摘" " 要:【目的】妮娜皇后葡萄外觀和品質(zhì)俱佳,但在部分產(chǎn)區(qū)因轉(zhuǎn)色期高溫多濕與光照不足的栽培環(huán)境,導(dǎo)致果實(shí)著色不良、糖分積累減少,因此,探索改善其果實(shí)著色和品質(zhì)的適宜栽培措施有重要意義?!痉椒ā恳阅戏疆a(chǎn)區(qū)設(shè)施生產(chǎn)的妮娜皇后為研究對象,在果穗轉(zhuǎn)色前(E-L 34)通過噴施不同植物生長調(diào)節(jié)劑、氨基酸肥以及鋪設(shè)反光膜等栽培措施,測量果實(shí)成熟過程中形狀、花色苷、可溶性固形物(TSS)、可溶性糖、有機(jī)酸、揮發(fā)性有機(jī)物(VOCs)含量等性狀的變化,同時(shí)檢測果皮中類黃酮和花色苷合成相關(guān)基因的表達(dá)水平。【結(jié)果】除以硝酚鈉和氨基酸肥為有效成分的愛多收和艾果龍外,其他處理均能顯著改善果實(shí)著色,并提高果皮中花色苷合成相關(guān)基因(VvCHS、VvUFGT、VvDFR和VvMYB90)的表達(dá)水平,其中S-誘抗素改善果實(shí)著色的效果最佳,但無法有效增加果肉中可溶性糖和VOCs含量。茉莉酸甲酯不僅能夠改善果實(shí)著色,促進(jìn)果皮中相關(guān)基因表達(dá),還能夠提高果肉中TSS、可溶性糖、VOCs含量。金村秋和反光膜處理在增加果實(shí)縱橫徑和硬度方面具有顯著作用。此外,運(yùn)用隸屬函數(shù)法對所有處理進(jìn)行綜合評價(jià)分析,表明50 mg·L-1茉莉酸甲酯綜合效果最佳?!窘Y(jié)論】噴施50 mg·L-1茉莉酸甲酯是改善妮娜皇后葡萄果實(shí)著色與品質(zhì)的最佳處理方式。
關(guān)鍵詞:葡萄;妮娜皇后;栽培措施;果實(shí)著色;品質(zhì)
中圖分類號:S663.1 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2024)10-2051-16
Different cultivation practices promote berry coloration and quality in Queen Nina grape
JIN Huanchun1, JIN Lianyu2, CHEN Yiya3, WANG Liangde1, WU Ying1, HU Dan1*, ZHANG Pei’an4*
(1Wenzhou Agricultural Technology Extension and Service Center, Wenzhou 325000, Zhejiang, China; 2Yueqing Lianyu Grape Research Institute, Yueqing 325600, Zhejiang, China; 3College of Horticulture, China Agricultural University, Beijing 100193, China; 4Zhejiang Institute of Subtropical Crops, Wenzhou 325005, Zhejiang, China)
Abstract: 【Objective】 The Queen Nina grape is famous nationwide for its excellent appearance and taste. However, its productivity and quality are largely limited by the climate factors such as high temperature, humidity, and insufficient light during the veraison stage, leading to poor berry coloring, reduced sugar accumulation and reduced commercialization. Traditional techniques to improve grape berry coloration include trunk girdling, leaf removal, and cluster and berry thinning, which are often labor-intensive and technically demanding for producers. In this study, we compared the advantages with disadvantages of spraying different plant growth regulators or amino acid fertilizers, and laying reflective film, with spraying water on the berry surface serving as a control, so as to select simple and easy cultivation practices to promote coloration and quality of Queen Nina berries. 【Methods】 With Queen Nina, produced in facilities in a southern China production area (Wenzhou, Zhejiang) as the sample, before turning color (E-L 34), the berry surface was sprayed with trans-abscisic acid (T1, dilute 200×), Guodele (T2, dilute 1000×) , methyl jasmonate (T3, 50 mg·L-1) , Tianrunduocai (T4, dilute 1000×) , Jinchunqiu (T5, dilute 2000×), ethrel (T6, dilute 600×), Aiduoshou (T7, dilute 4000×), Aiguolong (T8, dilute 800×), the reflective film (T9) was laid on the ground, and clean water was sprayed as a control (CK). The first sample was taken before treatment and thereafter at 10 d intervals for four consecutive times, recorded as DS0, DS1, DS2, DS3 and DS4, respectively. During berry ripening, we measured the coloration level of the cluster, colour index for red grapes (CIRG), berry morphogenesis and berry hardness. The expression levels of the genes related to the synthesis of anthocyanin (VvCHS, VvUFGT, VvDFR and VvMYB90) in the skin, as well as the changes of the traits of the flesh such as the content of total soluble solids (TSS), soluble sugars and organic acids were analyzed. Meanwhile, the contents of volatile organic compounds (VOCs) in the ripening berries were also measured. 【Results】 Our findings revealed that, apart from T7 and T8, which contained sodium nitrophenol and amino acid fertilizers as active ingredients, all the other treatments were able to significantly enhance berry coloration and increase the expression of VvCHS, VvUFGT, VvDFR and VvMYB90 in the skin. Among them, T1 exhibited the most effective improvement in berry coloration. At DS3, the coloration level of the cluster was 4.85 and the CIRG was 5.52 (meeting the criteria for deep red colour), with a content of 0.29 mg·g-1 of the total anthocyanin, but T1 was not able to effectively increase the content of soluble sugars and VOCs in the pulp. T3 not only improved fruit coloration and promoted the expression of related genes, but also drastically increased TSS, soluble sugars and VOCs, in which the content of the total anthocyanin in the skin and the content of soluble sugars and VOCs in the flesh at DS4 were 0.28, 180.40, and 30.28 μg·g-1, respectively. Both T1 and T3 had little effect on berry longitudinal and transverse diameters, and reduced berry firmness at fruit ripening, which was significantly lower than that of CK at DS4, being only 1.08 and 1.02 kg·cm-2, respectively, whereas the T5 and T9 were very different, with significant effects on increasing berry longitudinal and transverse diameters, and firmness. At DS4, the single grain weights of T5 and T9 were 14.77 and 14.99 g, respectively, which were 14.23% and 15.93% higher than that of CK, and the transverse diameters were 28.52 and 28.73 mm, respectively, which were 3.56% and 4.32% higher than that of CK. At DS4, the total organic acid content in the flesh of T4 treatment was relatively less (only 2.79 mg·g-1), and there was no significant difference between the other treatments and CK, with the contents ranging from 3.40 to 4.53 mg·g-1. In addition, T1, T2 and T4 were able to significantly increase the content of trans-2-hexenol, which was the most abundant terpene in the pulp of Queen Nina. Finally, a comprehensive evaluation based on subordinate function values analysis suggested that T3 was the most effective treatment overall. 【Conclusion】 50 mg·L-1 methyl jasmonate was selected as the best treatment in this study to improve the color and quality of Queen Nina grape berry. It not only promoted the expression of anthocyanin-related genes, so as to effectively improve fruit color, but also increased TSS, soluble sugars and VOCs in the flesh.
Key words: Grape; Queen Nina; Cultivation practices; Berry coloration; Quality
葡萄(Vitis vinifera)是世界性重要果樹之一,品種眾多,且果實(shí)能夠廣泛用于鮮食、釀酒、制干、榨汁等,在果樹產(chǎn)業(yè)中占有重要地位[1]。其中色澤是影響葡萄果實(shí)品質(zhì)的重要性狀之一,決定了其外觀品質(zhì)、營養(yǎng)價(jià)值、加工性能和經(jīng)濟(jì)效益[2]。因此,有色葡萄品種的著色狀況是影響果實(shí)品質(zhì)和市場競爭力的重要因素,生產(chǎn)色澤均勻、飽滿的優(yōu)質(zhì)商品果是葡萄育種和栽培的重要目標(biāo)[3]。然而,全球氣候變暖,極端氣候頻發(fā),夏季高溫多濕、晝夜溫差小,以及設(shè)施栽培過程中的弱光等因素,造成果實(shí)著色不良的現(xiàn)象常有發(fā)生[4-5],其中在紅地球、妮娜皇后等鮮紅色品種中尤為突出[6]。
妮娜皇后作為近些年頗受葡萄生產(chǎn)者關(guān)注的鮮食品種,其果粒大而飽滿、果皮色澤鮮紅、口感與風(fēng)味俱佳,但在部分南方產(chǎn)區(qū)由于晝夜溫差小、光照不足等原因,存在果實(shí)著色不佳的問題。因此,解決南方產(chǎn)區(qū)葡萄果實(shí)著色問題,是滿足妮娜皇后等品種優(yōu)質(zhì)化生產(chǎn)的迫切需求[7]。
傳統(tǒng)改善葡萄果實(shí)著色的栽培技術(shù)包括樹干環(huán)剝[8]、除葉[9]和疏果[10]等,這些栽培方式往往耗費(fèi)大量的勞動力,且對生產(chǎn)者有較高的技術(shù)要求。而噴施植物生長調(diào)節(jié)劑、葉面肥等作為低成本、快速高效的栽培措施,已在改善果實(shí)色澤、提高果實(shí)品質(zhì)等方面廣泛應(yīng)用[11],其中脫落酸(ABA)[12]、乙烯[13]、茉莉酸[14]等成熟相關(guān)的植物激素,已被證明能夠通過調(diào)控VvCHS、VvUFGT、VvDFR、VvMYB90等花色苷合成相關(guān)的結(jié)構(gòu)基因和轉(zhuǎn)錄因子的表達(dá),進(jìn)而促進(jìn)果皮中花色苷的積累。然而,目前缺乏不同激素及植物生長調(diào)節(jié)劑在改善妮娜皇后果實(shí)著色與品質(zhì)作用優(yōu)劣的相關(guān)結(jié)論。
為此,筆者在本研究中以南方產(chǎn)區(qū)設(shè)施生產(chǎn)的妮娜皇后為研究對象,在果穗轉(zhuǎn)色前實(shí)施噴施不同植物生長調(diào)節(jié)劑、氨基酸肥以及鋪設(shè)反光膜等栽培措施,并通過比較不同處理后果實(shí)著色與品質(zhì)形成的差異,以期篩選到合適的栽培措施,進(jìn)而改善果皮著色、提升果實(shí)品質(zhì)。
1 材料和方法
1.1 試驗(yàn)材料
試驗(yàn)在溫州樂清市聯(lián)宇葡萄研究所試驗(yàn)基地(121.11° E,28.28° N)進(jìn)行,試驗(yàn)品種為5年生妮娜皇后。葡萄植株為南北行向,株行距1 m×3 m,采用連棟避雨大棚和飛鳥形架,植株生長健壯且長勢一致,按常規(guī)栽培措施統(tǒng)一管理。隨機(jī)選擇一行進(jìn)行試驗(yàn),剔除首尾兩株,每處理選擇連續(xù)3株,當(dāng)果實(shí)開始變軟但未轉(zhuǎn)色時(shí)(Eichhorn Lorenz 34,E-L 34)[15],選擇相同位置(東側(cè))、長勢一致、無病蟲害的果穗作為試驗(yàn)對象。
1.2 試驗(yàn)設(shè)計(jì)
1.2.1 篩選改善妮娜皇后著色與品質(zhì)的處理措施 試驗(yàn)開展于2022年6—8月,采用10種不同處理(詳見表1)。選擇6月16日傍晚(18:00—19:00)進(jìn)行處理,所有噴施處理采用常規(guī)噴霧法,以噴清水作為對照(CK),每種處理中均添加1%吐溫-80作為表面活性劑,果穗均勻噴霧,果粒均勻附著不滴水,試驗(yàn)過程中僅噴施處理1次。反光膜處理組果穗同樣噴施清水+1%吐溫-80以消除系統(tǒng)誤差,鋪反光膜前去除雜草、枯枝等地面尖銳物,將反光膜平鋪于地面,用地釘壓膜,保持膜面平整且不易掀飛,膜與膜交界處采用卡扣固定。每組處理約30穗果穗,處理后進(jìn)行掛牌標(biāo)記。
1.2.2 樣品采集 處理開始時(shí)取第一次樣,記為DS0。所有處理開始后,每隔10 d拍照取樣1次,直至果實(shí)完全成熟,共取4次樣,分別記為DS1~DS4。從5穗處理果穗的上、中、下部位各采集10粒果實(shí),試驗(yàn)期間每穗果僅取一次樣。拍照果穗進(jìn)行標(biāo)記,不參與取樣。測定果實(shí)外觀指標(biāo)和果實(shí)硬度后,將果皮、果肉、種子分離后利用液氮速凍,儲存于-80 ℃?zhèn)溆谩?/p>
1.3 試驗(yàn)方法
1.3.1 果實(shí)外觀指標(biāo) (1)果穗著色等級。隨機(jī)選5串果穗,參照李芳菲等[16]的方法進(jìn)行評價(jià)。
(2)果實(shí)著色指數(shù)。從采集的果實(shí)中隨機(jī)選取20粒果實(shí),用手持色差計(jì)(CR-400;Konica Minolta,日本)測定每個(gè)果實(shí)赤道部位4個(gè)方位的色澤指標(biāo)L、a、b,并計(jì)算色澤飽和度(chroma,C)、色調(diào)角(hue angle,h)和葡萄果實(shí)色澤指數(shù)(color index of red grape,CIRG),CIRG指數(shù)評價(jià)果實(shí)外觀色澤的標(biāo)準(zhǔn)為:CIRG<2為黃綠,2≤CIRG<4為粉紅,4≤CIRG<5為紅色,5≤CIRG<6為深紅,CIRG≥6為藍(lán)黑色[17]。
(3)單果質(zhì)量、縱橫徑、果形指數(shù)。從采集的果實(shí)中隨機(jī)選取20粒進(jìn)行外觀指標(biāo)測定。單粒質(zhì)量采用電子天平(DLX-A8;德力西,中國)測定,果實(shí)縱徑、橫徑用0.01 mm游標(biāo)卡尺(3.0V;德力西,中國)測定。果形指數(shù)=果實(shí)縱徑/果實(shí)橫徑。
1.3.2 果實(shí)理化指標(biāo) (1)果實(shí)硬度。選取20粒果實(shí),采用數(shù)顯式拉力計(jì)(HG-2000;Grows,中國)測定拉力計(jì)探頭刺破果皮時(shí)的拉力數(shù)值。
(2)總花色苷含量。參考趙益梅等[18]的方法,采用pH示差法測定,隨機(jī)選取20粒果實(shí),冷凍狀態(tài)下迅速將果皮和果肉分離,加液氮研磨成粉狀,每個(gè)處理樣品取3份進(jìn)行提取和測定。
(3)總可溶性固形物(Total soluble solid,TSS)含量。選取20粒果實(shí),使用手持式折光儀(PAL-36S;ATAGO,日本)測定。
(4)可溶性糖和有機(jī)酸含量。將上一步中獲得的果肉利用液氮研磨成粉狀,提取方法和色譜條件均參考自Zheng等[19],采用超高效液相色譜(Ultra-performance liquid chromatography,UPLC;可溶性糖:ACQUITY H-Class,Water,美國;有機(jī)酸:UltiMate 3000,Thermo,美國)測定果肉中可溶性糖和有機(jī)酸含量,每個(gè)處理樣品取3份進(jìn)行提取和測定。
(5)揮發(fā)性有機(jī)物含量(Volatile organic compounds,VOCs)。葡萄果實(shí)VOCs的提取采用頂空固相微萃取(HS-SPME)技術(shù),測定的條件與方法參考Zhang等[20]的報(bào)道。每個(gè)處理樣品取3份進(jìn)行測定。
1.4 果實(shí)品質(zhì)綜合評價(jià)
選取與品質(zhì)關(guān)系密切的13個(gè)指標(biāo),采用隸屬函數(shù)法[21]進(jìn)行果實(shí)品質(zhì)綜合評價(jià)。
(1)與果實(shí)品質(zhì)呈正相關(guān)的指標(biāo)為果穗著色等級、色澤指數(shù)、單果質(zhì)量、縱徑、橫徑、果實(shí)硬度,以及果皮總花色苷、TSS、總可溶性糖、果實(shí)香氣(包括總VOCs、酯類和萜烯類)含量,計(jì)算如下式。
[UXij=Xij-XminXmax-Xmin]。
(2)與果實(shí)品質(zhì)呈負(fù)相關(guān)的指標(biāo)為總有機(jī)酸含量,計(jì)算如下式。
[UXij=1-Xij-XminXmax-Xmin]。
式中,U(Xij)表示各指標(biāo)的隸屬度值,且U(Xij)∈[0,1];Xij表示第i個(gè)處理第j個(gè)指標(biāo)的測定值;Xmax、Xmin為所有品種第j項(xiàng)指標(biāo)的最大值和最小值。以不同處理的13項(xiàng)指標(biāo)隸屬度的平均值作為妮娜皇后果實(shí)品質(zhì)的評價(jià)標(biāo)準(zhǔn)進(jìn)行比較。
1.5 RNA提取與熒光定量PCR
采用Biofit RNA提取試劑盒(V1.5,成都百菲特科技有限公司,中國)提取葡萄果皮RNA。RNA反轉(zhuǎn)錄采用Hifair? Ⅱ 1st Strand cDNA Synthesis Kit(翌圣生物科技有限公司,中國)。RT-qPCR采用Hieff Unicon? Universal TaqMan multiplex qPCR master mix(翌圣生物科技有限公司,中國),具體方法參照說明書。每個(gè)處理樣品取3份,分別開展RNA提取、反轉(zhuǎn)錄和RT-qPCR,其中RT-qPCR同時(shí)采用3次技術(shù)重復(fù)。VvUBQ被用作內(nèi)參基因,各基因的定量水平采用2-△△Ct方法計(jì)算,以CK樣品在DS0階段時(shí)該基因的表達(dá)水平作為參照。本研究中所用基因的登錄號及定量引物如表2所示。
1.6 數(shù)據(jù)分析
采用軟件SAS 9.2(SAS Institute Inc.,Cary,NC,USA)進(jìn)行統(tǒng)計(jì)學(xué)分析。采用Duncan多重比較檢驗(yàn)(p<0.05)分析顯著性水平。
2 結(jié)果與分析
2.1 不同處理果實(shí)外觀性狀的變化
2.1.1 果穗著色程度 由圖1-A可知,各處理方式中除T7和T8外,其他處理均較CK更能夠促進(jìn)妮娜皇后果實(shí)著色,其中T1促進(jìn)果實(shí)著色的能力最強(qiáng)。在DS3時(shí)T1著色等級便已達(dá)到了4.85,顯著高于其他處理和CK;此時(shí)T2和T3處理的果穗著色等級分別為3.85和3.95,但同樣顯著高于其他處理;T4、T5、T6和T9處理分別為2.98、2.97、2.45和2.45,其中T4和T5處理顯著高于T6和T9處理;而T7、T8和CK則僅有1.75、1.85和1.65,3個(gè)處理間不存在顯著性差異。至DS4時(shí),T1、T2、T3處理的果穗著色等級均已達(dá)到5.00,即著色面積>90%,T4、T5和T6處理在此時(shí)著色等級也接近5.00,分別為4.74、4.56和4.32。T9處理雖僅為3.25,但顯著高于T7、T8和CK,分別為2.65、2.77和2.48,此3個(gè)處理間不存在顯著性差異(圖1-B)。
通過果實(shí)著色指數(shù)進(jìn)一步比較,發(fā)現(xiàn)隨著妮娜皇后果實(shí)逐漸成熟,L和b的指數(shù)逐漸減小,而a和CIRG增加,但不同處理的果實(shí)著色指數(shù)增加或減少的幅度存在差異。在DS1時(shí),各處理的L值均顯著低于CK。至DS2時(shí),與CK相比,T7、T8和T9處理未表現(xiàn)出顯著差異,而其他處理顯著低于CK。在DS4時(shí),T8和T9處理與CK差異不顯著,T1和T2處理則相對較低,表明此處理使得果皮色澤最深。T7、T8、T9和CK的b值在各個(gè)時(shí)期的差異相對較小,由DS0的10.00~10.45降至DS4時(shí)的5.00~5.79,而其他處理在DS4時(shí)彼此間無顯著差異,但顯著低于這4種處理,降至了1.28~2.89。CK的a值在DS0~DS3期間均為負(fù)值,僅在DS4達(dá)到了3.06,而T1和T2處理在DS1時(shí)便為正值,分別為1.37和0.44,且顯著高于其他處理。在DS4時(shí),與CK相比,T7、T8和T9處理的a值也未表現(xiàn)出顯著差異,而其他處理同樣顯著高于CK。
此外,T1處理的CIRG值在各個(gè)時(shí)期(DS1~DS4)均為各處理的最高值,且在DS3時(shí)便已達(dá)到了深紅的標(biāo)準(zhǔn)(5.52),并顯著高于其他處理,T2和T3處理也達(dá)到紅色標(biāo)準(zhǔn),分別為4.68和4.20,而此時(shí)CK依舊僅處于黃綠色標(biāo)準(zhǔn)(1.87),且顯著低于其他處理。在DS4時(shí),除CK外,各處理的果實(shí)外觀色澤標(biāo)準(zhǔn)與DS3時(shí)保持一致,而CK的CIRG值達(dá)到了2.76,為粉紅色(表3)。
2.1.2 單粒質(zhì)量 不同處理組從DS0至DS4單粒質(zhì)量整體上呈增加趨勢。至DS4時(shí),T5、T7和T9處理相對較大,分別為14.77、14.79和14.99 g,且從DS0至此時(shí)均增加了3.00 g,而T2和CK相對較小,分別為12.88和12.93 g,分別僅增加了1.45和1.00 g。此外,其他處理(T2除外)在DS4時(shí)的單粒質(zhì)量同樣大于CK,介于13.42~14.44 g之間(表4)。
2.1.3 縱橫徑與果形指數(shù) 各處理組中果實(shí)橫徑的變化與單果質(zhì)量變化的趨勢相似,即在DS4時(shí)T5、T7和T9處理的橫徑顯著大于其他處理(T6除外),分別為28.52、28.91和28.73 mm,與DS0時(shí)相比分別增加了1.50、1.79和1.42 mm。而各個(gè)時(shí)期T1~T4處理與CK相比均無顯著差異,其中CK果實(shí)橫徑的增加量極少,僅為0.07 mm(表4)。
果實(shí)縱徑在處理后的變化不盡相同,其中T5處理的果實(shí)縱徑在大部分時(shí)期均顯著大于其他處理,并由28.84 mm增長至35.53 mm。T4處理增長幅度也相對較大,增加了5.63 mm。T1、T2、T6處理在DS4時(shí)與CK的縱徑相比無顯著差異,且顯著小于其他處理,較DS0分別僅增加了1.52、1.40、1.32和1.41 mm(表4)。
由于縱橫徑的差異性變化勢必導(dǎo)致各處理間果形指數(shù)存在差異,除T1處理在各個(gè)時(shí)期保持在1.09~1.11外,其他各處理和CK的果形指數(shù)均呈現(xiàn)出增長趨勢。CK的果形指數(shù)由1.08增加至1.13,在DS4時(shí)僅顯著低于T3~T6處理,其中T5的果形指數(shù)最大,為1.34,并顯著高于T3、T4和T6處理,這3個(gè)處理此時(shí)的果形指數(shù)分別為1.24、1.22和1.28(表4)。
2.2 不同處理果實(shí)理化性狀的變化
2.2.1 果實(shí)硬度 各處理組中僅有T5處理未隨果實(shí)成熟進(jìn)程果實(shí)硬度逐漸降低,其在DS4時(shí)依舊保持著1.54 kg·cm-2的果皮拉力數(shù)值,與DS0時(shí)的1.62 kg·cm-2相當(dāng),且顯著高于其他處理。T9處理硬度變化也相對較小,僅由1.65 kg·cm-2降至1.42 kg·cm-2。與之相反,T1和T3處理在DS4時(shí)硬度相對較低且顯著低于CK,分別僅為1.08 kg·cm-2和1.02 kg·cm-2。此外,與DS4時(shí)CK果實(shí)硬度的1.26 kg·cm-2相比,T2、T4、T6、T7、T8處理的并未表現(xiàn)出顯著差異,分別為1.20、1.28、1.22、1.22和1.28 kg·cm-2(圖2)。
2.2.2 果皮花色苷含量及相關(guān)基因表達(dá)的變化 不同處理后果皮中花色苷含量與CIRG值呈相似的變化趨勢。在DS1時(shí),T1處理的果皮中花色苷含量(w,后同)最高,為0.073 mg·g-1,此時(shí)CK僅為0.003 mg·g-1,其他處理也顯著高于CK;DS1至DS2期間各組花色苷含量均大幅度增加,其中T1和T2處理含量增加最多,分別增加了0.16和0.15 mg·g-1,達(dá)到了0.23和0.19 mg·g-1,CK在DS2時(shí)的含量及增長量均顯著低于各處理;DS2至DS4期間,各組花色苷積累放緩,其中T1在DS3和DS4時(shí)含量差異較小,分別為0.29和0.30 mg·g-1,且在DS4時(shí)與T2、T3和T4處理無顯著差異,后三者此時(shí)含量分別為0.29、0.28和0.29 mg·g-1,T5和T6處理雖不及T1~T4的含量,但依舊顯著高于CK,均為0.16 mg·g-1,T7、T9與CK差異不顯著,三者含量分別為0.11、0.12和0.10 mg·g-1,而T8處理果皮中花色苷含量甚至顯著低于CK,僅有0.069 mg·g-1(圖3)。
進(jìn)一步比較了不同處理果皮中花色苷合成相關(guān)基因在DS0、DS2和DS4 3個(gè)時(shí)期的表達(dá)情況,發(fā)現(xiàn)VvCHS、VvUFGT、VvDFR和VvMYB90在不同處理后的變化趨勢與花色苷含量相一致,即在DS2時(shí),T1處理中4個(gè)基因的表達(dá)水平均為最高,而CK則顯著低于其他處理;DS4時(shí)T1~T4處理后VvUFGT、VvDFR和VvMYB90表達(dá)水平相當(dāng)且顯著高于其他處理,而T7、T8和CK的表達(dá)水平則相對較低(圖4)。
2.2.3 果實(shí)TSS含量 隨著果實(shí)逐漸成熟,果實(shí)中TSS含量亦逐漸增加,但不同處理間的差異性同花色苷和果皮色澤截然不同。例如花色苷積累較快的T1和T2處理在DS4時(shí)TSS含量與CK未表現(xiàn)出顯著差異,分別為17.42%和17.28%,而此時(shí)CK為17.38%,但同樣花色苷含量較多的T3、T4和T5處理則在DS1至DS4期間均顯著高于CK,其中DS4時(shí)各處理含量分別為20.60%、20.66%和20.98%。此外,T6~T9在大部分采樣期較CK均未表現(xiàn)出顯著的差異,在DS4時(shí)分別為16.84%、17.72%、17.70%和16.30%(圖5)。
2.2.4 果肉可溶性糖含量 妮娜皇后果肉中未檢測到蔗糖,僅檢測到葡萄糖和果糖2種可溶性糖,且兩者含量相當(dāng)。各處理果肉可溶性糖含量的變化趨勢與TSS含量相似,即在DS0至DS2各處理果肉中總可溶性糖含量快速增加,但DS2至DS4變化幅度相對較小。其中在DS1時(shí),T2~T5處理的總可溶性糖含量顯著高于其他處理(T6除外),分別為109.94、113.47、101.52和99.65 mg·g-1,而T7~T9處理與CK無顯著差異,分別為74.07、76.31、74.21和69.60 mg·g-1。至DS2時(shí),T2總可溶性糖含量較上一次采樣時(shí)期僅增加了19.64 mg·g-1,達(dá)到了129.60 mg·g-1,與T6相當(dāng),僅顯著高于T8、T9和CK,此時(shí)T3和T4處理顯著高于其他處理,分別為171.82和172.18 mg·g-1。在DS4時(shí),T3~T5處理依舊顯著高于其他處理,分別為180.40、190.33和198.94 mg·g-1;其次為T6和T7處理,含量分別為150.61和150.51 mg·g-1;T1、T2和T8處理雖顯著低于上述處理,但均顯著高于CK;T9處理則顯著低于CK,甚至低于其DS3時(shí)的含量,僅為100.11 mg·g-1(圖6)。
2.2.5 果肉有機(jī)酸含量 檢測妮娜皇后果肉中酒石酸、蘋果酸和檸檬酸3種葡萄中主要的有機(jī)酸含量,其中蘋果酸含量在果實(shí)成熟過程中逐漸減少,且在DS0與DS1時(shí)是果肉中含量最多的有機(jī)酸,而酒石酸和檸檬酸含量在各個(gè)取樣期的變化相對較小,因此蘋果酸含量決定了妮娜皇后果肉中總有機(jī)酸含量水平。在DS1時(shí),T2、T5、T6、T9處理和CK中蘋果酸的含量顯著高于其他處理,分別為4.50、4.86、4.20、4.22和4.93 mg·g-1,但至DS2時(shí),T5、T6、T7、T8處理和CK中蘋果酸含量快速降低,且顯著低于其他處理。而在DS4時(shí),各處理組中蘋果酸含量相對較低,僅介于0.04~0.37 mg·g-1,低于酒石酸和檸檬酸,此時(shí)各處理組總有機(jī)酸含量介于2.79~4.53 mg·g-1,其中T4處理含量相對較低,而其他處理與CK的含量差異較?。▓D7)。
2.2.6 果肉中VOCs含量 香氣亦是評判葡萄果實(shí)風(fēng)味與品質(zhì)性狀的重要指標(biāo),因此通過GC-MS測定了DS4時(shí)期果肉中酯、醛、烴、醇、萜烯、酮等VOCs的含量,其中妮娜皇后果肉中酯、醛、烴3類VOCs的含量相對較高。T1、T7和T9處理的VOCs含量略低于CK,分別為24.37、24.88、22.35和25.80 μg·g-1,各處理中T2的總VOCs最高,為32.87 μg·g-1,其烴類亦為各處理組中最高,為9.04 μg·g-1。萜烯作為重要?dú)馕逗惋L(fēng)味類物質(zhì),在T1、T2和T4處理中相對較高,分別為0.26、0.27和0.23 μg·g-1,但其他處理卻低于CK(圖8-A)。
從不同VOCs來分析,乙酸乙酯是妮娜皇后果肉中含量最高的VOCs,其中在T2~T8處理中的含量介于14.71~17.40 μg·g-1,顯著高于CK,而T1和T9分別僅有9.40和11.34 μg·g-1,顯著低于CK(圖8-B);丁酸乙酯在CK中的含量為1.73 μg·g-1,僅有T8顯著高于CK,為2.27 μg·g-1,T1、T3和T7處理則顯著低于CK,分別為0.84、0.71和0.85 μg·g-1,而其他處理組的含量與CK相當(dāng)(圖8-C);順-2-丁烯酸乙酯含量僅在T1和T2處理中與CK相當(dāng),其他處理均顯著高于CK(圖8-D);T3和T8處理中己醛含量以及T1、T2和T6處理中甲苯含量均顯著高于CK(圖8-E~F);反式-2-己烯醇是妮娜皇后果肉含量最高的萜烯類物質(zhì),在T1、T2和T4處理中顯著高于其他處理和CK,分別為0.23、0.22和0.23 μg·g-1(圖8-G)。
2.3 不同濃度處理果實(shí)品質(zhì)的綜合評價(jià)
對不同處理妮娜皇后果實(shí)在DS1~DS4多個(gè)性狀表現(xiàn)進(jìn)行綜合評價(jià),發(fā)現(xiàn)各處理組隸屬度函數(shù)值的平均值均大于CK的0.22,其中T3、T4和T5處理相對較大,分別為0.61、0.59和0.58。決定果實(shí)成熟與采摘時(shí)性狀的DS4時(shí)期隸屬度函數(shù)值,T3、T4和T5處理同樣相對較高,分別為0.62、0.75和0.69(表5)。在此時(shí)期T3處理僅有果實(shí)硬度為0,其在著色等級以及TSS、花色苷、可溶性糖以及酯類含量的函數(shù)值在各處理中相對較高,T4和T5處理則在果實(shí)大小性狀(包括單果質(zhì)量和縱徑)、硬度、可溶性糖含量的函數(shù)值高于T3處理(表6)。
3 討 論
光照環(huán)境、晝夜溫差、品種特性等諸多因素均會影響葡萄果實(shí)著色[22-24],而南方避雨棚內(nèi)光照不足與轉(zhuǎn)色期晝夜溫差小,是導(dǎo)致具有諸多優(yōu)良性狀的妮娜皇后在部分南方產(chǎn)區(qū)著色不良、糖分積累緩慢等問題的潛在環(huán)境因素[25],極大限制了該品種在此地區(qū)的推廣。為此,筆者在本研究中通過在果實(shí)表面噴施植物生長調(diào)節(jié)劑(S-誘抗素、茉莉酸甲酯、乙烯利)、氨基酸肥(天潤多彩、金村秋、艾果龍)、葉面肥(果得樂、愛多收)以及鋪設(shè)反光膜等多種栽培措施,并比較了不同栽培措施下果實(shí)外觀和品質(zhì)性狀的階段性變化差異。而葡萄優(yōu)質(zhì)果是由果皮色澤、果實(shí)含糖量、形狀、粒質(zhì)量、香氣等諸多外觀與品質(zhì)指標(biāo)綜合評定的模糊集合[26],隸屬度函數(shù)值能夠通過描述不同性狀對果實(shí)品質(zhì)的隸屬關(guān)系,并在綜合分析果實(shí)品質(zhì)性狀中廣泛應(yīng)用[21,27-28]。在本研究中,同樣通過隸屬度函數(shù)值綜合分析了不同栽培措施對妮娜皇后果實(shí)品質(zhì)性狀提升效果的優(yōu)劣,并篩選出噴施50 mg·L-1茉莉酸甲酯是改善妮娜皇后葡萄果實(shí)著色與品質(zhì)的最佳處理方式。
從果實(shí)外觀性狀來看,S-誘抗素和茉莉酸甲酯兩類植物生長調(diào)節(jié)劑均能夠有效且快速地提高花色苷合成相關(guān)基因VvCHS、VvUFGT、VvDFR和VvMYB90的表達(dá)水平,改善果實(shí)著色,提升果皮中花色苷含量,但對果實(shí)大小的影響有限。盡管乙烯利也能有效促進(jìn)果實(shí)著色,但其效果遠(yuǎn)不及另兩種植物生長調(diào)節(jié)劑,這可能與葡萄作為非呼吸躍變性果實(shí),對乙烯的敏感性不如ABA有關(guān)[29-30]。令人欣喜的是以濃縮糖蜜發(fā)酵液作為主要有效成分的“果得樂”,表現(xiàn)出與S-誘抗素和茉莉酸甲酯類似的效果,而利用外源蔗糖處理桃、藍(lán)莓、草莓等果實(shí)同樣也可以提高果實(shí)著色水平[31-33],這與糖信號通路能夠激活花色苷生物合成通路相關(guān)[34-35]。氨基酸肥和葉面肥不僅能夠促進(jìn)果實(shí)著色,在增加果粒大小方面的作用也尤為顯著,其中天潤多彩和金村秋的效果最為顯著,后者以5-ALA作為主要有效成分,已在多種果樹中證實(shí)具有類似植物生長調(diào)節(jié)劑的作用,并能夠改善果實(shí)品質(zhì)[36-38]。此外,本研究結(jié)果表明反光膜對促進(jìn)果實(shí)著色的作用有限,盡管已有研究表明,光是誘導(dǎo)葡萄果皮花色苷積累的重要環(huán)境因子[20],李志強(qiáng)等[39]、Zhang等[40]和Muneer等[41]也證實(shí)了反光膜能夠促進(jìn)果皮著色、改善果實(shí)品質(zhì),本研究的結(jié)果可能因試驗(yàn)地選擇了郁閉度較高的飛鳥架,且行間未留有足夠的空隙,導(dǎo)致通過地膜反射給果實(shí)的光不足以改善果實(shí)著色,并最終導(dǎo)致其在改善果實(shí)著色與品質(zhì)的效果方面不盡如人意。
此外,本研究所使用的大部分藥劑已商品化且容易購買,且參照說明書中推薦劑量,旨在比較當(dāng)下主流改善果實(shí)品質(zhì)藥劑對妮娜皇后的作用,并通過試驗(yàn)的結(jié)果指導(dǎo)葡萄生產(chǎn)者選擇使用有效的藥劑。其中茉莉酸甲酯、天潤多彩和金村秋在增加果肉中可溶性糖和VOCs含量、降低有機(jī)酸含量方面具有顯著作用,3種處理在各時(shí)期的隸屬度函數(shù)平均值均相對較高,結(jié)合作者在前期篩選發(fā)現(xiàn)50 mg·L-1茉莉酸甲酯可作為南方部分產(chǎn)區(qū)解決妮娜皇后果實(shí)著色不佳問題的噴施藥劑[6],天潤多彩和金村秋同樣也能夠作為有效的噴施藥劑改善妮娜皇后果實(shí)著色與品質(zhì)。此外,S-誘抗素因具有促進(jìn)葡萄果皮快速上色的特點(diǎn),也可應(yīng)用于改善果實(shí)著色,而篩選其與茉莉酸甲酯、天潤多彩和金村秋的不同濃度配比,共同作用于改善果皮著色與提升果實(shí)品質(zhì),將是下一步的研究方向。
4 結(jié) 論
S-誘抗素改善妮娜皇后葡萄果實(shí)著色的效果最佳,但增加果肉中可溶性糖和VOCs含量的效果有限。茉莉酸甲酯不僅能夠改善果實(shí)著色,促進(jìn)VvCHS、VvUFGT、VvDFR和VvMYB90花色苷合成相關(guān)基因的表達(dá),還可提高TSS、可溶性糖、VOCs含量以及降低有機(jī)酸含量。此外,金村秋和反光膜處理在增加果實(shí)縱橫徑和硬度方面具有顯著的作用。通過運(yùn)用隸屬函數(shù)法對所有處理進(jìn)行綜合評價(jià)分析,表明50 mg·L-1茉莉酸甲酯是筆者在本研究中改善妮娜皇后葡萄果實(shí)著色與品質(zhì)的最佳處理方式。
參考文獻(xiàn)References:
[1] 姜建福. 葡萄果肉質(zhì)地性狀的評價(jià)、QTL定位及候選基因預(yù)測[D]. 楊凌:西北農(nóng)林科技大學(xué),2020.
JIANG Jianfu. Evaluation,QTL analysis and candidate gene prediction for berry texture in Vitis vinifera L.[D]. Yangling:Northwest A amp; F University,2020.
[2] 李海燕,張麗平,王莉,殷益明,賈惠娟. 2種植物生長調(diào)節(jié)劑對陽光玫瑰葡萄品質(zhì)的影響[J]. 浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2016,42(4):419-426.
LI Haiyan,ZHANG Liping,WANG Li,YIN Yiming,JIA Huijuan. Effects of two kinds of plant growth regulators on fruit quality of Shine Muscat grape[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2016,42(4):419-426.
[3] 王艷蒙,麥斯樂,韓守安,溫玥,謝輝,張雯. 植物生長調(diào)節(jié)劑對‘火焰無核’葡萄果實(shí)著色及品質(zhì)的影響[J]. 西北植物學(xué)報(bào),2023,43(11):2060-2069.
WANG Yanmeng,MAI Sile,HAN Shouan,WEN Yue,XIE Hui,ZHANG Wen. Effect of plant growth regulators on fruit coloration and quality of the ‘Flame Seedless’ grape berry[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(11):2060-2069.
[4] CHASSY A W,BUESCHL C,LEE H,LERNO L,OBERHOLSTER A,BARILE D,SCHUHMACHER R,WATERHOUSE A L. Tracing flavonoid degradation in grapes by MS filtering with stable isotopes[J]. Food Chemistry,2015,166:448-455.
[5] 王趙盼,張繼波,孫鈺穎,杜遠(yuǎn)鵬,翟衡. 影響膠東半島釀酒葡萄著色的氣象因素分析[J]. 中國果樹,2019(3):19-24.
WANG Zhaopan,ZHANG Jibo,SUN Yuying,DU Yuanpeng,ZHAI Heng. Analysis of meteorological factors affecting coloration of wine grapes in Jiaodong Peninsula[J]. China Fruits,2019(3):19-24.
[6] 金歡淳,張培安,張濤,金聯(lián)宇,董天宇,胡丹,房經(jīng)貴. 不同濃度茉莉酸甲酯對妮娜皇后果實(shí)著色與品質(zhì)形成的影響[J]. 浙江農(nóng)業(yè)科學(xué),2023,64(9):2165-2172.
JIN Huanchun,ZHANG Peian,ZHANG Tao,JIN Lianyu,DONG Tianyu,HU Dan,F(xiàn)ANG Jinggui. Effects of different concentrations of methyl jasmonate on fruit coloration and quality formation of Queen Nina[J]. Journal of Zhejiang Agricultural Sciences,2023,64(9):2165-2172.
[7] SHIRAISHI M,SHINOMIYA R,CHIJIWA H. Varietal differences in polyphenol contents,antioxidant activities and their correlations in table grape cultivars bred in Japan[J]. Scientia Horticulturae,2018,227:272-277.
[8] BRAR H S,SINGH Z,SWINNY E,CAMERON I. Girdling and grapevine leafroll associated viruses affect berry weight,colour development and accumulation of anthocyanins in ‘Crimson Seedless’ grapes during maturation and ripening[J]. Plant Science,2008,175(6):885-897.
[9] MATSUYAMA S,TANZAWA F,KOBAYASHI H,SUZUKI S,TAKATA R,SAITO H. Leaf removal accelerated accumulation of delphinidin-based anthocyanins in ‘Muscat Bailey A’[Vitis × labruscana (Bailey) and Vitis vinifera (Muscat Hamburg)] grape skin[J]. Journal of the Japanese Society for Horticultural Science,2014,83(1):17-22.
[10] GUIDONI S,ALLARA P,SCHUBERT A. Effect of cluster thinning on berry skin anthocyanin composition of Vitis vinifera cv. Nebbiolo[J]. American Journal of Enology and Viticulture,2002,53(3):224-226.
[11] 蔣婭萍,方艷,王海霞,楊學(xué)山,祝霞. 外源油菜素內(nèi)酯對霞多麗和黑比諾葡萄品質(zhì)的影響[J]. 果樹學(xué)報(bào),2023,40(12):2574-2590.
JIANG Yaping,F(xiàn)ANG Yan,WANG Haixia,YANG Xueshan,ZHU Xia. Effects of exogenous brassinolide on flavor quality of Chardonnay and Pinot Noir grape[J]. Journal of Fruit Science,2023,40(12):2574-2590.
[12] FERRERO M,PAGLIARANI C,NOVáK O,F(xiàn)ERRANDINO A,CARDINALE F,VISENTIN I,SCHUBERT A. Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries[J]. Journal of Experimental Botany,2018,69(9):2391-2401.
[13] WANG P P,GE M Q,YU A S,SONG W,F(xiàn)ANG J G,LENG X P. Effects of ethylene on berry ripening and anthocyanin accumulation of ‘Fujiminori’ grape in protected cultivation[J]. Journal of the Science of Food and Agriculture,2022,102(3):1124-1136.
[14] JIA H F,ZHANG C,PERVAIZ T,ZHAO P C,LIU Z J,WANG B J,WANG C,ZHANG L,F(xiàn)ANG J G,QIAN J P. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea[J]. Functional amp; Integrative Genomics,2016,16(1):79-94.
[15] COOMBE B G. Growth stages of the grapevine:Adoption of a system for identifying grapevine growth stages[J]. Australian Journal of Grape and Wine Research,1995,1(2):104-110.
[16] 李芳菲,王莎,谷世超,程大偉,顧紅,李明,陳錦永,楊英軍. 葉面噴施ABA和PDJ對‘巨峰’葡萄果實(shí)著色及品質(zhì)的影響[J]. 果樹學(xué)報(bào),2020,37(3):362-370.
LI Fangfei,WANG Sha,GU Shichao,CHENG Dawei,GU Hong,LI Ming,CHEN Jinyong,YANG Yingjun. Effects of foliar application of ABA and PDJ on the coloration and quality of ‘Kyoho’ grape berry[J]. Journal of Fruit Science,2020,37(3):362-370.
[17] 糾松濤. MYB轉(zhuǎn)錄因子調(diào)控葡萄果實(shí)花色苷形成的分子機(jī)制研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2018.
JIU Songtao. The study on molecular mechanism of MYB transcription factor regulating anthocyanin synthesis in grape berries[D]. Nanjing:Nanjing Agricultural University,2018.
[18] 趙益梅,劉偉強(qiáng),崔萍,張曉煜,夏永秀,劉旭. 賀蘭山東麓‘馬瑟蘭’葡萄果實(shí)花色苷和原花色素特性分析[J]. 西北植物學(xué)報(bào),2023,43(10):1683-1693.
ZHAO Yimei,LIU Weiqiang,CUI Ping,ZHANG Xiaoyu,XIA Yongxiu,LIU Xu. Analysis of anthocyanin and proanthocyanidin characteristics of marselan wine grapes in the eastern foot of Helan Mountain[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(10):1683-1693.
[19] ZHENG T,DONG T Y,HAIDER M S,JIN H C,JIA H F,F(xiàn)ANG J G. Brassinosteroid regulates 3-hydroxy-3-methylglutaryl CoA reductase to promote grape fruit development[J]. Journal of Agricultural and Food Chemistry,2020,68(43):11987-11996.
[20] ZHANG P A,LU S W,LIU Z J,ZHENG T,DONG T Y,JIN H C,JIA H F,F(xiàn)ANG J. Transcriptomic and metabolomic profiling reveals the effect of LED light quality on fruit ripening and anthocyanin accumulation in cabernet sauvignon grape[J]. Frontiers in Nutrition,2021,8:790697.
[21] 白世踐,戶金鴿,王勇,蔡軍社,陳光,趙榮華. 茉莉酸甲酯對‘克瑞森無核’葡萄果實(shí)著色及品質(zhì)的影響[J]. 農(nóng)學(xué)學(xué)報(bào),2022,12(6):44-49.
BAI Shijian,HU Jinge,WANG Yong,CAI Junshe,CHEN Guang,ZHAO Ronghua. Effect of methyl jasmonate on coloration and quality of ‘Crimson Seedless’ grape[J]. Journal of Agriculture,2022,12(6):44-49.
[22] SUN L,LI S C,TANG X P,F(xiàn)AN X C,ZHANG Y,JIANG J F,LIU J H,LIU C H. Transcriptome analysis reveal the putative genes involved in light-induced anthocyanin accumulation in grape ‘Red Globe’ (V. vinifera L.)[J]. Gene,2020,728:144284.
[23] HUNTER J J,VOLSCHENK C G,MANIA E,CASTRO A V,BOOYSE M,GUIDONI S,PISCIOTTA A,DI LORENZO R,NOVELLO V,ZORER R. Grapevine row orientation mediated temporal and cumulative microclimatic effects on grape berry temperature and composition[J]. Agricultural and Forest Meteorology,2021,310:108660.
[24] 張培安,張文穎,糾松濤,張克坤,張超博,房經(jīng)貴,劉崇懷. 葡萄(Vitis spp.)果皮顏色及果實(shí)著色性狀分析[J]. 植物資源與環(huán)境學(xué)報(bào),2017,26(4):8-17.
ZHANG Peian,ZHANG Wenying,JIU Songtao,ZHANG Kekun,ZHANG Chaobo,F(xiàn)ANG Jinggui,LIU Chonghuai. Analyses on pericarp color and fruit coloring characters of grape(Vitis spp.)[J]. Journal of Plant Resources and Environment,2017,26(4):8-17.
[25] 曹錳,郭景南,高登濤,孫曉文,魏志峰. 避雨栽培微環(huán)境對葡萄果實(shí)品質(zhì)影響研究進(jìn)展[J]. 河南農(nóng)業(yè)科學(xué),2016,45(1):15-19.
CAO Meng,GUO Jingnan,GAO Dengtao,SUN Xiaowen,WEI Zhifeng. Research progress in effects of rain-shelter cultivation on quality of grape berry[J]. Journal of Henan Agricultural Sciences,2016,45(1):15-19.
[26] FU G Q,REN Y H,KANG J,WANG B,ZHANG J X,F(xiàn)ANG J G,WU W M. Integrative analysis of grapevine (Vitis vinifera L.) transcriptome reveals regulatory network for Chardonnay quality formation[J]. Frontiers in Nutrition,2023,10:1187842.
[27] 張彥山,肖正璐,顧群英,豆麗萍,何博. 寧縣黃甘桃果實(shí)品質(zhì)綜合評價(jià)[J]. 果樹學(xué)報(bào),2024,41(1):65-75.
ZHANG Yanshan,XIAO Zhenglu,GU Qunying,DOU Liping,HE Bo. Comprehensive evaluation of the fruit quality of yellow-flesh peaches in Ningxian[J]. Journal of Fruit Science,2024,41(1):65-75.
[28] 李群貞,黃福瓊,朱禮乾,袁夢,龍勇,王男麒,凌麗俐,淳長品. 四川省眉山市愛媛28和春見果實(shí)品質(zhì)分析與評價(jià)[J]. 果樹學(xué)報(bào),2024,41(4):651-664.
LI Qunzhen,HUANG Fuqiong,ZHU Liqian,YUAN Meng,LONG Yong,WANG Nanqi,LING Lili,CHUN Changpin. Analysis and evaluation of fruit quality of Ehime 28 and Harumi in Meishan City,Sichuan province[J]. Journal of Fruit Science,2024,41(4):651-664.
[29] JIA H F,JIU S T,ZHANG C,WANG C,TARIQ P,LIU Z J,WANG B J,CUI L W,F(xiàn)ANG J G. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor[J]. Plant Biotechnology Journal,2016,14(10):2045-2065.
[30] LUND S T,PENG F Y,NAYAR T,REID K E,SCHLOSSER J. Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster[J]. Plant Molecular Biology,2008,68(3):301-315.
[31] 凌亞杰,楊子,莫琴,莫凡,葛聰,羅澍,羅婭. 外源蔗糖和ABA對草莓生物活性物質(zhì)及抗氧化能力的影響[J]. 基因組學(xué)與應(yīng)用生物學(xué),2019,38(4):1712-1718.
LING Yajie,YANG Zi,MO Qin,MO Fan,GE Cong,LUO Shu,LUO Ya. Effects of exogenous sucrose and ABA on bioactive substances and antioxidant capacity in strawberry fruit[J]. Genomics and Applied Biology,2019,38(4):1712-1718.
[32] 彭舒,張婷渟,李麗,楊芩,熊銀香. 外源蔗糖處理對藍(lán)莓果實(shí)發(fā)育過程關(guān)鍵品質(zhì)的影響[J]. 綠色科技,2020,22(17):82-84.
PENG Shu,ZHANG Tingting,LI Li,YANG Qin,XIONG Yinxiang. Effects of exogenous sucrose treatment on key qualities during blueberry fruit development[J]. Journal of Green Science and Technology,2020,22(17):82-84.
[33] 田夢瑤,周宏勝,唐婷婷,張映曈,凌軍,羅淑芬,李鵬霞. 外源蔗糖處理對采后桃果皮色澤形成的影響[J]. 食品科學(xué),2022,43(1):177-183.
TIAN Mengyao,ZHOU Hongsheng,TANG Tingting,ZHANG Yingtong,LING Jun,LUO Shufen,LI Pengxia. Effect of exogenous sucrose treatment on the peel coloration in postharvest peaches[J]. Food Science,2022,43(1):177-183.
[34] MENG L S,XU M K,WAN W,YU F,LI C,WANG J Y,WEI Z Q,LV M J,CAO X Y,LI Z Y,JIANG J H. Sucrose signaling regulates anthocyanin biosynthesis through a MAPK cascade in Arabidopsis thaliana[J]. Genetics,2018,210(2):607-619.
[35] NIU M Y,CHEN X,GUO Y Y,SONG J X,CUI J,WANG L,SU N N. Sugar signals and R2R3-MYBs participate in potassium-repressed anthocyanin accumulation in radish[J]. Plant amp; Cell Physiology,2023,64(12):1601-1616.
[36] ZHENG J,AN Y Y,WANG L J. 24-Epibrassinolide enhances 5-ALA-induced anthocyanin and flavonol accumulation in calli of ‘Fuji’ apple flesh[J]. Plant Cell,Tissue and Organ Culture,2018,134(2):319-330.
[37] ZHENG J,AN Y Y,F(xiàn)ENG X X,WANG L J. Rhizospheric application with 5-aminolevulinic acid improves coloration and quality in ‘Fuji’ apples[J]. Scientia Horticulturae,2017,224:74-83.
[38] 楊思玲,金歡淳,張培安,樊秀彩,生弘杰,盧素文,房經(jīng)貴. 5-氨基乙酰丙酸處理對葡萄果實(shí)品質(zhì)及相關(guān)基因表達(dá)的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,46(4):645-657.
YANG Siling,JIN Huanchun,ZHANG Peian,F(xiàn)AN Xiucai,SHENG Hongjie,LU Suwen,F(xiàn)ANG Jinggui. Effects of 5-aminolevulinic acid treatment on the quality of grape berries and the expression levels of related genes[J]. Journal of Nanjing Agricultural University,2023,46(4):645-657.
[39] 李志強(qiáng),林琭,李磊,趙琪,李倩,安福尚,金洪波. 覆蓋散光膜對設(shè)施葡萄不同節(jié)位葉片光合特性和果實(shí)品質(zhì)的影響[J]. 果樹學(xué)報(bào),2022,39(12):2330-2342.
LI Zhiqiang,LIN Lu,LI Lei,ZHAO Qi,LI Qian,AN Fushang,JIN Hongbo. Effects of covering with light-diffusing film on photosynthetic characteristics of leaves at different node positions and fruit quality of grapes under protection[J]. Journal of Fruit Science,2022,39(12):2330-2342.
[40] ZHANG B B,MA R J,ZHANG C H,CAI Z X,YAN Z M. Effect of bag removing with reflective film mulching before harvest on fruit coloration and expression of anthocyanin related genes in peach[J]. Horticultural Plant Journal,2015,1(3):139-146.
[41] MUNEER S,KIM J H,PARK J G,SHIN M H,CHA G H,KIM H L,BAN T,KUMARIHAMI H M P C,KIM S H,JEONG G,KIM J G. Reflective plastic film mulches enhance light intensity,floral induction,and bioactive compounds in ‘O’Neal’ southern highbush blueberry[J]. Scientia Horticulturae,2019,246:448-452.