)育。
施用石灰被認(rèn)為是改良土壤酸度并獲得作物增產(chǎn)的傳統(tǒng)而有效的方法之一,被廣泛運(yùn)用于酸化農(nóng)田、森林土壤的改良和作物產(chǎn)量或品質(zhì)的提升等[8-9],尤其適用于pH值小于5.0的強(qiáng)酸性土壤[10]。張影等[11]發(fā)現(xiàn)采用耕翻入土的施用方法,施用1.5 kg/株用量的石灰可以有效中和溫州蜜柑Citrus unshiu的土壤酸度,提升土壤養(yǎng)分的有效性,并最終改善樹(shù)體營(yíng)養(yǎng)和果實(shí)品質(zhì)。朱經(jīng)偉等[12]采用室內(nèi)培養(yǎng)和田間試驗(yàn)相結(jié)合的方法,發(fā)現(xiàn)1.5 t/hm2的石灰用量可以有效矯正土壤酸度,促進(jìn)烤煙Nicotiana tabacum的生產(chǎn)。Moore等[13]發(fā)現(xiàn)石灰是糖槭Acer saccharum人工林在酸化立地下得以更新并恢復(fù)生長(zhǎng)的關(guān)鍵因素,而且對(duì)其生長(zhǎng)的影響長(zhǎng)達(dá)15 a之久。盡管石灰的施用對(duì)酸化土壤的改良效果已被大量研究所證實(shí),但由于不同作物的生物學(xué)、生長(zhǎng)階段以及立地條件等差異,其施用方法和適宜的施用量也不盡相同[14]。
檀香Santalum album是檀香科Santalaceae檀香屬的一種根系半寄生常綠小喬木,主要分布于印尼、印度、澳大利亞、中國(guó)等熱帶和亞熱帶地區(qū)。其成齡木材在宗教、中醫(yī)藥、香精香料、精細(xì)工藝品等方面應(yīng)用廣泛[15],經(jīng)濟(jì)價(jià)值高。然而引種栽培實(shí)踐發(fā)現(xiàn),檀香人工林在我國(guó)南方的一些酸性立地普遍長(zhǎng)勢(shì)較差,甚至出現(xiàn)逐步退化至死亡等現(xiàn)象,采用施肥、灌溉等高效撫育措施并不能得到較好的改善。鑒于此,本研究選擇代表性的酸性立地設(shè)置石灰添加控制試驗(yàn),擬通過(guò)觀測(cè)并分析石灰用量對(duì)檀香人工林生長(zhǎng)和光合特性的影響,提出適宜的石灰用量范圍,為我國(guó)檀香人工林規(guī)?;咝嘤峁┛茖W(xué)依據(jù)。
1 材料與方法
1.1 試驗(yàn)地概況
試驗(yàn)地點(diǎn)設(shè)置在廣東省佛山市高明區(qū)佛山市云勇生態(tài)林養(yǎng)護(hù)中心(112°38′26″E,22°41′54″N),海拔120.5 m,屬亞熱帶季風(fēng)氣候,年平均氣溫22 ℃,年降水量為1 800~2 000 mm。土壤主要由花崗巖、砂頁(yè)巖風(fēng)化而成的赤紅壤為主,土層大于60 cm,坡度為25°~35°,0~30 cm土層的pH值為3.04~4.96,平均值為4.10。土壤中全氮含量為0.1~1.7 g/kg;全磷含量為0.1~0.5 g/kg;有機(jī)碳含量為1.5~25 g/kg。
1.2 試驗(yàn)材料
試驗(yàn)材料為6個(gè)月齡的優(yōu)質(zhì)檀香壯苗,苗高(50±5)cm,地徑(0.51±0.11) cm,種植時(shí)已配置好苗期寄主假蒿Kuhnia rosmarnifolia,種植后與降香黃檀Dalbergia odorifera等比例混交,并在植穴周圍配置好中期寄主山毛豆Tephrosia candida。種植穴規(guī)格為50 cm×50 cm×40 cm,株行距為3 m×3 m。檀香人工林的種植管理參考Qin等[16]的方法,即種植前每穴施入0.5 kg復(fù)合肥料作為基肥,種植后每年除草追肥2次,每次追肥量為150 g/株的復(fù)合肥料。試驗(yàn)所用的石灰為粉碎并過(guò)篩好的熟石灰精細(xì)粉末,主要成分為氫氧化鈣。
1.3 試驗(yàn)方法
采用完全隨機(jī)區(qū)組的試驗(yàn)設(shè)計(jì),根據(jù)前期在溫室進(jìn)行的盆栽預(yù)試驗(yàn),石灰用量分為3個(gè)處理梯度:2.5 kg/植穴(T1)、5 kg/植穴(T2)和10 kg/植穴(T3),并設(shè)置0 kg/植穴為對(duì)照(CK)。石灰分2次施入,每次施加總量的一半,施入后與植穴周圍的土壤進(jìn)行充分拌勻,第1次為種植前的10 d(2020年3月20日),第2次為造林6個(gè)月(2020年9月10日),每個(gè)處理種植40~50株,4次重復(fù)。
1.4 生長(zhǎng)指標(biāo)的測(cè)定
利用塔尺測(cè)定檀香的高度,用游標(biāo)卡尺測(cè)定檀香的地徑和胸徑,種植后第3個(gè)月開(kāi)始調(diào)查,此后每間隔6個(gè)月測(cè)定1次,第3年后1年調(diào)查1次。
1.5 光合特性的測(cè)定
1.5.1 氣體交換參數(shù)
選取第6葉位的健康成熟葉片,利用LI-6800便攜式光合-熒光系統(tǒng)(LI-COR,美國(guó))于晴天上午(9:00—11:00)測(cè)定葉片的凈光合速率(Pn)、胞間二氧化碳濃度(Ci)、蒸騰速率(Tr)、氣孔導(dǎo)度(Gs)等值。設(shè)定葉室光強(qiáng)為1 100 μmol·m-2·s-1,紅藍(lán)光比例為9∶1,氣體流速為500 μmol·s-1,二氧化碳濃度為400 μmol·mol-1。每個(gè)小區(qū)隨機(jī)選取5株,每株使用1片葉,每片葉子測(cè)定3次。
1.5.2 葉綠素含量
選取第6葉位的健康成熟葉片,使用便攜式葉綠素測(cè)定儀SPAD-502 Plus(Konica Minolta,日本)測(cè)定葉片的SPAD值,每個(gè)小區(qū)隨機(jī)選10株,每株使用1片葉。
1.5.3 葉面積大小
選取第6葉位的健康成熟葉片,使用手持式激光葉面積儀CI-203(CID Bio-Science,美國(guó))測(cè)定葉片的葉面積和長(zhǎng)寬比,每個(gè)小區(qū)隨機(jī)選取10株,每株使用1片葉。
1.6 數(shù)據(jù)處理
用Excel 2016軟件進(jìn)行數(shù)據(jù)處理和表格處理,用SPSS 19.0統(tǒng)計(jì)軟件進(jìn)行方差分析,不同處理各種指標(biāo)之間的差異由單因素方差分析中Duncan檢驗(yàn)完成,顯著水平為0.05,用Sigma Plot V14.0軟件進(jìn)行繪圖。
2 結(jié)果與分析
2.1 不同石灰處理對(duì)檀香苗高、地徑和胸徑的影響
方差分析結(jié)果顯示,石灰的添加對(duì)檀香早期(3個(gè)月內(nèi))苗高生長(zhǎng)的影響差異不顯著(P=0.18),但在生長(zhǎng)后期(9個(gè)月以后)則表現(xiàn)出顯著差異(P<0.05),而且不同石灰的施用量對(duì)檀香苗木高度生長(zhǎng)的影響差異隨生長(zhǎng)時(shí)間的增加而有所不同(圖1)。處理9個(gè)月時(shí)各石灰處理間的苗木高度均顯著大于對(duì)照,但T3處理的平均高度要小于T1和T2處理。處理15個(gè)月時(shí)對(duì)照組的苗木高度均顯著小于各處理組,其中T2處理的高度最大。處理21個(gè)月時(shí)各石灰處理間的高度均顯著大于對(duì)照,但3種用量處理之間的差異不顯著。處理33個(gè)月時(shí),不同石灰用量對(duì)檀香苗木高度生長(zhǎng)的影響差異表現(xiàn)出極顯著差異(P<0.01)。其中T2處理下檀香苗木高度最高,平均苗高為(340.35±11.02)cm,比對(duì)照處理顯著提升了31.70%。其次是T1和T3處理,平均苗木高度依次為(311.50±10.05)cm和(303.23±9.69)cm,比對(duì)照處理提升了20.54%和17.34%。對(duì)照處理苗木高度最低,平均高度僅為(258.42±12.41)cm(圖1)。
石灰的添加顯著促進(jìn)檀香苗木地徑的增粗生長(zhǎng),表現(xiàn)為各石灰用量處理對(duì)檀香地徑生長(zhǎng)的影響差異均達(dá)顯著水平(P<0.05,圖1)。處理3個(gè)月時(shí)檀香地徑大小隨著施加石灰用量的增加而依次上升。處理9個(gè)月和15個(gè)月時(shí)T2處理組的地徑值最大,T1處理組大于T3處理組,對(duì)照組最小。處理21個(gè)月時(shí)3個(gè)處理中T3的地徑最大,T1的最小,三者之間無(wú)顯著差異(P=0.28)。處理33個(gè)月時(shí)各處理的地徑均顯著大于對(duì)照組,依次比對(duì)照處理提升了25.19%、36.59%和27.72%,其中T2處理顯著大于T1和T3處理,T1和T3處理之間無(wú)顯著差異(P=0.32)。
檀香胸徑生長(zhǎng)對(duì)石灰用量的響應(yīng)趨勢(shì)與地徑較為一致。處理3個(gè)月時(shí)由于檀香苗高較低,無(wú)胸徑值。處理9個(gè)月和15個(gè)月時(shí)對(duì)照處理的檀香胸徑值均最小,T2處理最大,其次是T3和T1,但3個(gè)處理組之間的差異不顯著。處理21個(gè)月時(shí)則T3處理的胸徑值最大,T1最小,T2居中,但3個(gè)處理組的胸徑都顯著大于對(duì)照組。處理33個(gè)月時(shí)各處理的胸徑均顯著大于對(duì)照組,T2處理達(dá)最大值,比對(duì)照處理提升了50.78%,T1和T3處理之間無(wú)顯著差異,但依次比對(duì)照處理顯著提升了35.12%和41.02%(圖1)。
2.2 不同石灰處理對(duì)檀香葉片氣體交換參數(shù)的影響
方差分析結(jié)果表明,不同石灰用量處理之間的氣體交換參數(shù)存在差異(圖2)。隨著石灰用量的增加,檀香葉片的凈光合速率、蒸騰速率、胞間二氧化碳濃度和氣孔導(dǎo)度均呈現(xiàn)出先上升后下降的變化趨勢(shì),并且均在T2處理時(shí)達(dá)到最大值,平均凈光合速率為(6.72±0.11)μmol·m-2·s-1,平均蒸騰速率為(3.67±0.27)mmol·m-2·s-1,平均胞間二氧化碳濃度為(356±23)μmol·mol-1,平均氣孔導(dǎo)度為(0.42±0.04)mol·m-2·s-1,依次比對(duì)照處理提升了52.06%、176.92%、12.90%和308.69%。
2.3 不同石灰處理對(duì)檀香葉片面積、長(zhǎng)寬比和SPAD值的影響
不同石灰用量對(duì)檀香葉片形態(tài)大?。娣e、長(zhǎng)寬比)的影響較為有限,但顯著影響葉片的SPAD值(圖3)。葉片面積大小在對(duì)照、T1和T2處理之間無(wú)顯著差異(P=0.10),但T3處理的葉面積要略低于其他處理。各石灰用量處理下葉片的長(zhǎng)寬比均高于對(duì)照組,其中T2處理的葉片長(zhǎng)寬比最大,T3處理的葉片長(zhǎng)寬比低于T1和T2處理。T1和T2處理的SPAD值無(wú)顯著差異,但均顯著大于對(duì)照和T3處理。
2.4 生長(zhǎng)性狀與光合生理指標(biāo)的相關(guān)性分析
相關(guān)分析結(jié)果(表1)表明,檀香幼苗的高度與光合速率、氣孔導(dǎo)度、蒸騰速率、葉面積、葉長(zhǎng)寬比呈顯著正相關(guān)(P<0.05),與地徑、胸徑、SPAD呈極顯著正相關(guān)(P<0.01)。地徑與光合速率、SPAD、胸徑呈極顯著正相關(guān)(P<0.01),與蒸騰速率、氣孔導(dǎo)度呈顯著正相關(guān)(P<0.05)。胸徑與光合速率呈極顯著正相關(guān)(P<0.01),與SPAD呈顯著正相關(guān)(P<0.05)。
3 討 論
石灰作為土壤改良劑施入到土壤后,一方面通過(guò)與土壤中的活性酸發(fā)生中和反應(yīng),降低土壤中交換性酸含量,提高土壤pH值,從而實(shí)現(xiàn)改良土壤酸度的目標(biāo)[17-18]。另一方面通過(guò)促進(jìn)土壤微生物活動(dòng),改善土壤營(yíng)養(yǎng)元素的有效性和酶活性,并最終促進(jìn)植物的生長(zhǎng)發(fā)育[18-19]。本研究所在試驗(yàn)區(qū)土壤屬于強(qiáng)酸性土壤,施用石灰后顯著提升了檀香葉片SPAD值,增強(qiáng)葉片的光合能力(氣體交換參數(shù)),最終表現(xiàn)為顯著促進(jìn)檀香苗木的生長(zhǎng),這點(diǎn)與糖槭[13]、荔枝Litchi chinensis[17]、烤煙[20]、玉米Zea mays[18]等類似。然而,石灰的用量并非越多越好,有一個(gè)適宜的用量范圍。曾廷廷等[21]通過(guò)數(shù)據(jù)整合分析,發(fā)現(xiàn)酸性土壤添加石灰對(duì)蔬菜和玉米的增產(chǎn)效果最好,石灰用量以3 000~6 000 kg·hm-2為宜。本試驗(yàn)研究發(fā)現(xiàn),在強(qiáng)酸性立地條件下檀香人工林石灰用量以T2處理(5 kg/植穴)最佳,即5 500~6 500 kg·hm-2較為適宜,接近蔬菜、玉米等農(nóng)作物的適宜用量范圍的上限,表明酸性土壤下種植檀香需要施用的石灰用量要比蔬菜和玉米等農(nóng)作物略多一點(diǎn),但不宜超過(guò)11 000 kg·hm-2。因?yàn)槭抑泻写罅康拟},過(guò)多的石灰用量會(huì)引起土壤鎂、鉀缺乏,降低磷的有效性,長(zhǎng)期大量施用石灰將導(dǎo)致土壤板結(jié)和養(yǎng)分不平衡,并最終導(dǎo)致作物減產(chǎn)[22-24]。
光合作用是植物賴以生長(zhǎng)、發(fā)育等生命活動(dòng)的基礎(chǔ),并影響著植物的生長(zhǎng)發(fā)育,較高的凈光合速率能夠顯著促進(jìn)植物的生長(zhǎng)[25]。本研究結(jié)果發(fā)現(xiàn),檀香凈光合速率與苗高的生長(zhǎng)呈顯著正相關(guān),與地徑和胸徑的生長(zhǎng)呈極顯著正相關(guān),表明添加石灰一方面很可能是通過(guò)提高檀香葉片的凈光合速率來(lái)促進(jìn)其地徑和苗高的生長(zhǎng)。另一方面,還可能與葉片面積和葉綠素含量(SPAD值)的增加有關(guān)。因?yàn)檩^大的葉面積能夠增加植物的受光面積,同時(shí)葉片的光合色素也進(jìn)一步增加,顯著提高了光合效率和總光合產(chǎn)物,促進(jìn)生物量的積累,最終表現(xiàn)為促進(jìn)生長(zhǎng)發(fā)育[26]。隨著石灰施用量的增加,檀香葉片的凈光合速率和葉面積先上升后下降,相應(yīng)的苗高、地徑等生長(zhǎng)速度也逐步減緩,在5 kg/植穴時(shí)達(dá)到最大值。這很可能表明石灰的添加對(duì)檀香葉片光合速率的促進(jìn)作用有一個(gè)最大值,過(guò)多的石灰用量不利于檀香葉片光合速率的增加,并最終表現(xiàn)為生長(zhǎng)速度降低,這點(diǎn)還有待更長(zhǎng)時(shí)間的生長(zhǎng)觀測(cè)分析。
最后,檀香作為一種引入我國(guó)馴化栽培的珍貴用材樹(shù)種,其天然分布區(qū)多為弱酸性土壤,pH值為5.0~6.5[27]。而我國(guó)南方地區(qū)的土壤多表現(xiàn)為強(qiáng)酸性,不利于檀香的生長(zhǎng)發(fā)育,因而需要進(jìn)行一定程度的改良處理。梅其文等[28]通過(guò)對(duì)不同寄主配置下檀香根際pH值開(kāi)展調(diào)查,結(jié)合不同pH值下檀香生長(zhǎng)試驗(yàn)結(jié)果,發(fā)現(xiàn)檀香生長(zhǎng)的最佳根際pH值為5.5。綜合本試驗(yàn)研究結(jié)果,5 kg/植穴的石灰用量很可能將試驗(yàn)區(qū)域土壤的pH值提升至5.5左右,與室內(nèi)培養(yǎng)試驗(yàn)的結(jié)果較為一致[22],因而表現(xiàn)出較好的改良效果。譚智銘等[29]的研究發(fā)現(xiàn)適度提高土壤pH值能改善土壤養(yǎng)分。但石灰的添加量對(duì)檀香人工林土壤中有效養(yǎng)分、陽(yáng)離子交換量、寄主生長(zhǎng)以及微生物活性等的影響還有待更進(jìn)一步地深入細(xì)致研究,目前已開(kāi)展相關(guān)試驗(yàn)。
4 結(jié) 論
酸性立地條件下添加石灰能顯著促進(jìn)檀香人工林的生長(zhǎng)和發(fā)育。不同石灰用量對(duì)檀香生長(zhǎng)影響差異顯著,以5 500~6 500 kg/hm2的石灰施用量的改良效果較好,表現(xiàn)為顯著促進(jìn)檀香苗高、胸徑和地徑的生長(zhǎng),同時(shí)光合能力也顯著增強(qiáng),可在檀香人工林營(yíng)建中進(jìn)行推廣應(yīng)用。
參考文獻(xiàn):
[1] ZHU Q C, DE VRIES W, LIU X J, et al. Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980–2010[J]. Science of the Total Environment,2018,618: 1497-1505.
[2] 唐琨,朱偉文,周文新,等.土壤pH對(duì)植物生長(zhǎng)發(fā)育影響的研究進(jìn)展[J].作物研究,2013,27(2):207-212. TANG K, ZHU W W, ZHOU W X, et al. Research progress on effects of soil pH on plant growth and development[J]. Crop Research,2013,27(2):207-212.
[3] 殷會(huì)德,石巖.改良劑對(duì)土壤酸化修復(fù)研究與展望[J].耕作與栽培,2016,36(6):68-72. YIN H D, SHI Y. Research and prospect of amendment on soil acidification and remediation[J]. Tillage and Cultivation, 2016,36(6):68-72.
[4] BOLAN N S, ADRIANO D C, CURTIN D. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability[M]. Advances in Agronomy. Amsterdam: Elsevier,2023:215-272.
[5] KISINYO P O, GUDU S O, OTHIENO C O, et al. Effects of lime, phosphorus and rhizobia on Sesbania sesban performance in a western Kenyan acid soil[J]. African Journal of Agricultural Reseearch,2012,7(18):2800-2809.
[6] ACIEGO PIETRI J C, BROOKES P C. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biology and Biochemistry,2008,40(7):1856-1861.
[7] 劉鑫,尹澤潤(rùn),盛浩,等.水稻土微生物群落、酶活性及理化性質(zhì)對(duì)有機(jī)肥、石灰連續(xù)施用的響應(yīng)[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2024,30(1):63-73. LIU X, YIN Z R, SHENG H, et al. Response of microbial community, enzyme activity, and physicochemical property in paddy soil to continuous organic fertilizer and lime amendments[J]. Plant Nutrition and Fertilizers Science,2024,30(1):63-73.
[8] 蔡?hào)|,肖文芳,李國(guó)懷.施用石灰改良酸性土壤的研究進(jìn)展[J].中國(guó)農(nóng)學(xué)通報(bào),2010,26(9):206-213. CAI D, XIAO W F, LI G H. Advance on study of liming on acid soils[J]. Chinese Agricultural Science Bulletin,2010,26(9): 206-213.
[9] 明潤(rùn)廷,萬(wàn)方,那立蘋(píng),等.改良劑施用下的土壤降酸培肥效果—基于中國(guó)酸性土壤改良研究的Meta分析[J/OL].土壤學(xué)報(bào),1-12.[2024-04-01].DOI:10.11766/trxb202311050456. MING R T, WAN F, NA L P, et al. Effect of soil acid reduction and fertilizer cultivation under conditioner application: meta-analysis based on acid soil improvement studies in China[J]. Acta Pedologica Sinica,1-12.[2024-04-01].DOI:10.11766/trxb202311050456.
[10] CHAPLAIN V, DéFOSSEZ P, DELARUE G, et al. Impact of lime and mineral fertilizers on mechanical strength for various soil pHs[J]. Geoderma,2011,167:360-368.
[11] 張影,胡承孝,譚啟玲,等.施用石灰對(duì)溫州蜜柑樹(shù)體營(yíng)養(yǎng)和果實(shí)品質(zhì)及酸性柑橘園土壤養(yǎng)分有效性的影響[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,33(4):72-76. ZHANG Y, HU C X, TAN Q L, et al. Effects of liming on nutrition status, quality of satsumamandarin and acid soil nutrients availability of citrus orchard[J]. Journal of Huazhong Agricultural University,2014,33(4):72-76.
[12] 朱經(jīng)偉,李志宏,劉青麗,等.石灰對(duì)酸化黃壤整治煙田土壤酸度的影響及其應(yīng)用效果[J].中國(guó)土壤與肥料,2016(3): 43-48. ZHU J W, LI Z H, LIU Q L, et al. Influence of lime dosage on soil acidity of acidified yellow soil in renovated flue-cured tobacco field and application effects[J]. Soil and Fertilizer Sciences in China,2016(3):43-48.
[13] MOORE J D, OUIMET R, DUCHESNE L. Soil and sugar maple response 15 years after dolomitic lime application[J]. Forest Ecology and Management,2012,281:130-139.
[14] HOLLAND J E, BENNETT A E, NEWTON A C, et al. Liming impacts on soils, crops and biodiversity in the UK: a review[J]. Science of the Total Environment,2018,610-611:316-332.
[15] LIU X J, ZHANG Q L, HONG Z, et al. Induction of heartwood formation in young Indian sandalwood (Santalum album L.) by gas elicitors[J]. Frontiers in Plant Science,2022,13:961391.
[16] QIN F C, LU J K, LI Z S, et al. Nitrogen rather than carbon released by litter decomposition mediates nutrient relationships in a multispecies forest plantation with hemiparasite[J]. Science of the Total Environment,2023,888:164176.
[17] 邱全敏,王偉,吳雪華,等.施用不同pH改良劑對(duì)荔枝園酸性土壤性質(zhì)及荔枝生長(zhǎng)的影響[J].熱帶作物學(xué)報(bào),2020,41(2): 217-224. QIU Q M, WANG W, WU X H, et al. Effects of soil pH conditioners on soil properties of acid litchi orchards and litchi growth[J]. Chinese Journal of Tropical Crops,2020,41(2):217-224.
[18] 方煜,黃凱,楊京民,等.石灰、生物炭對(duì)酸性土壤改良及玉米生長(zhǎng)的影響[J].江西農(nóng)業(yè)學(xué)報(bào),2022,34(4):80-87. FANG Y, HUANG K, YANG J M, et al. Effects of lime and biochar on acid soil improvement and maize growth[J]. Acta Agriculturae Jiangxi,2022,34(4):80-87.
[19] GUL S, WHALEN J K, THOMAS B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J]. Agriculture, Ecosystems Environment,2015,206:46-59.
[20] 閆靜,時(shí)仁勇,王昌軍,等.不同改良劑對(duì)酸性煙田的改良效果及其對(duì)烤煙生長(zhǎng)的影響[J].土壤,2023,55(3):612-618. YAN J, SHI R Y, WANG C J, et al. Effects of different amendments on soil acidity and tobacco growth in acidic tobacco field[J]. Soils,2023,55(3):612-618.
[21] 曾廷廷,蔡澤江,王小利,等.酸性土壤施用石灰提高作物產(chǎn)量的整合分析[J].中國(guó)農(nóng)業(yè)科學(xué),2017,50(13):2519-2527. ZENG T T, CAI Z J, WANG X L, et al. Integrated analysis of liming for increasing crop yield in acidic soils[J]. Scientia Agricultura Sinica,2017,50(13):2519-2527.
[22] 胡敏,向永生,魯劍巍.石灰用量對(duì)酸性土壤pH值及有效養(yǎng)分含量的影響[J].中國(guó)土壤與肥料,2017(4):72-77. HU M, XIANG Y S, LU J W. Effects of lime application rates on soil pH and available nutrient content in acidic soils[J]. Soil and Fertilizer Sciences in China,2017(4):72-77.
[23] 張效樸,鄭根寶.連續(xù)施石灰對(duì)作物生長(zhǎng)及其養(yǎng)分吸收的影響[J].土壤學(xué)報(bào),1987,24(4):343-351. ZHANG X P, ZHENG G B. Effect of continuous liming on crop growth and their absorption of nutrients[J]. Acta Pedologica Sinica,1987,24(4):343-351.
[24] 敖俊華,黃振瑞,江永,等.石灰施用對(duì)酸性土壤養(yǎng)分狀況和甘蔗生長(zhǎng)的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2010,26(15):266-269. AO J H, HUANG Z R, JIANG Y, et al. Effects of applying lime on the properties of acid soil and the growth of sugarcane[J]. Chinese Agricultural Science Bulletin,2010,26(15):266-269.
[25] WITIEMANN M, ANDERSSON M X, NTIRUGULIRWA B, et al. Temperature acclimation of net photosynthesis and its underlying component processes in four tropical tree species[J]. Tree Physiology, 2022,42(6):1188-1202.
[26] JIN F L, ZHANG F W, YUE X, et al. Correlation between leaf size and fruit quality of Kiwi[J]. Agricultural Science Technology, 2016,17(11):2469-2472.
[27] 許明英,李躍林,任海,等.檀香在華南植物園的引種栽培[J].經(jīng)濟(jì)林研究,2006,24(3):39-41,44. XU M Y, LI Y L, REN H, et al. Introduction and cultivation of Santalum album L. in south China botanical garden[J]. Nonwood Forest Research,2006,24(3):39-41,44.
[28] 梅其文,張新華,馬國(guó)華.檀香寄主根際pH值對(duì)檀香生長(zhǎng)及其寄主偏好性的影響[J].熱帶亞熱帶植物學(xué)報(bào),2011,19(6): 565-570. MEI Q W, ZHANG X H, MA G H. Influence of rhizospheric pH value of host on growth of indian sandalwood and preference to host[J]. Journal of Tropical and Subtropical Botany,2011,19(6): 565-570.
[29] 譚智銘,寧晨,林先瀅,等.油茶低產(chǎn)林轉(zhuǎn)化下土壤質(zhì)量關(guān)鍵因子的識(shí)別與篩選[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023,43(10): 140-147,157. TAN Z M, NING C, LIN X Y, et al. Identification and screening for key factors of soil quality under the conversion of low-yield Camellia oleifera forest[J]. Journal of Central South University of Forestry Technology,2023,43(10):140-147,157.
[本文編校:謝榮秀]