摘" " 要:【目的】探究不同LED光質(zhì)及光組合對(duì)柑橘實(shí)生幼苗生長(zhǎng)的影響,篩選適宜柑橘幼苗生長(zhǎng)的高效光配方參數(shù)?!痉椒ā恳圆柚Ω毯图t檸檬實(shí)生幼苗為材料,設(shè)置9種不同光質(zhì)處理,分析不同光質(zhì)對(duì)柑橘實(shí)生幼苗株高、莖粗、葉面積和生物量等指標(biāo)的影響;并在此基礎(chǔ)上,設(shè)置光周期、光質(zhì)和光照度3因素3水平正交試驗(yàn),研究不同光照組合對(duì)柑橘幼苗生長(zhǎng)形態(tài)、生物量、葉綠素含量、光合熒光參數(shù)等指標(biāo)的影響,通過隸屬函數(shù)進(jìn)行綜合評(píng)價(jià)?!窘Y(jié)果】光質(zhì)試驗(yàn)結(jié)果表明,紅藍(lán)光4∶1處理能顯著促進(jìn)茶枝柑幼苗株高、葉片數(shù)、葉面積、生物量的增長(zhǎng),白紅光1∶1處理顯著促進(jìn)紅檸檬幼苗株高、莖粗、葉面積、生物量的增長(zhǎng);正交試驗(yàn)結(jié)果表明,延長(zhǎng)光照時(shí)間能有效促進(jìn)幼苗營(yíng)養(yǎng)生長(zhǎng),茶枝柑幼苗在光周期為16 h/8 h晝/夜,白紅藍(lán)1∶4∶1,光照度為100 μmol·m-2·s-1的試驗(yàn)組合下,株高、莖粗、鮮質(zhì)量、干質(zhì)量、葉綠素含量和光系統(tǒng)Ⅱ?qū)嶋H光化學(xué)效率顯著提高,紅檸檬幼苗在光周期為18 h/6 h 晝/夜,白紅1∶1和光照度為200 μmol·m-2·s-1 的試驗(yàn)組合下,株高、莖粗、葉片數(shù)、葉面積和鮮質(zhì)量最大?!窘Y(jié)論】通過LED補(bǔ)光可有效促進(jìn)茶枝柑和紅檸檬幼苗的生長(zhǎng),不同品種對(duì)光質(zhì)、光照度和光周期補(bǔ)光需求存在差異,通過合理補(bǔ)光,可以加快柑橘幼苗生長(zhǎng),縮短育苗周期,該研究可為快速育苗提供理論和實(shí)踐參考。
關(guān)鍵詞:柑橘;LED;光照;生長(zhǎng)發(fā)育;光合特性
中圖分類號(hào):S666 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)10-2038-13
Effects of different LED light sources on the growth of citrus seedlings
LI Yan1, 2, FAN Zhengyan2#, ZHANG Man2, WU Pingzhi2, ZHU Congyi2, ZHANG Ruimin2, YANG Zhuanying1*, ZENG Jiwu2*
(1College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China; 2Fruit Tree Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, Guangdong, China)
Abstract: 【Objective】 Light significantly influences plant growth and development. LED light sources are frequently employed in plant lighting due to their energy-saving property and high efficiency. Consequently, in the present study LED light sources were employed to examine the impact of distinct LED light qualities and light combinations on the growth of citrus seedlings, with the objective of identifying the optimal parameters of efficient light formulations conducive to the growth of citrus seedlings. 【Methods】 In this experiment, The total of 9 light qualities including white light (W), red light (R), blue light (B), and polychromatic light (WR1∶1, WB1∶1, RB4∶1, WRB2∶1∶1, WRB5∶4∶1 and WRB5∶4∶1+FR) were selected. The impact of varying light quality on the growth of seedlings was investigated. The changes in plant height, stem diameter, leaf area and biomass were quantified and analysed. The spectral proportions suitable for optimising seedling growth were identified according to the growth indexes. The experimental results indicated that a three-factor, three-level orthogonal experiment would be the most appropriate methodology used to investigate the effects of different light combinations on the morphology, biomass, chlorophyll content, photosynthetic characteristics, and chlorophyll fluorescence characteristics of the seedlings. The orthogonal experimental factors and levels are specifically described as follows: photoperiod (12 h/12 h, 16 h/8 h and 18 h/6 h light/dark cycle), light quality (WR1∶1, WRB2∶1∶1 and WRB1∶4∶1) and light intensity (100, 150, 200 μmol·m-2·s-1). Finally, the synthesis was carried out by applying the affiliation function. 【Results】 The results demonstrated that different light quality treatments had a significant impact on the growth of Citrus reticulata ‘Chachi’ and Red limonia seedlings. Specifically, the RB4∶1 treatment significantly promoted the growth of plant height, leaf number, leaf area, fresh weight and dry weight of C. reticulata ‘Chachi’ seedlings. Conversely, the WR1∶1 treatment significantly promoted the growth of plant height, stem diameter, leaf area, fresh weight and dry weight of Red limonia seedlings. In comparison to monochromatic light, the combined light quality was more conducive to the growth of seedlings. Furthermore, increasing the proportion of red light in the composite light can significantly promote the vegetative growth of seedlings. The results of orthogonal experiments demonstrated that an extended period of light exposure could effectively promote the vegetative growth of C. reticulata ‘Chachi’ and Red limonia seedlings. The plant height, stem diameter, fresh weight, dry weight, chlorophyll content and actual photosynthetic efficiency photosystem Ⅱ (ΦPSⅡ) of C. reticulata ‘Chachi’ seedlings significantly increased under L6 combination (light period 16/8 h light/dark cycle, light quality white∶red∶blue 1∶4∶1, and light intensity 100 μmol·m-2·s-1). The Red limonia seedlings exhibited the highest plant height, stem diameter, leaf number, leaf area and fresh weight at L7 combination (photoperiod 18 h/6 h light/dark cycle, light quality white∶red 1∶1, and light intensity 200 μmol·m-2·s-1). The results demonstrated that the light combinations treatments had no promoting effect on the photosynthesis of C. reticulata ‘Chachi’ and Red limonia seedlings. The duration of illumination and the proportion of red light had a negative impact on the stomatal conductance (Gs), transpiration rate (Tr) and photosynthetic electron transfer rate (ETR) of seedling leaves, as well as the photosynthetic efficiency of the seedlings. 【Conclusion】 The study found that the growth of C. reticulata ‘Chachi’ and Red limonia seedlings could be effectively promoted through photoregulation. It is evident that different varieties have specific light quality, light intensity, and photoperiod supplemental light needs. The identification of these differences can provide a theoretical reference for the rapid breeding of seedlings. The RB4∶1 and L6 treatments can be used as a reference for the light supplement of C. reticulata ‘Chachi’ seedlings, the WR1∶1, and L7 treatments can be used as reference parameters for Red limonia seedlings to supplement light. By reasonably supplementing light, the growth of citrus seedlings can be accelerated and the nursery cycle can be shortened. This study can provide theoretical and practical references for rapid nursery.
Key words: Citrus; LED; Light; Growth and development; Photosynthesis characteristics
茶枝柑(Citrus reticulata ‘Chachi’)又名大紅柑、新會(huì)柑,原產(chǎn)于廣東新會(huì)區(qū),是道地藥材廣陳皮的原料,具有極高的食藥用價(jià)值[1]。紅檸檬(C. limonia Osbeck)原產(chǎn)于華南地區(qū),適應(yīng)范圍廣、抗病性強(qiáng),與大多數(shù)柑橘品種嫁接親和性好,常用作茶枝柑等廣東主栽柑橘品種的砧木。近年來(lái),柑橘黃龍病等病害在中國(guó)南方柑橘產(chǎn)區(qū)迅速蔓延,損失嚴(yán)重。實(shí)踐證明,種植柑橘無(wú)病毒種苗,是防止柑橘重大病蟲害蔓延的有效方法,因此,柑橘無(wú)病毒種苗市場(chǎng)需求大。柑橘無(wú)病毒種苗培育從砧木播種到嫁接苗出圃,一般需要2年甚至更長(zhǎng)時(shí)間,周期長(zhǎng),效率低。通過改進(jìn)育苗基質(zhì)、砧木類型、嫁接方法等措施可以一定程度縮短柑橘育苗周期[2],但如何通過光配方提高苗木生長(zhǎng)速度,在柑橘育苗中研究較少。
發(fā)光二極管(LED)具有節(jié)能高效、光質(zhì)光照度可控等優(yōu)勢(shì),已廣泛應(yīng)用于園藝作物設(shè)施栽培中。通過調(diào)控植物生長(zhǎng)的光環(huán)境,提高幼苗生長(zhǎng)速率,不僅可以縮短育苗周期,而且易于實(shí)現(xiàn)工廠化生產(chǎn)和集約化管理,是培育優(yōu)質(zhì)苗木的有效途徑之一[3]。光是植物生長(zhǎng)發(fā)育的能量和信號(hào)來(lái)源,光質(zhì)、光照度和光周期是光影響植物生長(zhǎng)的3個(gè)重要因素。不同波長(zhǎng)的光對(duì)植物生長(zhǎng)具有明顯不同的生物學(xué)效應(yīng),通過補(bǔ)充不同比例的紅藍(lán)光,可明顯提高生菜[4]、紅橘[5]和越橘[6]等植物的光合效率和營(yíng)養(yǎng)生長(zhǎng)水平,促進(jìn)櫻桃[7]和蘋果[8]等果實(shí)品質(zhì)的提升。生產(chǎn)中在紅藍(lán)光中添加一定比例的白光,不僅可以平衡光環(huán)境,而且白光中的其他光質(zhì)也會(huì)影響植物生長(zhǎng)發(fā)育[9]。紅藍(lán)光中加入少量白光,能顯著改善番茄幼苗葉片結(jié)構(gòu),提高光合效率,促進(jìn)植株生物量的積累[10]。光照度影響植物的葉片形態(tài)、主干分枝、生物量積累和光合速率等性狀[11]。適宜范圍的光照度能有效提高植物光能利用效率,高光照度水平和深度遮陰均不利于云南藍(lán)果樹幼苗的生長(zhǎng)及光合作用,適度遮陰有利于幼苗個(gè)體發(fā)育[12]。光周期影響植物同化物的生產(chǎn)、積累和分配,與植物生物量積累直接相關(guān)。適當(dāng)延長(zhǎng)光照時(shí)間能顯著縮短西瓜的成苗時(shí)間[13]、加快櫻桃蘿卜[14]和番茄[15]等植物的生長(zhǎng)。相同光質(zhì)條件下,青錢柳苗木的株高、莖粗和生物量等指標(biāo)隨光照度增加而上升[16],在相同光照度下,延長(zhǎng)光周期可以提高生菜光合速率,促進(jìn)生長(zhǎng)[17],光質(zhì)、光照度和光周期3個(gè)因素相互作用,共同影響植物的生長(zhǎng)與發(fā)育。
前人對(duì)不同柑橘品種葉片光合特性進(jìn)行研究,發(fā)現(xiàn)不同品種光合生理參數(shù)和光合酶活性存在顯著差異[18]。枳幼苗在紅黃藍(lán)4∶1∶1的光質(zhì)下地上部分快速生長(zhǎng)[19],紅橘幼苗的生長(zhǎng)適宜光質(zhì)為紅藍(lán)1∶1[20]。適宜茶枝柑和紅檸檬幼苗生長(zhǎng)的補(bǔ)光參數(shù)未見報(bào)道,紅檸檬是茶枝柑的主要砧木品種,筆者在本研究中以茶枝柑和紅檸檬為試驗(yàn)材料,通過研究不同光質(zhì)和光照組合處理對(duì)幼苗生長(zhǎng)形態(tài)和光合特性的影響,篩選出適宜幼苗生長(zhǎng)的光配方參數(shù),以期為茶枝柑設(shè)施化育苗高效補(bǔ)光提供理論依據(jù)。
1 材料和方法
1.1 供試材料
試驗(yàn)于廣東省農(nóng)業(yè)科學(xué)院果樹研究所植物生長(zhǎng)室中進(jìn)行,供試柑橘品種為茶枝柑和紅檸檬。不同光質(zhì)處理試驗(yàn)所用材料為播種180 d的茶枝柑和紅檸檬實(shí)生幼苗,由于處理前紅檸檬幼苗初始高度離光源較近,故對(duì)紅檸檬幼苗進(jìn)行統(tǒng)一修剪;不同光照組合處理試驗(yàn)所使用的材料為播種60 d的茶枝柑和紅檸檬實(shí)生幼苗。處理前選取高度與莖粗一致的幼苗移栽入盆缽中,每個(gè)處理重復(fù)24株,緩苗7 d后進(jìn)行光照處理。
試驗(yàn)中使用的LED燈板和控制系統(tǒng)從杭州光合智能裝備有限公司購(gòu)入,植物培養(yǎng)架頂部安裝LED燈板,燈板四色光源分別為全光譜白光、紅光(660 nm)、藍(lán)光(450 nm)、遠(yuǎn)紅光(740 nm),通過燈光控制程序可以調(diào)控光源的光譜比例和光照度,試驗(yàn)期間各處理間使用遮光布隔開,避免其他光源干擾。
1.2 試驗(yàn)設(shè)計(jì)
光質(zhì):設(shè)置9個(gè)處理,分別是白光(W)、紅光(R)、藍(lán)光(B)、白光∶紅光1∶1(W1R1)、白光∶藍(lán)光1∶1(W1B1)、紅光∶藍(lán)光4∶1(R4B1)、白光∶紅光∶藍(lán)光2∶1∶1(W2R1B1)、白光∶紅光∶藍(lán)光5∶4∶1(W5R4B1)、白光∶紅光∶藍(lán)光5∶4∶1光照結(jié)束后再補(bǔ)照1 h遠(yuǎn)紅光(W5R4B1FR)。除光質(zhì)外其余培養(yǎng)條件一致,光照度150 μmol·m-2·s-1,光周期12 h/12 h(晝/夜),培養(yǎng)室溫度(25±2)℃。
正交試驗(yàn):在不同光質(zhì)處理試驗(yàn)結(jié)果基礎(chǔ)上,以光周期、光質(zhì)和光照度作為3個(gè)因素,選取3個(gè)水平,光周期12 h/12 h、16 h/8 h、18 h/6 h(晝/夜);光質(zhì)白光∶紅光1∶1(W1R1)、白光∶紅光∶藍(lán)光2∶1∶1(W2R1B1)、白光∶紅光∶藍(lán)光1∶4∶1(W1R4B1);光照度100、150、200 μmol·m-2·s-1,進(jìn)行3因素3水平正交試驗(yàn),一共9 個(gè)光照組合(表1)。以光周期12 h/12 h(晝/夜)、光質(zhì)白光(W)、光照度150 μmol·m-2·s-1組合為對(duì)照(CK),除光照外其余培養(yǎng)條件一致。
1.3 測(cè)定方法
植物經(jīng)過光照處理60 d時(shí),每個(gè)處理隨機(jī)選取6株幼苗,用直尺測(cè)量幼苗株高、游標(biāo)卡尺測(cè)量葉下端莖粗。清洗植株,待表面水分蒸干后,用電子天平稱量植株葉片、莖、根的鮮質(zhì)量,記錄單株葉片數(shù)量,掃描葉片,通過ImageJ計(jì)算像素得到單株總?cè)~面積,將植株各部分放入烘箱烘干至恒質(zhì)量,稱量葉片、莖、根的干質(zhì)量,計(jì)算得到植株鮮質(zhì)量、干質(zhì)量、比葉重。葉綠素含量測(cè)定:每個(gè)處理隨機(jī)選取6株幼苗,取基部以上第5~6枚成熟葉(位于植株中上部,能完整接受到光照),使用95%乙醇浸提至葉片發(fā)白,取上清液用酶標(biāo)儀測(cè)定663 nm和645 nm處吸光度,計(jì)算得到葉綠素a(Chl a)、葉綠素b(Chl b)、總?cè)~綠素(Chl)的含量和葉綠素a/b比值(Chl a/b)。光合參數(shù)測(cè)定:每個(gè)處理隨機(jī)選取5株幼苗,使用LI-6800便攜式光合測(cè)定儀(LI-COR Inc. USA),測(cè)定基部以上第5枚成熟葉的凈光合速率(Pn)、胞間CO2濃度(Ci)、氣孔導(dǎo)度(Gs)、蒸騰速率(Tr),測(cè)量時(shí)光照度設(shè)置與各處理光照度一致。葉綠素?zé)晒鈪?shù)測(cè)定:每個(gè)處理隨機(jī)選取5株幼苗,采用LI-6800便攜式光合測(cè)定儀,測(cè)定基部以上第5枚葉的葉綠素?zé)晒鈪?shù)。將植株暗處理一個(gè)晚上,測(cè)量時(shí)關(guān)閉作用光,設(shè)置矩形閃光,脈沖光8000 μmol·m-2·s-1,測(cè)定Fo和Fm,植物在光下適應(yīng)1 h后,打開作用光,測(cè)定Fo’、Fm’和FS,計(jì)算得到光系統(tǒng)Ⅱ?qū)嶋H光合效率(ΦPSⅡ)、電子傳遞速率(ETR)、光化學(xué)淬滅系數(shù)(qP)和非光化學(xué)淬滅系數(shù)(NPQ)。
1.4 數(shù)據(jù)處理
使用Excel 2019 進(jìn)行數(shù)據(jù)處理和繪圖,采用SPSS 27.0進(jìn)行參數(shù)的差異顯著性比較。采用模糊數(shù)學(xué)隸屬函數(shù)值的方法進(jìn)行綜合評(píng)價(jià)[21]。
2 結(jié)果與分析
2.1 不同光質(zhì)對(duì)茶枝柑和紅檸檬幼苗生長(zhǎng)的影響
以白光為對(duì)照,設(shè)置單色紅光、單色藍(lán)光和不同比例混合光分別處理茶枝柑和紅檸檬幼苗,結(jié)果如表2所示。與白光處理相比,單色紅光和藍(lán)光顯著降低茶枝柑幼苗株高,說(shuō)明單色紅光和藍(lán)光不利于茶枝柑幼苗植株生長(zhǎng)。復(fù)合光質(zhì)處理中,W1B1處理下茶枝柑幼苗株高、葉面積、干質(zhì)量顯著降低,而W1R1、R4B1、W5R4B1 3種處理則顯著提高幼苗的株高、葉片數(shù)和葉面積,W2R1B1處理顯著促進(jìn)茶枝柑幼苗莖粗增長(zhǎng)。除了W1B1處理,其他光質(zhì)組合均可以促進(jìn)幼苗生長(zhǎng),其中R4B1處理茶枝柑幼苗株高、葉片數(shù)、葉面積、干質(zhì)量均達(dá)到最大。在紅檸檬處理試驗(yàn)中,與白光處理相比,單色紅光和藍(lán)光均促進(jìn)紅檸檬幼苗的生長(zhǎng),紅光處理顯著促進(jìn)幼苗株高、葉面積和鮮質(zhì)量增長(zhǎng),藍(lán)光處理促進(jìn)幼苗株高、莖粗、葉片數(shù)、葉面積、干質(zhì)量和鮮質(zhì)量增長(zhǎng),這與茶枝柑在單色光處理下生長(zhǎng)受到抑制不同,表明不同柑橘品種對(duì)光質(zhì)的生長(zhǎng)響應(yīng)存在差異。復(fù)合光處理中,各處理均可顯著促進(jìn)紅檸檬幼苗株高增長(zhǎng),其中W2R1B1處理后株高最高,高于對(duì)照23.80%,而W1R1、W1B1、W2R1B1、W5R4B1FR 4組處理尤顯著促進(jìn)紅檸檬幼苗莖粗增長(zhǎng),其中W1R1處理下莖粗最大,高于對(duì)照23.64%。對(duì)于生物量,除了R4B1處理與白光處理無(wú)顯著差異外,其他組合光均顯著促進(jìn)幼苗鮮質(zhì)量和干質(zhì)量增長(zhǎng),其中W1R1處理下紅檸檬幼苗生物量最大。總體來(lái)看,茶枝柑在R4B1光質(zhì)條件下生長(zhǎng)量最大,紅檸檬幼苗在W1R1光質(zhì)條件下生長(zhǎng)量最大。
2.2 不同光照處理對(duì)茶枝柑和紅檸檬幼苗生長(zhǎng)的影響
株高和莖粗是衡量柑橘苗木是否達(dá)到嫁接粗度和出圃標(biāo)準(zhǔn)的重要指標(biāo)。不同光照組合處理對(duì)茶枝柑和紅檸檬幼苗的株高、莖粗、葉片數(shù)、葉面積等指標(biāo)均產(chǎn)生了明顯影響(圖1,表3)。由表3可知,在茶枝柑幼苗中,L6(光周期16 h/8 h,光質(zhì)白紅藍(lán)1:4:1,光照度100 μmol·m-2·s-1)處理下幼苗株高顯著增長(zhǎng),L4、L6、L7、L8、L9處理均能顯著促進(jìn)莖粗的生長(zhǎng),其中L7(光周期18 h/6 h,光質(zhì)白紅1:1,光照度200 μmol·m-2·s-1)處理下莖粗最大,高于對(duì)照30.46%。各處理對(duì)茶枝柑幼苗葉片的數(shù)量和面積影響較小。L4、L5、L7、L8、L9處理下葉片的比葉重顯著增大。對(duì)于生物量,除了L1、L2、L3處理之外,其他處理均能促進(jìn)幼苗生物量的積累,L6、L7、L8處理顯著提高幼苗鮮質(zhì)量,L4、L5、L6、L7、L8、L9顯著提高幼苗干質(zhì)量。在紅檸檬幼苗處理試驗(yàn)中,L1、L3處理下幼苗株高顯著降低,其他處理間差異不顯著。對(duì)于莖粗,除了L1、L6處理外,其余組合均顯著促進(jìn)莖粗生長(zhǎng),其中L7處理下莖粗達(dá)到最大,高于對(duì)照26.67%。對(duì)于葉片生長(zhǎng),L7處理下葉片數(shù)顯著增多,各處理葉面積與對(duì)照相比差異不顯著,L4、L5、L8、L9處理顯著提高了葉片的比葉重。L7、L9處理使幼苗干質(zhì)量顯著增大??傮w來(lái)看,茶枝柑幼苗在L6處理下株高和鮮質(zhì)量最大,在L7處理下莖粗和干質(zhì)量最大;紅檸檬幼苗在L7處理下株高、莖粗、葉片數(shù)、葉面積、鮮質(zhì)量均最大,說(shuō)明適當(dāng)延長(zhǎng)光照時(shí)間、提高紅光比例可有效促進(jìn)幼苗營(yíng)養(yǎng)生長(zhǎng)。
2.3 不同光照處理對(duì)茶枝柑和紅檸檬幼苗葉綠素含量的影響
對(duì)不同光照處理后茶枝柑和紅檸檬幼苗葉片葉綠素含量進(jìn)行分析,從圖2-A~D可知,L6處理顯著提高茶枝柑幼苗葉片的葉綠素a、葉綠素b以及總?cè)~綠素含量,其他處理下葉綠素含量降低,葉綠素a/b比值無(wú)顯著變化。從圖2-E~H中可知,與對(duì)照相比,所有處理均不利于紅檸檬葉綠素的合成,葉片葉綠素a、葉綠素b、總?cè)~綠素含量均下降,L3、L6處理下葉綠素a/b比值顯著降低??傮w來(lái)看,相同光周期下,降低光照度或加入藍(lán)光,有利于茶枝柑和紅檸檬葉片葉綠素含量增加。
2.4 不同光照處理對(duì)茶枝柑和紅檸檬幼苗葉片光合氣體交換的影響
對(duì)不同光照處理后葉片光合氣體交換情況進(jìn)行分析,結(jié)果如表4所示,茶枝柑幼苗在L1處理下Pn顯著降低,其余處理與對(duì)照相比無(wú)顯著差異,L1、L7、L8、L9處理下,Gs、Tr顯著降低。在紅檸檬幼苗中,與CK相比,除了L2處理外,其余處理葉片Pn都顯著降低,L4、L6、L7、L9處理下Gs顯著降低,L1、L2、L4、L6、L7、L8、L9處理下Tr顯著下降,Ci與對(duì)照相比變化不顯著。在茶枝柑和紅檸檬幼苗中都發(fā)現(xiàn),相同光周期下,光質(zhì)W1R1的組合Gs、Tr最低,并且隨著光照時(shí)間延長(zhǎng),18 h光照時(shí)長(zhǎng)下葉片Gs、Tr降低。結(jié)果表明所有光組合處理均不能顯著提高幼苗光合速率,并且部分組合下氣體交換受阻,光照時(shí)間長(zhǎng)、紅光比例高的組合下茶枝柑和紅檸檬葉片氣孔開放受阻,進(jìn)而影響Pn。
2.5 不同光照處理對(duì)茶枝柑和紅檸檬幼苗熒光特性的影響
不同光照處理后茶枝柑和紅檸檬幼苗葉綠素?zé)晒鈪?shù)的變化如表5所示,L6處理顯著提高茶枝柑葉片的光系統(tǒng)Ⅱ?qū)嶋H光合效率(ΦPSⅡ),除L2處理外,其他處理ΦPSⅡ降低。L1、L7、L8、L9處理后電子傳遞速率(ETR)顯著降低,光合電子傳遞效率受到影響。L3、L5、L7、L9處理下qP顯著降低,NPQ與對(duì)照相比差異不顯著。在紅檸檬幼苗中,除了L2組合,其余處理下ΦPSⅡ降低,ETR、qP除L2處理外都下降,NPQ各處理間無(wú)顯著差異,光化學(xué)淬滅系數(shù)(qP)反應(yīng)光系統(tǒng)Ⅱ吸收的能量中用于光化學(xué)反應(yīng)的比例,提高光照度和紅光比例能降低紅檸檬幼苗光化學(xué)淬滅系數(shù)。綜合來(lái)看,L6處理對(duì)茶枝柑幼苗光合活性有一定促進(jìn)作用,其余大部分處理都使茶枝柑和紅檸檬幼苗光系統(tǒng)活性下降。
2.6 不同光照處理隸屬函數(shù)法綜合評(píng)價(jià)
為了探明不同處理對(duì)茶枝柑和紅檸檬幼苗的綜合影響,對(duì)茶枝柑和紅檸檬幼苗的9個(gè)生長(zhǎng)指標(biāo)進(jìn)行隸屬函數(shù)分析。由表6可知,茶枝柑在L6處理下平均隸屬函數(shù)值最高,為0.87,其次為L(zhǎng)8、L4、L7,在L1處理下平均隸屬函數(shù)值最低,為0.01。如表7所示,紅檸檬在L7處理下平均隸屬函數(shù)值最高,為0.70,其次是L9,在L1處理下最低,為0.14。根據(jù)平均隸屬函數(shù)值排序可知,L6處理下茶枝柑幼苗生長(zhǎng)綜合性狀最優(yōu),L7處理下紅檸檬幼苗生長(zhǎng)綜合性狀最優(yōu)。
3 討 論
光質(zhì)是植物生長(zhǎng)發(fā)育的重要調(diào)控因子,紅光有利于細(xì)胞伸長(zhǎng)、增加株高、葉面積、地上部分生物量,藍(lán)光通常會(huì)抑制細(xì)胞的分化和伸長(zhǎng),從而縮短植株節(jié)間、減少葉面積[22]。筆者在本試驗(yàn)中用不同光質(zhì)處理后,發(fā)現(xiàn)紅光下茶枝柑和紅檸檬幼苗葉片擴(kuò)張,面積增大;藍(lán)光的影響在不同柑橘品種中存在差異,藍(lán)光和藍(lán)白1∶1處理使茶枝柑幼苗的株高、葉面積顯著降低,卻有利于紅檸檬幼苗生長(zhǎng)。前人的研究表明,藍(lán)光可以促進(jìn)紅檸檬幼苗的株高和莖粗生長(zhǎng)[23],與本研究結(jié)果一致,表明紅檸檬幼苗可以適應(yīng)較高比例的藍(lán)光環(huán)境。對(duì)于大多數(shù)植物,單純的紅光或藍(lán)光通常不能滿足生長(zhǎng)需要,不同比例復(fù)合光可促進(jìn)植物的生長(zhǎng),紅藍(lán)白1∶0.5∶1可促進(jìn)番茄光合色素和生物量的積累[24],紅藍(lán)5∶1顯著促進(jìn)葡萄試管苗的營(yíng)養(yǎng)生長(zhǎng)[25]。本試驗(yàn)結(jié)果表明,白紅藍(lán)2∶1∶1顯著促進(jìn)茶枝柑幼苗莖粗和紅檸檬幼苗株高的生長(zhǎng),紅藍(lán)4∶1下茶枝柑幼苗株高、葉片數(shù)、葉面積達(dá)到最大,白紅1∶1處理下紅檸檬幼苗莖粗、葉面積、干質(zhì)量、鮮質(zhì)量顯著提高且達(dá)到最大。結(jié)果表明,在復(fù)合光中適當(dāng)提高紅光比例,能顯著促進(jìn)茶枝柑和紅檸檬幼苗的營(yíng)養(yǎng)生長(zhǎng)。
光質(zhì)、光照度、光周期共同影響植物的生長(zhǎng)發(fā)育,最佳光譜下需要的光照度和光周期范圍需要系統(tǒng)研究。為了篩選適合茶枝柑和紅檸檬植株生長(zhǎng)的最佳光照組合,筆者在本研究中采用正交試驗(yàn)設(shè)計(jì),研究3個(gè)變量對(duì)柑橘幼苗植株生長(zhǎng)和光合特性的影響。結(jié)果表明,光周期是茶枝柑和紅檸檬幼苗生長(zhǎng)量的重要影響因素,光照時(shí)間16 h、18 h的組合均能有效促進(jìn)幼苗生長(zhǎng)。光周期影響植物葉片能夠進(jìn)行光合作用的時(shí)間,與植物光合產(chǎn)物的積累直接相關(guān),適當(dāng)延長(zhǎng)光周期,可以促進(jìn)植株生長(zhǎng)代謝和生理過程,促進(jìn)生物量積累[26]。長(zhǎng)日照和短日照植物在長(zhǎng)日照條件下都可以具有更高的生長(zhǎng)速率[27],番杏各農(nóng)藝性狀隨光照時(shí)間的延長(zhǎng)而增長(zhǎng)[28],延長(zhǎng)光照時(shí)間能提高甜椒幼苗的生長(zhǎng)速率、莖粗和根冠比[29],與本研究結(jié)果一致。光照度和光周期共同影響植物接收到的光能總量,不同植物對(duì)兩者的響應(yīng)存在差異[30]。茶枝柑和紅檸檬在L1處理下均生長(zhǎng)最慢,可能是因?yàn)楣庵芷?2 h/12 h和光照度100 μmol·m-2·s?1組合下,日累積光照量不能滿足生長(zhǎng)所需,形成的同化力不足,抑制幼苗生長(zhǎng)。而相同光照度下,適當(dāng)延長(zhǎng)光照時(shí)間使日累計(jì)光照量進(jìn)一步增加,同時(shí)緩解弱光帶來(lái)的環(huán)境脅迫,從而促進(jìn)柑橘幼苗莖葉的生長(zhǎng),提高生物量積累。
光合作用是植物生長(zhǎng)發(fā)育過程中有機(jī)物積累的基礎(chǔ),不同光通過影響植物光合色素含量、光合氣體交換、光合系統(tǒng)的性能等進(jìn)而影響植物的光合效率。葉綠素與葉綠體類囊體薄膜中的補(bǔ)光天線蛋白相結(jié)合,負(fù)責(zé)光能的補(bǔ)獲、傳遞和轉(zhuǎn)換,光環(huán)境直接影響植物葉綠素含量和組成[31]。在本研究中,當(dāng)光周期一致時(shí),光照度低的組合處理葉綠素含量更高,因?yàn)樵谌豕鈼l件下,植物通過降低比葉重、提高單位質(zhì)量葉綠素含量以增加對(duì)光能的吸收。CO2通過氣孔進(jìn)入植物細(xì)胞,為光合碳同化提供原料,而氣孔開放受保衛(wèi)細(xì)胞中鉀離子和可溶性滲透物調(diào)控,藍(lán)光可以通過調(diào)節(jié)細(xì)胞內(nèi)滲透壓,促使氣孔快速打開,加入藍(lán)光組分有利于提高氣孔導(dǎo)度[32]。在紅光基礎(chǔ)上添加藍(lán)光可有效提高生菜葉片的光合性能,并且隨著藍(lán)光比例的增加Gs和Pn增大[33]。筆者在本研究中發(fā)現(xiàn),在同樣光周期的條件下,光質(zhì)為白紅1∶1的處理下茶枝柑和紅檸檬幼苗葉片的Gs和Tr都低于其他處理,缺少藍(lán)光,抑制氣孔開放,進(jìn)而使葉片Pn降低。光能過剩也會(huì)引起柑橘光合作用效率的下降[34],高溫高光抑制使溫州蜜柑葉片電子傳遞和光化學(xué)效率下降[35]。光照時(shí)間延長(zhǎng)至18 h時(shí),茶枝柑及紅檸檬幼苗Gs、Tr、ETR降低,長(zhǎng)時(shí)間光照使幼苗氣孔性能和電子傳遞能力下降。
運(yùn)用綜合評(píng)價(jià)可以全面客觀地反映幼苗總體生長(zhǎng)狀況,隸屬函數(shù)綜合評(píng)價(jià)結(jié)果表明,紅檸檬在L7(光周期18 h/6 h,光質(zhì)白紅1∶1,光照度200 μmol·m-2·s?1)組合下表現(xiàn)最優(yōu),植株株高、莖粗、葉面積、鮮質(zhì)量均達(dá)到最高。草莓植株在光照度250 μmol·m-2·s?1、光質(zhì)紅藍(lán)7∶3、光周期16 h/8 h光照/黑暗下株高、根長(zhǎng)、芽鮮質(zhì)量和干質(zhì)量、葉綠素 a和總?cè)~綠素與類胡蘿卜素含量,以及大多數(shù)植物產(chǎn)量參數(shù)最高[36],與本研究結(jié)果相似,高紅光成分的光質(zhì)、高光照度和長(zhǎng)時(shí)間的光照使植物生長(zhǎng)量達(dá)到最大。而茶枝柑的最優(yōu)組合是L6(光周期16 h/8 h,光質(zhì)白紅藍(lán)1∶4∶1,光照度100 μmol·m-2·s?1),與紅檸檬生長(zhǎng)適宜范圍不同,相比紅檸檬,茶枝柑幼苗更適宜在中等光照時(shí)長(zhǎng)和低光照度組合下生長(zhǎng),L6組合能夠提高茶枝柑幼苗葉綠素含量和光合系統(tǒng)活性,促進(jìn)幼苗光合效率,進(jìn)而促進(jìn)幼苗同化物質(zhì)積累。本研究中部分處理下幼苗光合受到抑制,但生長(zhǎng)沒有受限,可能由于光對(duì)植物光合產(chǎn)物積累的影響表現(xiàn)在質(zhì)量和數(shù)量上,光質(zhì)、光照度、光周期共同影響植株光能利用效率和能夠利用的光能總量。延長(zhǎng)光照時(shí)間、提高紅光比例,雖然降低了茶枝柑和紅檸檬幼苗單位面積凈光合速率,但促進(jìn)了植株葉片數(shù)和葉面積的增長(zhǎng)。葉片是植物進(jìn)行光合作用的主要器官,葉片的擴(kuò)張使植物能夠捕獲更多的光能,同時(shí)隨著光照時(shí)間延長(zhǎng),植物日照積累量增加,進(jìn)而提高光合產(chǎn)物總量,促進(jìn)營(yíng)養(yǎng)生長(zhǎng)。
4 結(jié) 論
通過合理的光配方處理,可有效促進(jìn)柑橘幼苗生長(zhǎng)。本試驗(yàn)結(jié)果表明,適宜茶枝柑幼苗生長(zhǎng)的光質(zhì)是紅藍(lán)4∶1,適宜紅檸檬幼苗生長(zhǎng)的光質(zhì)是白紅1∶1。通過隸屬函數(shù)綜合分析表明,不同組合光中,茶枝柑幼苗在L6光照組合(光周期16 h/8 h晝/夜,光質(zhì)白紅藍(lán)1∶4∶1,光照度100 μmol·m-2·s?1)處理下綜合生長(zhǎng)情況最優(yōu),紅檸檬幼苗在L7光照組合(光周期18 h/6 h晝/夜,光質(zhì)白紅1∶1,光照度200 μmol·m-2·s?1)條件下綜合生長(zhǎng)情況最優(yōu),可以作為茶枝柑和紅檸檬培育壯苗的補(bǔ)光參數(shù)。
參考文獻(xiàn)References:
[1] LIANG S J,ZHANG J B,LIU Y F,WEN Z J,LIU X X,DANG F L,XIE T X,WANG J X,WANG Z Q,WU H. Study on flavonoids and bioactivity features of pericarp of Citrus reticulata ‘Chachi’ at different harvest periods[J]. Plants,2022,11(23):3390.
[2] 郭文武,葉俊麗,鄧秀新. 新中國(guó)果樹科學(xué)研究70年:柑橘[J]. 果樹學(xué)報(bào),2019,36(10):1264-1272.
GUO Wenwu,YE Junli,DENG Xiuxin. Fruit scientific research in New China in the past 70 years:Citrus[J]. Journal of Fruit Science,2019,36(10):1264-1272.
[3] 劉文科. LED植物工廠光質(zhì)生物學(xué)研究與應(yīng)用現(xiàn)狀[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2018,20(10):9-14.
LIU Wenke. Research on spectral biology of plant factory with LED lighting and application status[J]. Journal of Agricultural Science and Technology,2018,20(10):9-14.
[4] BIAN Z H,YANG Q C,LI T,CHENG R F,BARNETT Y,LU C G. Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes[J]. Physiologia Plantarum,2018,164(2):226-240.
[5] 劉敏竹,李強(qiáng),楊超,韓濤,凌麗俐,付行政,淳長(zhǎng)品,曹立,何義仲. LED光質(zhì)對(duì)紅桔幼苗生長(zhǎng)發(fā)育和葉綠素?zé)晒馓匦缘挠绊慬J]. 中國(guó)南方果樹,2021,50(2):1-7.
LIU Minzhu,LI Qiang,YANG Chao,HAN Tao,LING Lili,F(xiàn)U Xingzheng,CHUN Changpin,CAO Li,HE Yizhong. Effects of different light quality of LED on growth,development and chlorophyll fluorescence characteristics of citrus tangerine seedlings[J]. South China Fruits,2021,50(2):1-7.
[6] 王佳淇,何瑩鈺,韋曉桐,李永強(qiáng),楊莉,陳文榮,廖芳蕾,郭衛(wèi)東. LED補(bǔ)光組合對(duì)大棚越橘生長(zhǎng)發(fā)育的影響[J]. 園藝學(xué)報(bào),2020,47(6):1183-1193.
WANG Jiaqi,HE Yingyu,WEI Xiaotong,LI Yongqiang,YANG Li,CHEN Wenrong,LIAO Fanglei,GUO Weidong. Effects of LED supplemental light on the growth and development of blueberry in greenhouse[J]. Acta Horticulturae Sinica,2020,47(6):1183-1193.
[7] 李都岳,吳延軍. 補(bǔ)光對(duì)設(shè)施栽培櫻桃果實(shí)成熟和糖分積累的影響[J]. 果樹學(xué)報(bào),2023,40(10):2183-2194.
LI Duyue,WU Yanjun. Effects of supplementary light on ripening and sugar accumulation of cherry under protected cultivation[J]. Journal of Fruit Science,2023,40(10):2183-2194.
[8] 王競(jìng),唐雪東,程存剛,周江濤,陳艷輝,李鑫,張艷珍,劉炳含. 不同光質(zhì)補(bǔ)光對(duì)富士蘋果果實(shí)品質(zhì)的影響[J]. 果樹學(xué)報(bào),2024,41(3):459-469.
WANG Jing,TANG Xuedong,CHENG Cungang,ZHOU Jiangtao,CHEN Yanhui,LI Xin,ZHANG Yanzhen,LIU Binghan. Effects of light quality on Fuji apple fruit quality[J]. Journal of Fruit Science,2024,41(3):459-469.
[9] PARK Y,RUNKLE E S. Spectral effects of light-emitting diodes on plant growth,visual color quality,and photosynthetic photon efficacy:White versus blue plus red radiation[J]. PLoS One,2018,13(8):e0202386.
[10] 文蓮蓮,李巖,秦利杰,周鑫,倪秀男,劉淑俠,焦娟,魏珉. 白光與紅藍(lán)光比例對(duì)番茄壯苗及光合特性的影響[J]. 植物生理學(xué)報(bào),2018,54(7):1223-1232.
WEN Lianlian,LI Yan,QIN Lijie,ZHOU Xin,NI Xiunan,LIU Shuxia,JIAO Juan,WEI Min. Effects of proportions of white,red and blue light qualities on the strong plants and photosynthetic characteristcs in tomato seedlings[J]. Plant Physiology Journal,2018,54(7):1223-1232.
[11] POORTER H,NIINEMETS ü,NTAGKAS N,SIEBENK?S A,M?ENP?? M,MATSUBARA S,PONS T. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance[J]. The New Phytologist,2019,223(3):1073-1105.
[12] 張珊珊,楊文忠,康洪梅,諾蘇那瑪. 光強(qiáng)和土壤含水量對(duì)云南藍(lán)果樹幼苗生長(zhǎng)及光合特征的影響[J]. 東北林業(yè)大學(xué)學(xué)報(bào),2018,46(3):16-23.
ZHANG Shanshan,YANG Wenzhong,KANG Hongmei,NUO Sunama. Effects of light intensities and water conditions on growth and photosynthetic characteristics of Nyssa yunnanensis seedlings[J]. Journal of Northeast Forestry University,2018,46(3):16-23.
[13] 黃雯,魏猷剛,甘小虎,方思明,徐明喜,李昀曄,胡靜,閻慶久,楊會(huì)玲. 弱光條件下不同光周期對(duì)西瓜幼苗生長(zhǎng)發(fā)育的影響[J]. 上海蔬菜,2021(4):86-87.
HUANG Wen,WEI Yougang,GAN Xiaohu,F(xiàn)ANG Siming,XU Mingxi,LI Yunye,HU Jing,YAN Qingjiu,YANG Huiling. Effects of different photoperiod on growth and development of watermelon seedlings under low light conditions[J]. Shanghai Vegetables,2021(4):86-87.
[14] 陳冰星,王曉倩,劉濤,王蘇蘇,WANGPRUSKI G,賴鐘雄,郭容芳. 不同光質(zhì)光周期對(duì)櫻桃蘿卜生長(zhǎng)發(fā)育及營(yíng)養(yǎng)品質(zhì)的影響[J]. 西北植物學(xué)報(bào),2020,40(1):77-86.
CHEN Bingxing,WANG Xiaoqian,LIU Tao,WANG Susu,WANGPRUSKI G,LAI Zhongxiong,GUO Rongfang. Effect of different light quality and photoperiods on growth development and nutritional quality of cherry radish[J]. Acta Botanica Boreali-Occidentalia Sinica,2020,40(1):77-86.
[15] 何蔚,陳丹艷,胡曉婷,王曉旭,陳樂涵,張海春,楊振超. 不同光周期與光質(zhì)配比對(duì)番茄植株生長(zhǎng)發(fā)育的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2018,27(4):562-570.
HE Wei,CHEN Danyan,HU Xiaoting,WANG Xiaoxu,CHEN Lehan,ZHANG Haichun,YANG Zhenchao. Effects of different photoperiods and photon flux ratios of red and blue LEDs on growth and development of tomato plants[J]. Acta Agriculturae Boreali-occidentalis Sinica,2018,27(4):562-570.
[16] 秦健,劉洋,方升佐,楊萬(wàn)霞,管玲玲,尚旭嵐. 光質(zhì)和光強(qiáng)對(duì)青錢柳生長(zhǎng)和抗氧化酶活性的影響[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,41(4):13-18.
QIN Jian,LIU Yang,F(xiàn)ANG Shengzuo,YANG Wanxia,GUAN Lingling,SHANG Xulan. Effects of light quality and intensity on growth and antioxidative activities of Cyclocarya paliurus seedlings[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2017,41(4):13-18.
[17] 劉杰,胡笑濤,王文娥,冉輝,方舒玲,楊鑫. 光強(qiáng)和光周期對(duì)水培生菜光合及葉綠素?zé)晒馓匦缘挠绊慬J]. 西南農(nóng)業(yè)學(xué)報(bào),2019,32(8):1784-1790.
LIU Jie,HU Xiaotao,WANG Wen’e,RAN Hui,F(xiàn)ANG Shuling,YANG Xin. Effects of light intensity and photoperiod on photosynthetic characteristics and chlorophyll fluorescence of hydroponic lettuce[J]. Southwest China Journal of Agricultural Sciences,2019,32(8):1784-1790.
[18] 邱霞,葉霜,熊博,廖玲,孫國(guó)超,榮毅,羅近予,代琳,汪志輝. 十三個(gè)柑橘品種葉片光合特性研究[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2017,29(6):917-925.
QIU Xia,YE Shuang,XIONG Bo,LIAO Ling,SUN Guochao,RONG Yi,LUO Jinyu,DAI Lin,WANG Zhihui. Photosynthetic characteristics of 13 citrus cultivars[J]. Acta Agriculturae Zhejiangensis,2017,29(6):917-925.
[19] 李思靜,易曉曈,李有芳,王君秀,凌麗俐,彭良志. 不同LED光質(zhì)對(duì)枳殼幼苗生長(zhǎng)發(fā)育的影響[J]. 光譜學(xué)與光譜分析,2018,38(3):708-714.
LI Sijing,YI Xiaotong,LI Youfang,WANG Junxiu,LING Lili,PENG Liangzhi. Effects of different LED light qualities on the growth of trifoliate orange seedlings[J]. Spectroscopy and Spectral Analysis,2018,38(3):708-714.
[20] 李思靜. 不同LED光對(duì)先鋒橙和紅橘幼苗生長(zhǎng)發(fā)育及生理特性的影響[D]. 重慶:西南大學(xué),2018.
LI Sijing. Effects of different LED light on the growth and physiological characteristics of Pioneer Orange and Tangerine seedlings[D]. Chongqing:Southwest University,2018.
[21] 李鳳,孫婭楠,劉富華,趙楊. 不同光質(zhì)對(duì)皂莢幼苗生長(zhǎng)及皂莢刺相關(guān)生理指標(biāo)的影響[J]. 植物生理學(xué)報(bào),2024,60(4):653-662.
LI Feng,SUN Yanan,LIU Fuhua,ZHAO Yang. Effects of different light qualities on seedlings growth and physiological indicators associated with throns of Gleditsia sinensis[J]. Plant Physiology Journal,2024,60(4):653-662.
[22] 任毛飛,毛桂玲,劉善振,王慰親,鄭華斌,唐啟源. 光質(zhì)對(duì)植物生長(zhǎng)發(fā)育、光合作用和碳氮代謝的影響研究進(jìn)展[J]. 植物生理學(xué)報(bào),2023,59(7):1211-1228.
REN Maofei,MAO Guiling,LIU Shanzhen,WANG Weiqin,ZHENG Huabin,TANG Qiyuan. Research progress on the effects of light quality on plant growth and development,photosynthesis,and carbon and nitrogen metabolism[J]. Plant Physiology Journal,2023,59(7):1211-1228.
[23] 陳光彩,閔慶宇,李家健. 不同光質(zhì)對(duì)新會(huì)柑砧木‘紅檸檬’生長(zhǎng)的影響[J]. 中國(guó)照明電器,2024(1): 6-11.
CHEN Guangcai,MIN Qingyu,LI Jiajian. Effect of different light quality on the growth of Citrus limon (L.) Burm. F.[J]. China Light amp; Lighting,2024(1):6-11.
[24] YAN J R,LIU J,YANG S D,JIANG C H,LIU Y N,ZHANG N,SUN X,ZHANG Y,ZHU K Y,PENG Y X,BU X,WANG X J,AHAMMED G J,MENG S D,TAN C H,LIU Y F,SUN Z P,QI M F,WANG F,LI T L. Light quality regulates plant biomass and fruit quality through a photoreceptor-dependent HY5-LHC/CYCB module in tomato[J]. Horticulture Research,2023,10(12):uhad219.
[25] 楊忠義,郭雯巖,李戌彥,董志剛,喬治軍,紀(jì)薇. 不同光質(zhì)對(duì)‘秋紅寶’葡萄試管苗生長(zhǎng)的影響[J]. 果樹學(xué)報(bào),2020,37(6):838-847.
YANG Zhongyi,GUO Wenyan,LI Xuyan,DONG Zhigang,QIAO Zhijun,JI Wei. Effect of light quality on the growth of in vitro seedling of ‘Qiuhongbao’ grape[J]. Journal of Fruit Science,2020,37(6):838-847.
[26] 陳永快,王濤,蘭婕,黃語(yǔ)燕,康育鑫. 植物工廠內(nèi)LED光調(diào)控在作物栽培中的研究進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué),2020,48(23):40-46.
CHEN Yongkuai,WANG Tao,LAN Jie,HUANG Yuyan,KANG Yuxin. Research progress of LED light regulation in plant factories in crop cultivation[J]. Jiangsu Agricultural Sciences,2020,48(23):40-46.
[27] GENDRON J M,STAIGER D. New horizons in plant photoperiodism[J]. Annual Review of Plant Biology,2023,74:481-509.
[28] 張瑞潔,賀忠群,李春燕,莫建超,謝永東. 植物工廠中光周期對(duì)番杏光合特性及品質(zhì)的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),2022,28(4):989-994.
ZHANG Ruijie,HE Zhongqun,LI Chunyan,MO Jianchao,XIE Yongdong. Effects of photoperiod on photosynthetic characteristics and quality of Tetragonia tetragonoides (Pall.) Kuntze in a plant factory[J]. Chinese Journal of Applied and Environmental Biology,2022,28(4):989-994.
[29] 董秀霞,劉瑞嶺,安林林,史曉燕,趙春燕. 不同光周期對(duì)甜椒幼苗生長(zhǎng)的影響[J]. 農(nóng)業(yè)科技通訊,2023(1):111-113.
DONG Xiuxia,LIU Ruiling,AN Linlin,SHI Xiaoyan,ZHAO Chunyan. Effects of different photoperiod on growth of sweet pepper seedling[J]. Bulletin of Agricultural Science and Technology,2023(1):111-113.
[30] 崔佳維,雷炳富,劉厚誠(chéng). 光合有效輻射日總量(DLI)對(duì)植物生長(zhǎng)發(fā)育的影響[J]. 園藝學(xué)報(bào),2019,46(9):1670-1680.
CUI Jiawei,LEI Bingfu,LIU Houcheng. Effect of daily light integral on plant growth and development[J]. Acta Horticulturae Sinica,2019,46(9):1670-1680.
[31] CUTOLO E A,GUARDINI Z,DALL’OSTO L,BASSI R. A paler shade of green:Engineering cellular chlorophyll content to enhance photosynthesis in crowded environments[J]. The New Phytologist,2023,239(5):1567-1583.
[32] SHIMAZAKI K I,DOI M,ASSMANN S M,KINOSHITA T. Light regulation of stomatal movement[J]. Annual Review of Plant Biology,2007,58:219-247.
[33] 王君. 紅藍(lán)光下不同光強(qiáng)和光質(zhì)配比對(duì)生菜光合能力影響機(jī)理[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2016.
WANG Jun. Mechanism of effects of light intensity and light quality under the combination of red light and blue light on photosynthetic capacity of lettuce[D]. Beijing:Chinese Academy of Agricultural Sciences,2016.
[34] 胡美君,郭延平,沈允鋼,張良誠(chéng). 柑橘屬光合作用的環(huán)境調(diào)節(jié)[J]. 應(yīng)用生態(tài)學(xué)報(bào),2006,17(3):535-540.
HU Meijun,GUO Yanping,SHEN Yungang,ZHANG Liang-
cheng. Environmental regulation of Citrus photosynthesis[J]. Chinese Journal of Applied Ecology,2006,17(3):535-540.
[35] 鄭潔,郭延平,胡美君. 光溫交互作用對(duì)柑橘植株葉綠素?zé)晒夂虳1蛋白的影響[J]. 浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2008,34(6):629-634.
ZHENG Jie,GUO Yanping,HU Meijun. Interacting effects of radiation and temperature on chlorophyll fluorescence and D1 protein in Satsuma mandarin plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2008,34(6):629-634.
[36] GUIAMBA H D S S,ZHANG X W,SIERKA E,LIN K,ALI M M,ALI W M,LAMLOM S F,KALAJI H M,TELESI?SKI A,YOUSEF A F,XU Y. Enhancement of photosynthesis efficiency and yield of strawberry (Fragaria ananassa Duch.) plants via LED systems[J]. Frontiers in Plant Science,2022,13:918038.