• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      紅瓤核桃JrbHLHA2轉(zhuǎn)錄因子靶向查爾酮合成酶基因JrCHS4調(diào)控種皮花青苷合成的功能研究

      2024-12-31 00:00:00王磊樊璐李亞奇陳俊儒孟海軍吳國(guó)良
      果樹學(xué)報(bào) 2024年10期

      摘" " 要:【目的】查爾酮合成酶(CHS)是植物花青苷合成途徑中的第一個(gè)限速酶,探究紅瓤核桃(Juglans regia L. RW-1)查爾酮合成酶(CHS)在種皮花青苷合成中的功能,為紅瓤核桃的品種改良提供理論支撐。【方法】以紅瓤核桃RW-1和普通核桃中林1號(hào)不同發(fā)育期的種皮為材料,根據(jù)qRT-PCR結(jié)果,篩選并克隆JrCHS4基因;克隆2種核桃JrCHS4的啟動(dòng)子序列,通過GUS染色和GUS蛋白定量分析啟動(dòng)子活性差異;通過酵母單雜交(Y1H)和雙熒光素酶檢測(cè)試驗(yàn)(LUC)驗(yàn)證上游bHLH轉(zhuǎn)錄因子對(duì)JrCHS4啟動(dòng)子的調(diào)控作用;通過農(nóng)桿菌介導(dǎo)將JrCHS4瞬時(shí)轉(zhuǎn)化煙草葉片,觀察葉片顏色及花青苷含量的變化。【結(jié)果】花后60、120 d時(shí)僅JrCHS4在紅瓤核桃種皮中的表達(dá)量顯著高于普通核桃種皮且表達(dá)量差異最大,分別約為66.04、11 970.93倍,花后90 d時(shí)除JrCHS4在2種核桃種皮中的表達(dá)量基本相同外,其他3個(gè)JrCHSs在紅瓤核桃種皮中的表達(dá)量均顯著低于普通核桃種皮,推測(cè)JrCHS4可能是紅瓤核桃種皮花青苷合成的關(guān)鍵基因。GW-JrCHS4啟動(dòng)子與RW-JrCHS4啟動(dòng)子具有98.50%的同源性,含有許多響應(yīng)激素如脫落酸、乙烯、赤霉素以及與逆境脅迫相關(guān)的順式作用元件,與GW-JrCHS4啟動(dòng)子相比,RW-JrCHS4啟動(dòng)子缺失了1個(gè)MYB結(jié)合位點(diǎn)MYB1AT,插入了1個(gè)bHLH結(jié)合位點(diǎn)MYCCONSENSUSAT。GUS染色結(jié)果表明,RW-JrCHS4啟動(dòng)子誘導(dǎo)產(chǎn)生的藍(lán)色深于GW-JrCHS4啟動(dòng)子誘導(dǎo)產(chǎn)生的藍(lán)色;經(jīng)GUS蛋白定量檢測(cè),RW-JrCHS4啟動(dòng)子活性顯著高于GW-JrCHS4啟動(dòng)子活性,約是GW-JrCHS4啟動(dòng)子活性的1.17倍。酵母單雜交試驗(yàn)結(jié)果表明,JrbHLHA2可以特異性結(jié)合JrCHS4啟動(dòng)子;經(jīng)LUC試驗(yàn)進(jìn)一步驗(yàn)證,JrbHLHA2能夠顯著激活JrCHS4啟動(dòng)子的活性,其LUC/REN比值約是對(duì)照的2.45倍。瞬時(shí)轉(zhuǎn)化JrCHS4的煙草葉片綠色變淺呈現(xiàn)輕微的紅色,總花青苷含量得到了顯著提高,約是對(duì)照的1.09倍,表明JrCHS4能夠促進(jìn)花青苷的生物合成與積累?!窘Y(jié)論】紅瓤核桃JrbHLHA2轉(zhuǎn)錄因子靶向查爾酮合成酶基因JrCHS4是調(diào)控紅瓤核桃種皮花青苷合成的關(guān)鍵因素。

      關(guān)鍵詞:紅瓤核桃;花青苷;查爾酮合成酶;轉(zhuǎn)錄調(diào)控

      中圖分類號(hào):S664.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)10-2002-12

      Functional research on JrbHLHA2 transcription factor targeting chalcone synthase gene JrCHS4 regulating anthocyanin biosynthesis in red walnut

      WANG Lei1, 2, FAN Lu2#, LI Yaqi2, CHEN Junru2, MENG Haijun2, WU Guoliang2*

      (1Xinjiang Production amp; Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, Xinjiang, China; 2College of Horticultural Science, Henan Agricultural University, Zhengzhou 450046, Henan, China)

      Abstract: 【Objective】 Walnut (Juglans regia L.), which ranks first among the four major nut crops, has been widely planted and processed for utilization. Red walnut RW-1 with red leaves, pericarps and seed coats has been researched because of its high contents of anthocyanin. Anthocyanins are important secondary metabolites in plants, which play an important role in avoiding UV damage, attracting insect pollination and resisting low temperature stress. Although the anthocyanin biosynthesis gene has been studied in other plants, the function in walnut is still unclear. Chalcone synthase is the first key enzyme in anthocyanin biosynthesis pathway, which determines the final product of anthocyanin biosynthesis. In this study, the function of JrCHS4 was researched by transient transformation in tobacco leaves. 【Methods】 The expression patterns of key chalcone synthase genes related to anthocyanin biosynthesis (JrCHS1-JrCHS4) were detected by qRT-PCR. The promoters of JrCHS4 in two different color types of walnuts were cloned by the Phytozome database. The cis-acting elements were predicted by PLACE databases. The promoters were inserted into pCAMBIA1381-GUS vector, and the recombinant vector was transformed into Agrobacterium strain GV3101 for transient expression. The activity of two promoters was detected by GUS histochemical staining and quantitation GUS protein. The regulatory effect of upstream bHLH transcription factors (JrbHLHA1, JrbHLHA2, JrEGL1a and JrEGL1b) on the JrCHS4 promoter was detected by yeast one-hybrid (Y1H) and luciferase assay (LUC). The over-expression vector of JrCHS4 was transient transformed into tobacco leaves, and the changes of leaf color and anthocyanin content were observed. 【Results】 The expression patterns of four CHSs genes related to anthocyanin biosynthesis were detected by qRT-PCR using different development stages of seed coat. The results showed that at 60th and 120th days after flowering, the expression level of JrCHS4 was significantly higher in the red walnut seed coat than in the normal walnut seed coat and the difference in expression level was the largest, which indicated that JrCHS4 may be the key gene in red walnut anthocyanin biosynthesis. To investigate whether the different expression trends of CHS4 gene in the seed coat development of red walnut RW-1 and normal walnut Zhonglin 1 were related to their promoters, the promoters of JrCHS4 were cloned from the two types of walnuts by the Phytozome database, and 98.50% nucleotide identify were shared. From PLACE database, some elements related to hormone response and stress, like ABRE, MYC, ERE, GARE and MYB1AT, were found in RW-JrCHS4 promoter. Compared with the GW-JrCHS4 promoter, the RW-JrCHS4 promoter lacked one MYB binding site MYB1AT and inserted one bHLH binding site MYCCONSENSUSAT. In order to determine the difference in activity of two JrCHS4 promoters, the promoters were cloned into pCAMBIA1381-GUS vector. After they were transformed into Agrobacterium strain GV3101, the positive clones were transient transformed into tobacco leaves. The result of histochemical assay showed that the negative control (only GUS without the promoter) showed almost no expression, the positive control (35S-GUS) showed a strong expression, and the GUS activity under RW-JrCHS4 was higher than that of GW-JrCHS4. The same results were also gotten by quantitation of GUS protein. The results from both assays showed that compared with the GW-JrCHS4 promoter, the promoter of RW-JrCHS4 showed high activity, which suggested that the different expression patterns of JrCHS4 may be caused by their promoter activities. To screen out the bHLH transcription factors, which were in the upstream of JrCHS4, four bHLHs related to anthocyanin biosynthesis (JrbHLHA1, JrbHLHA2, JrEGL1a and JrEGL1b) were selected out. After cloned into pGADT7 vector, four bHLHs were co-transformed into yeast stain Y1HGold with RW-JrCHS4pro-pAbAi. The optimal AbA concentration to inhibit the expression of JrCHS4 promoter was 150 ng·mL-1. After they grew on the selected medium, only JrbHLHA2-pGADT7+RW-JrCHS4pro-pAbAi stain ensured the normal growth, while none of the other combinations could grow, which indicated that JrbHLHA2 could bind to the promoter of JrCHS4. Moreover, the results of LUC assays showed that the activity of RW-JrCHS4 promoter co-transformed with JrbHLHA2 was almost three times more than co-transformed with empty vector. So the results indicated that JrbHLHA2 and JrCHS4 may be the key genes of anthocyanin biosynthesis in red walnut, and JrbHLHA2 was bound the promoter of JrCHS4 to promote the biosynthesis and accumulation of anthocyanin. In order to verity the function of JrCHS4 in anthocyanin biosynthesis, the over-expression vector of JrCHS4 was transformed into tobacco leaves. After they were injected for seven days, the accumulated anthocyanin content of injected JrCHS4 tobacco leaves was higher than the empty vector injected. The results indicated that JrCHS4 promoted the accumulation of anthocyanin. 【Conclusion】 The JrbHLHA2 transcription factor targeting chalcone synthase gene JrCHS4 is the key factor to regulate the biosynthesis of anthocyanin in red walnut RW-1, which provided important theoretical significance and application value for seed coat color improvement as well as breeding new varieties of red walnut.

      Key words: Red walnut; Anthocyanin; Chalcone synthase; Transcriptional regulation

      花青苷是植物重要的次生代謝產(chǎn)物,主要存在于高等植物的花、果實(shí)、種皮等器官中,使植物呈現(xiàn)不同的色彩,在避免植物受到紫外線傷害、吸引昆蟲傳粉和抵御低溫脅迫等方面起著重要的作用[1]?;ㄇ嘬盏暮铣捎梢幌盗械拿复俜磻?yīng)構(gòu)成,主要包括苯丙氨酸解氨酶(phenylalanine ammonialyase,PAL)、查爾酮合成酶(chalcone synthase,CHS)、查爾酮異構(gòu)酶(chalcone isomerase,CHI)、黃烷酮-3-羥化酶(flavanone 3-hydroxylase,F(xiàn)3H)、二氫黃酮醇-4-還原酶(dihydroflavonol 4-reductase,DFR)、花青素合成酶(anthocyanidin synthase,ANS)、類黃酮-3-O-糖基轉(zhuǎn)移酶(UDP-glucose:flavonoid-3-O-glucosyltransferase,UFGT)等[2]。

      查爾酮合成酶(chalcone synthase,CHS)是類黃酮生物合成途徑中的第一個(gè)關(guān)鍵酶,催化3分子的丙二酰-CoA和1分子的4-香豆酰-CoA結(jié)合形成查爾酮,是類黃酮途徑中的第一個(gè)呈色物質(zhì)[3]。大量研究表明,CHS能夠影響花青苷的累積水平。在智利草莓[Fragaria chiloensis (L.) Mill.]果實(shí)發(fā)育過程中,ABA通過激活FcPAL、FcCHS、FcANS等花青素途徑的關(guān)鍵基因加速果實(shí)顏色的積累[4];套袋處理降低了杏果實(shí)中包括PaCHS在內(nèi)的花青苷合成基因的表達(dá)量,從而導(dǎo)致花青苷含量的下降[5]。蘋果[6]、梨[7]和柑橘[8]中,CHS基因的表達(dá)量隨花青苷積累量的增加而升高;實(shí)驗(yàn)室前期在紅瓤核桃自然雜交后代中鑒定了4個(gè)與花青苷含量呈正相關(guān)的JrCHSs基因,但其功能還沒有相關(guān)研究[9]。

      bHLH(basic Helix-Loop-Helix,堿性螺旋-環(huán)-螺旋)轉(zhuǎn)錄因子是植物第二大轉(zhuǎn)錄因子家族,其蛋白結(jié)構(gòu)包含兩個(gè)功能不同的區(qū)域,即位于N端的堿性區(qū)域(DNA識(shí)別區(qū))和C端的HLH區(qū)域(可形成同源或異源二聚體),在植物的生長(zhǎng)發(fā)育、抵抗脅迫和轉(zhuǎn)導(dǎo)信號(hào)等方面發(fā)揮著重要作用,是植物花青苷合成的關(guān)鍵調(diào)控因子[3]。研究發(fā)現(xiàn),茄子SmbHLH13可以正向調(diào)控茄子F3H和CHS基因的表達(dá),促進(jìn)茄子花青素的合成[10]。筆者課題組前期根據(jù)生物信息學(xué)與表達(dá)分析,篩選出了4個(gè)與紅瓤核桃花青苷合成相關(guān)的bHLH轉(zhuǎn)錄因子基因JrbHLHA1、JrbHLHA2、JrEGL1a、JrEGL1b[11],但對(duì)其調(diào)控紅瓤核桃花青苷生物合成的分子機(jī)制比如與JrCHSs基因的調(diào)控關(guān)系沒有相關(guān)研究。

      核桃(Juglans regia L.)是世界四大堅(jiān)果之首,含有豐富的營(yíng)養(yǎng)成分,被廣泛種植和加工利用[12]。據(jù)聯(lián)合國(guó)糧食及農(nóng)業(yè)組織(FAO)(http://faostat.fao.org)最新數(shù)據(jù)統(tǒng)計(jì),2022年中國(guó)核桃收獲面積占世界核桃收獲面積的28.58%,產(chǎn)量占世界核桃產(chǎn)量的36.14%,均穩(wěn)居世界首位。中國(guó)核桃栽培歷史已有3000多年,具有極豐富的種質(zhì)資源,目前廣泛栽培的核桃品種種皮均為黃白色或淺黃色[13],可選擇的外觀性狀較少。筆者課題組前期在太行山區(qū)域發(fā)現(xiàn)了珍稀的紅瓤核桃種質(zhì)資源(J. regia L. RW-1),其葉片、果皮和種皮均因富含花青苷而呈紅色,但其呈色機(jī)制目前尚不清楚,限制了核桃的色澤品質(zhì)改良。因此,筆者在前期研究的基礎(chǔ)上,篩選紅瓤核桃種皮花青苷合成關(guān)鍵CHS基因,探究其與上游JrbHLHs的調(diào)控關(guān)系,并驗(yàn)證其在花青苷生物合成與積累中發(fā)揮的功能與作用,以期解析紅瓤核桃種皮花青苷合成與積累的分子機(jī)制,為促進(jìn)紅瓤核桃色澤品質(zhì)的改良及育種奠定基礎(chǔ)。

      1 材料和方法

      1.1 試驗(yàn)材料

      供試材料為野生資源紅瓤核桃(J. regia L. RW-1,資源編號(hào)JUREG4108210002)和普通核桃中林1號(hào)(J. regia L. ‘Zhonglin 1’),均種植于河南農(nóng)業(yè)大學(xué)科教園區(qū)毛莊果樹資源圃,南北向定植,株行距2 m × 3 m,常規(guī)肥水管理。選擇生長(zhǎng)狀況良好、長(zhǎng)勢(shì)一致的植株,于花后60、90、120 d采集紅瓤核桃RW-1(RW)和普通核桃中林1號(hào)(GW)的種皮,采集樣品于液氮速凍后置于-80 ℃超低溫冰箱中保存?zhèn)溆谩?/p>

      所有用于注射的煙草(Nicotiana tabacum L.)均在溫度22 ℃、濕度60%、光照16 h/黑暗8 h的培養(yǎng)箱中進(jìn)行培養(yǎng)。

      1.2 總花青素含量測(cè)定

      將樣品于液氮中速凍并研磨至粉末狀,懸浮于預(yù)冷的1%鹽酸甲醇溶液中,充分混勻后于4 ℃黑暗浸提24 h,4 ℃條件下12 000g離心10 min收集上清液,檢測(cè)上清液在波長(zhǎng)為530、620、650 nm處的吸光值,代入公式計(jì)算:總花青素含量(w,后同)/(mg·g-1)=[(A530-A620)-0.25(A650-A620)]/0.1,進(jìn)行3次生物學(xué)重復(fù)[14]。

      1.3 DNA提取及啟動(dòng)子克隆

      使用EZ-10 Spin Column Plant Genomic DNA Purification Kit(生工生物工程股份有限公司,上海)對(duì)樣品進(jìn)行DNA提取[15]。JrCHS4的啟動(dòng)子序列通過核桃基因組[16]預(yù)測(cè)獲得,關(guān)鍵順式作用元件的分析通過PLACE(https://www.dna.affrc.go.jp/PLACE/?action=newplace)獲得。

      1.4 RNA提取與cDNA合成、實(shí)時(shí)熒光定量PCR(qRT-PCR)

      使用快速通用植物RNA提取試劑盒(北京華越洋生物科技有限公司,北京)對(duì)樣品進(jìn)行RNA提取,利用HiScript? Ⅲ RT SuperMix for qPCR(+gDNA wiper)反轉(zhuǎn)錄試劑盒(南京諾唯贊生物科技股份有限公司,南京)對(duì)質(zhì)量合格的RNA進(jìn)行cDNA合成。

      于ABI 7500實(shí)時(shí)PCR系統(tǒng)(Applied Biosystems,F(xiàn)oster City,CA,United States)使用ChamQ Universal SYBR qPCR Master Mix(南京諾唯贊生物科技股份有限公司,南京)進(jìn)行qRT-PCR試驗(yàn)。以Jr18S (XM_019004991.1)作為內(nèi)參基因,基因相對(duì)表達(dá)水平使用2-△△Ct法計(jì)算[17],引物序列見表1。

      1.5 GUS染色與GUS蛋白定量檢測(cè)

      從2種核桃DNA中分別克隆JrCHS4啟動(dòng)子片段插入至植物表達(dá)載體pCAMBIA1381-GUS,分別轉(zhuǎn)入農(nóng)桿菌GV3101-pSoup感受態(tài)細(xì)胞(北京莊盟國(guó)際生物基因科技有限公司,北京),瞬時(shí)轉(zhuǎn)化本氏煙草葉片,進(jìn)行GUS染色和GUS蛋白定量分析[18]。

      1.6 酵母單雜交(Y1H)

      將紅瓤核桃JrCHS4啟動(dòng)子片段插入至pAbAi載體,從紅瓤核桃cDNA中克隆JrbHLHs轉(zhuǎn)錄因子編碼序列插入至pGADT7載體。使用經(jīng)典酵母轉(zhuǎn)化試劑盒(北京酷來搏科技有限公司,北京)進(jìn)行酵母感受態(tài)的制備與轉(zhuǎn)化,以pGADT7為陰性對(duì)照,將含有JrbHLHs-AD重組質(zhì)粒的Y1HGold(含RW-JrCHS4pro-pAbAi重組質(zhì)粒)菌株點(diǎn)至AbA濃度梯度的固體SD/-Leu培養(yǎng)基平板上于29 ℃培養(yǎng)箱培養(yǎng)2~4 d后觀察互作情況。

      1.7 雙熒光素酶報(bào)告基因檢測(cè)(LUC)

      將分別帶有JrCHS4pro-LUC、JrbHLHA2-2300重組質(zhì)粒的農(nóng)桿菌菌液按1∶9的體積比混合,注射本氏煙草葉片,使用Dual-Luciferase? Reporter Assay System試劑盒(普洛麥格生物技術(shù)有限公司,北京)測(cè)定螢火蟲熒光素酶LUC和海腎螢光素酶REN酶活性,計(jì)算LUC/REN比值[19]。

      1.8 煙草葉片瞬時(shí)表達(dá)分析

      將帶有JrCHS4-2300重組質(zhì)粒的農(nóng)桿菌菌液注射至大葉煙草葉片,其間仔細(xì)觀察葉片的顏色變化情況,后采集經(jīng)注射的煙草葉片于液氮速凍研磨后進(jìn)行總花青素含量的測(cè)定與分析[20]。

      1.9 數(shù)據(jù)分析

      采用Microsoft Excel 2019軟件進(jìn)行試驗(yàn)數(shù)據(jù)整理;采用SPSS 21.0軟件進(jìn)行試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)分析;采用Adobe Photoshop 2021、GraphPad Prism 8軟件繪圖。

      2 結(jié)果與分析

      2.1 紅瓤核桃不同發(fā)育時(shí)期種皮CHSs的表達(dá)分析

      課題組前期根據(jù)核桃基因組數(shù)據(jù)篩選CHS家族,通過功能注釋分析篩選到了4個(gè)可能與花青苷合成相關(guān)的CHSs[9]。利用qRT-PCR檢測(cè)CHSs基因在2種核桃不同發(fā)育時(shí)期種皮中的表達(dá)模式,結(jié)果表明花后60、120 d時(shí)4個(gè)CHSs基因在紅瓤核桃種皮中的表達(dá)量均顯著高于在普通核桃種皮中的表達(dá)量,其中JrCHS4(gene35863,XM_018966498.2)在2種核桃種皮中的表達(dá)量差異最大,分別約為66.04、11 970.93倍;花后90 d時(shí)除JrCHS4在2種核桃種皮中的表達(dá)量基本相同外,其他3個(gè)JrCHSs在紅瓤核桃種皮中的表達(dá)量均顯著低于在普通核桃種皮中的表達(dá)量(圖1)。因此,推測(cè)JrCHS4可能是紅瓤核桃種皮花青苷合成的關(guān)鍵基因。

      2.2 紅瓤核桃JrCHS4啟動(dòng)子的克隆及啟動(dòng)子活性分析

      為了研究CHS4基因在紅瓤核桃和普通核桃種皮發(fā)育中表達(dá)趨勢(shì)的不同是否與其啟動(dòng)子有關(guān),對(duì)2種核桃的CHS4啟動(dòng)子序列進(jìn)行了克隆。通過序列比對(duì),GW-JrCHS4啟動(dòng)子與RW-JrCHS4啟動(dòng)子具有98.50%的同源性(圖2)。紅瓤核桃JrCHS4啟動(dòng)子含有許多響應(yīng)激素如脫落酸、乙烯、赤霉素以及與逆境脅迫相關(guān)的順式作用元件,如ABRE、MYC、ERE、GARE、MYB1AT等,與普通核桃JrCHS4啟動(dòng)子相比,缺失了1個(gè)MYB結(jié)合位點(diǎn)MYB1AT,插入了1個(gè)bHLH結(jié)合位點(diǎn)MYCCONSENSUSAT(表2)。

      GUS染色結(jié)果表明,RW-JrCHS4啟動(dòng)子誘導(dǎo)產(chǎn)生的藍(lán)色深于GW-JrCHS4啟動(dòng)子誘導(dǎo)產(chǎn)生的藍(lán)色(圖3-A)。GUS蛋白定量結(jié)果顯示,RW-JrCHS4啟動(dòng)子活性顯著高于GW-JrCHS4啟動(dòng)子活性,約是GW-JrCHS4啟動(dòng)子活性的1.17倍,與上述GUS染色結(jié)果相一致(圖3-B)。

      2.3 紅瓤核桃JrCHS4啟動(dòng)子上游bHLH轉(zhuǎn)錄因子的篩選及驗(yàn)證

      為了探究JrCHS4啟動(dòng)子與4個(gè)花青苷合成相關(guān)的bHLH轉(zhuǎn)錄因子JrbHLHA1、JrbHLHA2、JrEGL1a、JrEGL1b的調(diào)控關(guān)系,進(jìn)行了酵母單雜交試驗(yàn)。結(jié)果顯示,抑制JrCHS4啟動(dòng)子自身表達(dá)的最佳AbA質(zhì)量濃度為150 ng·mL-1,且僅JrbHLHA2-AD+JrCHS4pro在此AbA質(zhì)量濃度的SD/-Leu篩選培養(yǎng)基上能夠正常生長(zhǎng),其他組合均無法生長(zhǎng)(圖4-A)。LUC試驗(yàn)進(jìn)一步驗(yàn)證了JrbHLHA2能夠顯著激活JrCHS4基因啟動(dòng)子的活性,其LUC/REN比值約是對(duì)照LUC/REN比值的2.45倍(圖4-B)。以上結(jié)果表明,JrbHLHA2轉(zhuǎn)錄因子可以與JrCHS4的啟動(dòng)子特異性結(jié)合并激活其表達(dá)。

      2.4 煙草葉片中過表達(dá)紅瓤核桃JrCHS4促進(jìn)花青苷積累

      為了驗(yàn)證JrCHS4在花青苷生物合成與積累中發(fā)揮的功能與作用,將JrCHS4構(gòu)建植物表達(dá)載體并瞬時(shí)轉(zhuǎn)化至大葉煙草葉片,轉(zhuǎn)化后7 d左右觀察發(fā)現(xiàn),瞬時(shí)轉(zhuǎn)化JrCHS4的煙草葉片與對(duì)照相比,綠色變淺,呈現(xiàn)輕微的紅色(圖5-A)。其中,JrCHS4在瞬時(shí)轉(zhuǎn)化JrCHS4煙草葉片中的表達(dá)量約是在對(duì)照煙草葉片中的30.07倍(圖5-B)。對(duì)瞬轉(zhuǎn)煙草葉片測(cè)定總花青素含量的結(jié)果顯示,瞬時(shí)轉(zhuǎn)化JrCHS4煙草葉片的總花青素含量顯著高于對(duì)照煙草葉片,約是對(duì)照煙草葉片的1.09倍(圖5-C)。以上結(jié)果表明,JrCHS4能夠促進(jìn)花青苷的生物合成與積累。

      3 討 論

      花青苷是重要的天然抗氧化劑,在清除人體自由基、改善血糖平衡、預(yù)防心腦血管疾病等方面有著積極的作用[21];花青苷在紅瓤核桃種皮中積累不僅提高了核桃的營(yíng)養(yǎng)價(jià)值,也豐富了種仁的外觀品質(zhì),市場(chǎng)前景廣闊,但其呈色機(jī)制目前尚不清楚,限制了核桃的色澤品質(zhì)改良。因此,探究紅瓤核桃種皮著色機(jī)制、挖掘關(guān)鍵調(diào)控基因,對(duì)培育優(yōu)質(zhì)紅瓤核桃新品種具有重要的理論意義和應(yīng)用價(jià)值。

      查爾酮合成酶是花青苷合成通路的第一個(gè)限速酶,決定著花青苷合成的種類及含量[22]。筆者課題組前期基于轉(zhuǎn)錄組數(shù)據(jù),首先進(jìn)行基因功能注釋篩選出了17個(gè)注釋為“Chalcone synthetase”的基因,后又通過構(gòu)建核桃CHSs基因表達(dá)圖譜篩選獲得了4個(gè)具有顯著差異表達(dá)的JrCHSs基因JrCHS1~JrCHS4,且表達(dá)量與花青苷含量呈正相關(guān)[9]。筆者以前期獲得的4個(gè)與花青苷合成相關(guān)的JrCHSs基因?yàn)檠芯繉?duì)象,通過qRT-PCR發(fā)現(xiàn),花后60、120 d時(shí)JrCHS4在紅瓤核桃種皮中的表達(dá)量顯著高于普通核桃種皮且表達(dá)量差異最大,分別約為66.04、11 970.93倍,該結(jié)果與MaCHS2基因在紅皮香蕉各組織中的表達(dá)量高于天寶香蕉各組織[23]、PeCHS基因在紫色西番蓮果皮中的表達(dá)量明顯高于黃色西番蓮果皮[24]和IbCHS1基因在紫肉甘薯中的表達(dá)量高于黃肉、白肉甘薯[25]等研究結(jié)果一致,表明JrCHS4可能是紅瓤核桃種皮花青苷合成的關(guān)鍵基因。

      本研究結(jié)果表明,紅瓤核桃不同時(shí)期種皮JrCHSs的表達(dá)量受到了果實(shí)發(fā)育的影響,在花后60 d和120 d時(shí)表達(dá)量較高,而在花后90 d時(shí)表達(dá)量顯著降低。在紅瓤核桃種皮顏色形成過程中,花后60 d是花青苷積累的關(guān)鍵時(shí)期,花青苷大量合成,因此4個(gè)JrCHSs基因在花后60 d紅瓤核桃種皮中的表達(dá)量較高;在花后90 d時(shí),紅瓤核桃種皮花青苷合成速度減慢,此時(shí)4個(gè)JrCHSs基因在紅瓤核桃種皮中便保持了較低的表達(dá)水平;花后120 d時(shí),核桃果實(shí)在發(fā)育成熟時(shí)期通常伴隨有含水量降低現(xiàn)象,推測(cè)可能誘導(dǎo)了紅瓤核桃種皮中的花青苷再次大量合成,因此4個(gè)JrCHSs基因在紅瓤核桃種皮中的表達(dá)量又再一次升高。

      根據(jù)PLACE數(shù)據(jù)庫,2種核桃JrCHS4啟動(dòng)子中均含有ABA相關(guān)的ABRE元件、乙烯相關(guān)的ERE元件、赤霉素相關(guān)的GARE元件[26-28],以及MYB、bHLH轉(zhuǎn)錄因子的結(jié)合位點(diǎn)[29]。根據(jù)順式作用元件分析結(jié)果推測(cè),JrCHS4基因可能參與激素信號(hào)轉(zhuǎn)導(dǎo)以及逆境脅迫響應(yīng)等生物學(xué)過程,并受到MYB和bHLH轉(zhuǎn)錄因子的調(diào)控。根據(jù)前人研究,MYB和bHLH是影響花青苷生物合成的關(guān)鍵轉(zhuǎn)錄因子,如彭亞麗等[30]闡述了MYB轉(zhuǎn)錄因子在蔬菜花青苷合成中的激活作用與抑制作用;荔枝中與LcMYB1起協(xié)同作用的LcbHLH1、LcbHLH3能夠調(diào)控荔枝花青素生物合成的晚期結(jié)構(gòu)基因,進(jìn)而調(diào)控荔枝中花青素的合成與積累[31];過表達(dá)MdMYC2的轉(zhuǎn)基因蘋果愈傷組織中能夠積累更多的花青素且顯著提升MdCHS、MdDFR等花青素生物合成相關(guān)基因的表達(dá)水平[32]。而筆者在本研究中發(fā)現(xiàn)與GW-JrCHS4啟動(dòng)子相比,RW-JrCHS4啟動(dòng)子缺失了1個(gè)MYB結(jié)合位點(diǎn)MYB1AT,插入了1個(gè)bHLH結(jié)合位點(diǎn)MYCCONSENSUSAT,推測(cè)bHLH結(jié)合位點(diǎn)MYCCONSENSUSAT的插入可能會(huì)導(dǎo)致bHLH轉(zhuǎn)錄因子對(duì)JrCHS4啟動(dòng)子結(jié)合作用的差異,進(jìn)而影響bHLH轉(zhuǎn)錄因子對(duì)JrCHS4的調(diào)控,從而影響紅瓤核桃種皮花青苷的積累,同樣MYB結(jié)合位點(diǎn)MYB1AT的缺失也將會(huì)影響MYB轉(zhuǎn)錄因子對(duì)JrCHS4的調(diào)控,具體影響將會(huì)在之后的研究中繼續(xù)進(jìn)行深入探索。

      前人研究表明,bHLH是花青苷合成通路結(jié)構(gòu)基因的主要調(diào)控因子之一[33],探究JrCHS4與上游JrbHLHs的調(diào)控關(guān)系能夠?yàn)榻馕黾t瓤核桃種皮花青苷生物合成分子機(jī)制提供數(shù)據(jù)支撐。通過酵母單雜交試驗(yàn)表明JrbHLHA2能夠特異地結(jié)合到JrCHS4的啟動(dòng)子上,通過LUC試驗(yàn)證明JrbHLHA2能夠提高JrCHS4啟動(dòng)子的啟動(dòng)活性。在藍(lán)莓中,酵母單雜交試驗(yàn)表明,3個(gè)花青素生物合成VcbHLHs(VcAN1、VcbHLH1-1和VcbHLH1-2)可特異性結(jié)合VcCHS21啟動(dòng)子的G-box序列(CACGTG)進(jìn)而調(diào)控VcCHS21的表達(dá)[34],說明bHLH轉(zhuǎn)錄因子對(duì)CHS在花青苷合成中的調(diào)節(jié)作用具有普遍性。

      瞬時(shí)轉(zhuǎn)化煙草葉片是驗(yàn)證果樹花青苷合成相關(guān)基因功能的常用方法,在蘋果[35]、梨[36]等物種中應(yīng)用廣泛。為了進(jìn)一步研究JrCHS4在花青苷合成中的作用,將JrCHS4的過表達(dá)載體瞬時(shí)轉(zhuǎn)化煙草葉片,結(jié)果表明過表達(dá)JrCHS4顯著提高了煙草葉片花青苷含量,與馬鈴薯StCHS4、StCHS5[37]瞬時(shí)轉(zhuǎn)化煙草葉片能夠提高花青苷含量的結(jié)果一致,表明JrCHS4能夠促進(jìn)花青苷的生物合成與積累。

      4 結(jié) 論

      探究了JrbHLHA2靶向JrCHS4調(diào)控花青苷合成的分子機(jī)制。紅瓤核桃JrCHS4在種皮發(fā)育過程中持續(xù)高表達(dá),且啟動(dòng)子活性高于GW-JrCHS4啟動(dòng)子。JrbHLHA2能夠直接結(jié)合RW-JrCHS4啟動(dòng)子并促進(jìn)其上調(diào)表達(dá),JrCHS4過表達(dá)煙草葉片能夠促進(jìn)花青苷的積累。推測(cè)JrbHLHA2靶向JrCHS4啟動(dòng)子促進(jìn)了紅瓤核桃花青苷的積累,這對(duì)紅瓤核桃的改良育種提供了一定的理論依據(jù)。

      參考文獻(xiàn) References:

      [1] 王欣,張?zhí)熘? 園藝作物花青素合成調(diào)控研究進(jìn)展[J]. 生物技術(shù)進(jìn)展,2022,12(1):10-16.

      WANG Xin,ZHANG Tianzhu. Research progress on the regulation of anthocyanin synthesis in horticultural crops[J]. Current Biotechnology,2022,12(1):10-16.

      [2] TANAKA Y,SASAKI N,OHMIYA A. Biosynthesis of plant pigments:Anthocyanins,betalains and carotenoids[J]. Plant Journal,2008,54(4):733-749.

      [3] 劉愷媛,王茂良,辛海波,張華,叢日晨,黃大莊. 植物花青素合成與調(diào)控研究進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào),2021,37(14):41-51.

      LIU Kaiyuan,WANG Maoliang,XIN Haibo,ZHANG Hua,CONG Richen,HUANG Dazhuang. Anthocyanin biosynthesis and regulate mechanisms in plants:A review[J]. Chinese Agricultural Science Bulletin,2021,37(14):41-51.

      [4] MATTUS-ARAYA E,GUAJARDO J,HERRERA R,MOYA-LEóN M A. ABA speeds up the progress of color in developing F. chiloensis fruit through the activation of PAL,CHS and ANS,key genes of the Phenylpropanoid/Flavonoid and anthocyanin pathways[J]. International Journal of Molecular Sciences,2022,23(7):3854.

      [5] XI W P,F(xiàn)ENG J,LIU Y,ZHANG S K,ZHAO G H. The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynthesis in apricots and determines red blushed skin[J]. BMC Plant Biology,2019,19(1):287.

      [6] XU Y T,F(xiàn)ENG S Q,JIAO Q Q,LIU C C,ZHANG W W,CHEN W Y,CHEN X S. Comparison of MdMYB1 sequences and expression of anthocyanin biosynthetic and regulatory genes between Malus domestica Borkh. cultivar ‘Ralls’ and its blushed sport[J]. Euphytica,2012,185(2):157-170.

      [7] ZHANG X D,C ALLAN A,YI Q,CHEN L M,LI K Z,SHU Q,SU J. Differential gene expression analysis of Yunnan red pear,Pyrus pyrifolia,during fruit skin coloration[J]. Plant Molecular Biology Reporter,2011,29(2):305-314.

      [8] BERNARDI J,LICCIARDELLO C,PATRIZIA RUSSO M,LUISA CHIUSANO M,CARLETTI G,REFORGIATO RECUPERO G,MAROCCO A. Use of a custom array to study differentially expressed genes during blood orange (Citrus sinensis L. Osbeck) ripening[J]. Journal of Plant Physiology,2010,167(4):301-310.

      [9] 趙偉,李琳,劉永輝,章露露,楊瑩,孟海軍,王磊,吳國(guó)良. 紅仁核桃自然雜交后代不同表型葉片差異表達(dá)CHS基因的鑒定及生物信息學(xué)分析[J]. 果樹學(xué)報(bào),2021,38(2):179-191.

      ZHAO Wei,LI Lin,LIU Yonghui,ZHANG Lulu,YANG Ying,MENG Haijun,WANG Lei,WU Guoliang. Identification and bioinformatics analysis of CHS genes in different phenotypic leaves of natural hybrid progenies of red-kernel walnut[J]. Journal of Fruit Science,2021,38(2):179-191.

      [10] XI H C,HE Y J,CHEN H Y. Functional characterization of SmbHLH13 in anthocyanin biosynthesis and flowering in eggplant[J]. Horticultural Plant Journal,2021,7(1):73-80.

      [11] ZHAO W,LIU Y H,LI L,MENG H J,YANG Y,DONG Z B,WANG L,WU G L. Genome-wide identification and characterization of bHLH transcription factors related to anthocyanin biosynthesis in red walnut (Juglans regia L.)[J]. Frontiers in Genetics,2021,12:632509.

      [12] 張翰生,昌秦湘,康建忠,梁宗鎖. 核桃的營(yíng)養(yǎng)價(jià)值及其開發(fā)利用研究進(jìn)展[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2024,36(4):905-919.

      ZHANG Hansheng,CHANG Qinxiang,KANG Jianzhong,LIANG Zongsuo. Research progress on nutritional value and utilization of walnut[J]. Acta Agriculturae Zhejiangensis,2024,36(4):905-919.

      [13] 裴東,魯新政. 中國(guó)核桃種質(zhì)資源[M]. 北京:中國(guó)林業(yè)出版社,2011.

      PEI Dong,LU Xinzheng. Walnut germplasm resources in China[M]. Beijing:China Forestry Publishing House,2011.

      [14] ZHAO W,F(xiàn)AN L,WU W J,LI Y Q,MENG H J,WANG G X,DONG Z B,WANG L,WU G L. Re-sequencing and transcriptomic analysis reveal differential expression patterns and sequence variation in glucosyltransferase gene related to anthocyanin biosynthesis in walnut (Juglans regia L.)[J]. Scientia Horticulturae,2023,317:112077.

      [15] 李愷睿,史慶瑤,樊銘璽,譚浩然,陳曉峰. 應(yīng)用STR熒光標(biāo)記分析煙臺(tái)地區(qū)草莓種質(zhì)資源遺傳多樣性[J]. 山東農(nóng)業(yè)科學(xué),2024,56(1):43-49.

      LI Kairui,SHI Qingyao,F(xiàn)AN Mingxi,TAN Haoran,CHEN Xiaofeng. Genetic diversity analysis of strawberry germplasm resources in Yantai Region using STR fluorescent markers[J]. Shandong Agricultural Sciences,2024,56(1):43-49.

      [16] MARRANO A,BRITTON M,ZAINI P A,ZIMIN A V,WORKMAN R E,PUIU D,BIANCO L,PIERRO E A D,ALLEN B J,CHAKRABORTY S,TROGGIO M,LESLIE C A,TIMP W,DANDEKAR A,SALZBERG S L,NEALE D B. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome[J]. GigaScience,2020,9(5):giaa050.

      [17] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCt method[J]. Methods,2001,25(4):402-408.

      [18] WANG C H,GAO G,CAO S X,XIE Q J,QI H Y. Isolation and functional validation of the CmLOX08 promoter associated with signalling molecule and abiotic stress responses in oriental melon,Cucumis melo var. makuwa Makino[J]. BMC Plant Biology,2019,19(1):75.

      [19] ALABD A,AHMAD M,ZHANG X,GAO Y H,PENG L,ZHANG L,NI J B,BAI S L,TENG Y W. Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating PpMYB10 expression in pear[J]. Horticulture Research,2022,9:uhac199.

      [20] KIM D H,LEE J,RHEE J,LEE J Y,LIM S H. Loss of the R2R3 MYB transcription factor RsMYB1 shapes anthocyanin biosynthesis and accumulation in Raphanus sativus[J]. International Journal of Molecular Sciences,2021,22(20):10927.

      [21] KHOO H E,AZLAN A,TANG S T,LIM S M. Anthocyanidins and anthocyanins:colored pigments as food,pharmaceutical ingredients,and the potential health benefits[J]. Food amp; Nutrition Research,2017,61(1):1361779.

      [22] 萬東璞,于卓,吳燕民,丁夢(mèng)琦,李金博,周美亮. 花青素代謝調(diào)控植物彩葉研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2020,22(2):30-38.

      WAN Dongpu,YU Zhuo,WU Yanmin,DING Mengqi,LI Jinbo,ZHOU Meiliang. Regulation of anthocyanin metabolism on colored leaves of plants[J]. Journal of Agricultural Science and Technology,2020,22(2):30-38.

      [23] 李文飛,寇萍,陳春玲,解鴻磊,黃玉吉. 紅皮香蕉CHS基因的克隆和表達(dá)模式分析[J]. 分子植物育種,2023,21(3):697-707.

      LI Wenfei,KOU Ping,CHEN Chunling,XIE Honglei,HUANG Yuji. Cloning and expression pattern analysis of CHS gene in Musa acuminata ‘Red Green’(AAA)[J]. Molecular Plant Breeding,2023,21(3):697-707.

      [24] 何銳杰,方庭,余偉軍,張夢(mèng)媛,饒婭,梁釩,魏秀清,曾黎輝. 西番蓮查爾酮合成酶(CHS)基因家族全基因組鑒定及表達(dá)模式[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),2022,28(4):1066-1075.

      HE Ruijie,F(xiàn)ANG Ting,YU Weijun,ZHANG Mengyuan,RAO Ya,LIANG Fan,WEI Xiuqing,ZENG Lihui. Genome-wide identification and expression analysis of the CHS gene family in passion fruit[J]. Chinese Journal of Applied and Environmental Biology,2022,28(4):1066-1075.

      [25] 徐靖,朱家紅,王效寧,韓義勝,唐力瓊,朱紅林. 甘薯查爾酮合成酶基因IbCHS1的克隆和表達(dá)分析[J]. 分子植物育種,2018,16(6):1752-1757.

      XU Jing,ZHU Jiahong,WANG Xiaoning,HAN Yisheng,TANG Liqiong,ZHU Honglin. Cloning and expression analysis of Chalcone synthase gene IbCHS1 in Ipomoea batatas[J]. Molecular Plant Breeding,2018,16(6):1752-1757.

      [26] 徐獻(xiàn)斌,李慧,耿曉月,鄭煥,陶建敏. ABA信號(hào)通路對(duì)葡萄果皮花青苷生物合成的調(diào)控機(jī)制研究[J]. 西北植物學(xué)報(bào),2021,41(3):406-415.

      XU Xianbin,LI Hui,GENG Xiaoyue,ZHENG Huan,TAO Jianmin. Regulation mechanism of ABA pathway genes on anthocyanin biosynthesis in grape skins[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41(3):406-415.

      [27] 孫玉帥,王菲,管雪強(qiáng),郗慧茹,姚玉新. ABA和乙烯互作調(diào)控葡萄VlMybA1和VlMybA2表達(dá)并促進(jìn)果皮著色[J]. 園藝學(xué)報(bào),2023,50(11):2323-2336.

      SUN Yushuai,WANG Fei,GUAN Xueqiang,CHI Huiru,YAO Yuxin. ABA and ethylene enhance the expression VlMybA1 and VlMybA2 and promote pigmentation in the berry skin via their interaction[J]. Acta Horticulturae Sinica,2023,50(11):2323-2336.

      [28] NARDI C F,VILLARREAL N M,OPAZO M C,MARTíNEZ G A,MOYA-LEóN M A,CIVELLO P M. Expression of FaXTH1 and FaXTH2 genes in strawberry fruit. Cloning of promoter regions and effect of plant growth regulators[J]. Scientia Horticulturae,2014,165:111-122.

      [29] 郭晉艷,鄭曉瑜,鄒翠霞,李秋莉. 植物非生物脅迫誘導(dǎo)啟動(dòng)子順式元件及轉(zhuǎn)錄因子研究進(jìn)展[J]. 生物技術(shù)通報(bào),2011,27(4):16-20.

      GUO Jinyan,ZHENG Xiaoyu,ZOU Cuixia,LI Qiuli. Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors[J]. Biotechnology Bulletin,2011,27(4):16-20.

      [30] 彭亞麗,高倩,董文,熊安平,秦玉芝,林原,熊興耀,胡新喜. MYB轉(zhuǎn)錄因子調(diào)控蔬菜花青素生物合成的研究進(jìn)展[J]. 中國(guó)瓜菜,2020,33(12):1-7.

      PENG Yali,GAO Qian,DONG Wen,XIONG Anping,QIN Yuzhi,LIN Yuan,XIONG Xingyao,HU Xinxi. Advances of MYB transcription factors regulating vegetable anthocyanins biosynthesis[J]. China Cucurbits and Vegetables,2020,33(12):1-7.

      [31] LAI B,DU L N,LIU R,HU B,SU W B,QIN Y H,ZHAO J T,WANG H C,HU G B. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation[J]. Frontiers in Plant Science,2016,7:166.

      [32] AN J P,LI H H,SONG L Q,SU L,LIU X,YOU C X,WANG X F,HAO Y J. The molecular cloning and functional characterization of MdMYC2,a bHLH transcription factor in apple[J]. Plant Physiology and Biochemistry,2016,108:24-31.

      [33] 王華,李茂福,楊媛,金萬梅. 果實(shí)花青素生物合成分子機(jī)制研究進(jìn)展[J]. 植物生理學(xué)報(bào),2015,51(1):29-43.

      WANG Hua,LI Maofu,YANG Yuan,JIN Wanmei. Recent advances on the molecular mechanisms of anthocyanin synthesis in fruits[J]. Plant Physiology Journal,2015,51(1):29-43.

      [34] ZHANG Z N,QU P Y,HAO S Y,LI R D,ZHANG Y Y,ZHAO Q,WEN P F,CHENG C Z. Characterization and functional analysis of Chalcone synthase genes in highbush blueberry (Vaccinium corymbosum)[J]. International Journal of Molecular Sciences,2023,24(18):13882.

      [35] CHAGNé D,KUI L W,ESPLEY R V,VOLZ R K,HOW N M,ROUSE S,BRENDOLISE C,CARLISLE C M,KUMAR S,DE SILVA N,MICHELETTI D,MCGHIE T,CROWHURST R N,STOREY R D,VELASCO R,HELLENS R P,GARDINER S E,ALLAN A C. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes[J]. Plant Physiology,2013,161(1):225-239.

      [36] YAO G F,MING M L,ALLAN A C,GU C,LI L T,WU X,WANG R Z,CHANG Y J,QI K J,ZHANG S L,WU J. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis[J]. Plant Journal,2017,92(3):437-451.

      [37] 王文靜. 馬鈴薯CHS基因家族鑒定及功能解析[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2023.

      WANG Wenjing. Genome-wide identification and functional analysis of CHS gene family in Solanum tuberosum[D]. Hefei:Anhui Agricultural University,2023.

      涪陵区| 南平市| 邹城市| 横山县| 郧西县| 舒兰市| 周口市| 嘉峪关市| 奉化市| 长寿区| 泽普县| 平和县| 铜梁县| 土默特左旗| 三亚市| 大名县| 丰宁| 扎鲁特旗| 东乡县| 龙川县| 株洲县| 海晏县| 贵南县| 德昌县| 衡东县| 浦江县| 融水| 东台市| 望都县| 会理县| 贵溪市| 景东| 嘉定区| 庆阳市| 韶山市| 镇巴县| 崇明县| 柘荣县| 甘谷县| 玉环县| 桂林市|