【摘要】臨床上將射血分?jǐn)?shù)保留的心力衰竭(HFpEF)定義為伴有心力衰竭癥狀和體征且左室射血分?jǐn)?shù)≥50%的一種心力衰竭類型,表現(xiàn)為HFpEF相關(guān)的心臟結(jié)構(gòu)/功能的異常,如左心室肥大、左心房擴(kuò)大和舒張功能障礙,且往往合并癥多,是由多種致病因素共同導(dǎo)致的結(jié)果。盡管目前對(duì)HFpEF的發(fā)病機(jī)制認(rèn)識(shí)仍不足,但是存在共同的致病通路,最終導(dǎo)致該疾病的發(fā)生發(fā)展,這主要與代謝重塑有關(guān)。現(xiàn)對(duì)代謝重塑在HFpEF中分子機(jī)制的研究進(jìn)展綜述如下。
【關(guān)鍵詞】射血分?jǐn)?shù)保留的心力衰竭;代謝重塑;代謝性炎癥
【DOI】10.16806/j.cnki.issn.1004-3934.2024.07.09
Metabolic Remodeling in Heart Failure with Preserved Ejection Fraction
LIU Fengqi,WANG Xiaoyan
(Department of Cardiology,Affiliated Hospital of Jiangnan University,Wuxi 214000,Jiangsu,China)
【Abstract】In clinical practice,heart failure with preserved ejection fraction(HFpEF) is defined as a type of heart failure with accompanying symptoms and signs of heart failure and left ventricular ejection fraction≥50%.It is characterized by abnormalities in heart structure/function related to HFpEF,such as left ventricular hypertrophy,left atrial enlargement and diastolic dysfunction,often with multiple comorbidities.It is the result of multiple pathogenic factors working together.At present,the understanding of the pathogenesis of HFpEF is still insufficient,but there are still common pathogenic pathways that ultimately lead to the occurrence and development of the disease.This is mainly related to metabolic remodeling.The research progress on the molecular mechanism of metabolic remodeling in HFpEF is summarized as follows.
【Keywords】Heart failure with preserved ejection fraction;Metabolic remodeling;Metabolic inflammation
全球范圍內(nèi)有超過(guò)6 000萬(wàn)心力衰竭(心衰)患者,且人數(shù)在不斷增多[1]。在所有心衰患者中,40%~50%的患者為射血分?jǐn)?shù)保留的心力衰竭(heart failure with preserved ejection fraction,HFpEF)。臨床上HFpEF一直是非常棘手的心衰類型,其具體病理生理學(xué)機(jī)制未完全明確,這成為該領(lǐng)域治療進(jìn)展的一個(gè)重大障礙。HFpEF被認(rèn)為是一種多危險(xiǎn)因素(如高血壓、老齡化、糖尿病、肥胖和代謝綜合征)共存的疾病,盡管存在表型的異質(zhì)性,但還存在共同的致病通路,最終導(dǎo)致該疾病的發(fā)生發(fā)展。最新研究[2]表明,代謝重塑在炎癥介導(dǎo)的免疫相關(guān)心肌重構(gòu)的發(fā)病機(jī)制中起重要作用。但代謝重塑在HFpEF中的機(jī)制研究仍在探索中,這與底物代謝異常、炎癥應(yīng)激和衰老有關(guān)?,F(xiàn)對(duì)代謝重塑在HFpEF中的研究進(jìn)展做一綜述。
1 營(yíng)養(yǎng)物質(zhì)的代謝異常
糖類、脂質(zhì)和蛋白質(zhì)是人體的三大營(yíng)養(yǎng)物質(zhì),與HFpEF緊密相關(guān)。近年來(lái)HFpEF被認(rèn)為是一種代謝性疾病,供能底物的代謝異常會(huì)直接或間接地引起HFpEF的發(fā)生。心臟有70%~90%的ATP經(jīng)脂肪酸氧化產(chǎn)生,剩下的10%~30%來(lái)自葡萄糖和少量氨基酸,以及酮體和乳酸。心衰的代謝重塑不僅會(huì)導(dǎo)致心臟能量代謝受損,還會(huì)誘導(dǎo)與心衰發(fā)展相關(guān)的其他過(guò)程,如結(jié)構(gòu)重構(gòu)和氧化應(yīng)激。HFpEF代謝重塑機(jī)制見(jiàn)圖1。
1.1 糖類
盡管葡萄糖供能只占心肌能量來(lái)源的10%~30%,但對(duì)衰竭的心肌,增加更多糖的利用是有利的。碳水化合物反應(yīng)元件結(jié)合蛋白(carbohydrate response element binding protein,ChREBP)被發(fā)現(xiàn)是調(diào)控糖脂代謝的轉(zhuǎn)錄因子,分為ChREBP-α和ChREBP-β兩種亞型。ChREBP-β可被葡萄糖激活以增加糖酵解和脂肪生成,抑制ChREBP-β可減少上述過(guò)程的發(fā)生,這一發(fā)現(xiàn)在一項(xiàng)對(duì)卡格列凈的研究[3]中被證實(shí)。但僅抑制ChREBP而激活脂肪酸氧化的效果并不顯著,還需與過(guò)氧化物酶體增殖物激活受體α(peroxisome proliferator-activated receptor α,PPARα)相偶聯(lián),PPARα被認(rèn)為是ChREBP誘導(dǎo)成纖維細(xì)胞生長(zhǎng)因子21介導(dǎo)的葡萄糖反應(yīng)所必需的[4]。泛素-蛋白酶體系統(tǒng)在蛋白質(zhì)降解/自噬調(diào)節(jié)代謝以及調(diào)節(jié)代謝相關(guān)轉(zhuǎn)錄和細(xì)胞信號(hào)傳導(dǎo)過(guò)程中發(fā)揮關(guān)鍵作用,可通過(guò)翻譯后修飾(如泛素化)調(diào)控PPARα和其他轉(zhuǎn)錄因子。心肌細(xì)胞特異性泛素連接酶在調(diào)節(jié)心臟PPARα活性中的作用,使人們對(duì)泛素-蛋白酶體系統(tǒng)如何在分子水平上調(diào)節(jié)心臟生理和心衰易感性方面發(fā)揮不同作用有了新的認(rèn)識(shí)。而且HFpEF或許與胰島素抵抗相關(guān),在HFpEF患者的心臟中,胰島素對(duì)葡萄糖氧化的刺激被顯著抑制,與脂肪酸氧化率的升高相當(dāng)[5]。并且HFpEF小鼠心臟中糖酵解關(guān)鍵酶磷酸化丙酮酸脫氫酶水平升高[6],表明這種對(duì)心臟葡萄糖氧化的抑制作用可能也存在于HFpEF患者中。這些研究結(jié)果表明在HFpEF中調(diào)節(jié)葡萄糖代謝可能對(duì)改善心臟能量代謝和功能有益。
1.2 脂質(zhì)
臨床發(fā)現(xiàn)多數(shù)HFpEF患者體重指數(shù)偏高,這表明肥胖與HFpEF的發(fā)生息息相關(guān)。Schiattarella等[7]提出的“two-hit”(N-硝基-L-精氨酸甲酯聯(lián)合高脂飲食雙打擊)HFpEF模型,證明高血壓和肥胖/代謝綜合征的雙重作用是HFpEF的主要病理生理機(jī)制。后續(xù)一項(xiàng)研究[8]用β受體阻滯劑(卡維地洛)來(lái)削減該模型中高血壓的影響,結(jié)果發(fā)現(xiàn)降低血壓確實(shí)可減少HFpEF的發(fā)生,但對(duì)心臟能量底物代謝無(wú)顯著影響;而肥胖HFpEF小鼠的體重降低可使葡萄糖氧化增加并改善心臟功能[8]。脂質(zhì)過(guò)載會(huì)通過(guò)內(nèi)質(zhì)網(wǎng)應(yīng)激途徑介導(dǎo)巨噬細(xì)胞炎癥基因激活[9],表明HFpEF小鼠心臟的能量代謝變化主要是由于HFpEF模型的高脂成分引起。另有研究[10]發(fā)現(xiàn),由脂肪酸衍生的類二十烷酸和類二十烷酸相關(guān)代謝物可能參與HFpEF的發(fā)病機(jī)制,并可作為潛在的干預(yù)靶點(diǎn)。內(nèi)臟脂肪組織的增生也會(huì)引起氧化應(yīng)激、促炎脂肪因子的釋放[11],且與性別有關(guān),女性似乎更易因高脂飲食而發(fā)生氧化應(yīng)激和臟器損傷[12]。
1.3 氨基酸
支鏈氨基酸(branched-chain amino acid,BCAA)進(jìn)入心肌細(xì)胞后,線粒體支鏈轉(zhuǎn)氨酶將其轉(zhuǎn)化為相應(yīng)的支鏈α-酮酸。然后,支鏈α-酮酸被線粒體支鏈α-酮酸脫氫酶氧化脫羧,生成乙酰輔酶A和琥珀酰輔酶A,最終參與三羧酸循環(huán)。研究[13]發(fā)現(xiàn)BCAA分解代謝缺陷會(huì)導(dǎo)致與機(jī)械超負(fù)荷引起的氧化應(yīng)激和代謝紊亂相關(guān)的心衰。盡管氨基酸衍生的乙酰輔酶A氧化產(chǎn)生少量ATP(占2%)[14],但由于BCAA分解代謝缺陷,存在時(shí)間相關(guān)的累積進(jìn)而促進(jìn)心衰[15]。值得注意的是,最新研究[16]發(fā)現(xiàn),降低血漿和心臟BCAA也無(wú)法提供顯著的保護(hù)作用,BCAA分解代謝激活是通過(guò)降低血管阻力來(lái)起到保護(hù)作用,并不是直接由心肌細(xì)胞介導(dǎo)的。這似乎與先前的認(rèn)識(shí)相違背,表明有其他保護(hù)機(jī)制參與其中。
2 線粒體代謝功能障礙
研究[17]將心衰描述為一種能量剝奪狀態(tài),其特征是ATP生成下降,主要因氧化磷酸化受損所致。正常情況下心臟產(chǎn)生的ATP中有95%來(lái)自線粒體的氧化磷酸化。ATP是心肌唯一可利用的能量形式,它主要在線粒體內(nèi)經(jīng)過(guò)氧化磷酸化產(chǎn)生,電子傳遞鏈為氧化磷酸化提供質(zhì)子梯度。近幾年來(lái),越來(lái)越多的關(guān)于代謝重塑的研究揭示了HFpEF的發(fā)生。如糖原合酶激酶-3是一種絲氨酸/蘇氨酸激酶,研究[18]發(fā)現(xiàn)其可通過(guò)損害線粒體通透性轉(zhuǎn)換孔的開(kāi)放,阻礙細(xì)胞氧化磷酸化和ATP的產(chǎn)生來(lái)促進(jìn)HFpEF。
還原型煙酰胺腺嘌呤二核苷酸(reduced nicotinamide adenine dinucleotide,NADH)是呼吸鏈的電子供體,通過(guò)氧化作用釋放出H+和電子,從而轉(zhuǎn)化成氧化型煙酰胺腺嘌呤二核甘酸(NAD+)。通過(guò)電子傳遞鏈過(guò)程產(chǎn)生的能量用于生成ATP。沉默信息調(diào)節(jié)因子3是一種NAD+依賴的蛋白脫乙酰基酶,主要參與線粒體代謝過(guò)程,包括能量合成、三羧酸循環(huán)和氧化應(yīng)激。沉默信息調(diào)節(jié)因子3的下調(diào)和繼發(fā)于NAD+修復(fù)通路受損的NAD+缺乏會(huì)導(dǎo)致線粒體蛋白超乙?;M(jìn)而影響線粒體功能,被認(rèn)為可能是HFpEF的潛在機(jī)制[19]。
3 炎癥
代謝性炎癥是HFpEF的病理生理學(xué)核心,在心衰患者的臨床標(biāo)本和動(dòng)物模型中觀察到炎癥浸潤(rùn)增加,如
NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like receptor thermal protein domain associated" protein 3,NLRP3)通過(guò)白細(xì)胞介素(interleukin,IL)-1β激活下游的級(jí)聯(lián)反應(yīng)[20],從而使得細(xì)胞外基質(zhì)纖維蛋白高表達(dá),加重心肌纖維化。炎癥應(yīng)激還會(huì)引起代謝微環(huán)境的改變,并且由于心臟代謝缺陷(如肥胖、高血壓和糖尿?。?dǎo)致炎癥失調(diào)、心臟修復(fù)功能受損,這些因素的存在還會(huì)刺激心肌微血管炎癥,導(dǎo)致心肌纖維化和心肌細(xì)胞肥大[21]。IL-1β基因敲除小鼠通過(guò)調(diào)節(jié)炎癥和內(nèi)質(zhì)網(wǎng)應(yīng)激機(jī)制保護(hù)小鼠以預(yù)防HFpEF的發(fā)生[22],但對(duì)于IL-1β的缺失是如何減少炎癥和內(nèi)質(zhì)網(wǎng)應(yīng)激機(jī)制尚不清楚。
有證據(jù)[7]證明,全身炎癥和一氧化氮(nitric oxide,NO)水平失衡在HFpEF的疾病進(jìn)展中起重要作用,其中微血管內(nèi)皮炎癥驅(qū)動(dòng)了HFpEF的心臟重構(gòu),全身促炎狀態(tài)會(huì)降低冠狀動(dòng)脈內(nèi)皮型一氧化氮合酶活性,限制心肌細(xì)胞NO的生物利用度。NO在氧化促炎環(huán)境中生成,通過(guò)與超氧化物快速反應(yīng),形成不可逆的過(guò)氧亞硝酸鹽自由基。而使用亞硝酸鈉+肼嗪(超氧化物和過(guò)氧亞硝酸鹽自由基形成的抑制劑)聯(lián)合治療可顯著減輕“two-hit”模型中心臟代謝性HFpEF的嚴(yán)重程度[23]。全身性炎癥、高血糖和高脂血癥可導(dǎo)致血管活性物質(zhì)(如NO)的釋放異常,導(dǎo)致血管平滑肌松弛受損和心肌灌注減少。臨床研究[24]發(fā)現(xiàn),與健康對(duì)照組相比,HFpEF患者血漿中3-硝基酪氨酸(氧化/亞硝酸應(yīng)激標(biāo)志物)水平顯著升高,而且恩格列凈可減少其表達(dá),表明HFpEF的發(fā)病機(jī)制與炎癥相偶聯(lián)的氧化/亞硝化應(yīng)激有關(guān)。信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子3與TAX1結(jié)合蛋白1啟動(dòng)子結(jié)合后,在高糖狀態(tài)下被磷酸化并從細(xì)胞質(zhì)轉(zhuǎn)移到細(xì)胞核。過(guò)表達(dá)TAX1結(jié)合蛋白1可顯著抑制糖尿病誘導(dǎo)的心肌成纖維細(xì)胞中核因子κB(nuclear factor-κB,NF-κB)核易位和膠原合成,改善糖尿病小鼠的心肌纖維化和心臟炎癥,從而減輕HFpEF[25]。這些代謝微環(huán)境的改變激活了炎癥,打破了微生態(tài)平衡,導(dǎo)致了纖維化的發(fā)生。
NLRP3炎癥小體通過(guò)激活炎性細(xì)胞因子的級(jí)聯(lián)反應(yīng),在HFpEF的炎癥和心肺動(dòng)脈重塑中發(fā)揮作用。應(yīng)用NLRP3抑制劑MCC950可對(duì)NLRP3炎癥小體產(chǎn)生抑制作用,進(jìn)而降低HFpEF的肺動(dòng)脈壓并改善肺動(dòng)脈重塑[26]。研究[27]表明秋水仙堿通過(guò)降低腫瘤壞死因子α的信使RNA水平以及抑制NLRP3和NF-κB通路的蛋白表達(dá),以減少炎癥細(xì)胞浸潤(rùn)來(lái)改善高血壓性心肌纖維化;其通過(guò)減弱NLRP3的激活和伴隨的心臟炎癥,減少心臟氧化應(yīng)激和炎癥細(xì)胞浸潤(rùn),以緩解HFpEF心功能障礙相關(guān)癥狀。另外,腫瘤壞死因子相關(guān)蛋白3通過(guò)調(diào)節(jié)NLRP3炎癥小體通路抑制血管緊張素Ⅱ誘導(dǎo)的心肌纖維化[28]。巨噬細(xì)胞分泌的多種炎性細(xì)胞因子對(duì)心肌細(xì)胞的潛在作用(包括心肌細(xì)胞肥大、纖維化和自噬等)亦通過(guò)單細(xì)胞RNA測(cè)序得以被證實(shí)[9]。
4 衰老
HFpEF與年齡高度相關(guān),其發(fā)病率隨年齡增長(zhǎng)而升高。p16INK4a作為衰老的生物標(biāo)志物,在衰老細(xì)胞中積累。p16INK4a敲除可抑制心肌成纖維細(xì)胞的增殖和遷移,降低Ⅰ型膠原和α平滑肌肌動(dòng)蛋白水平,從而改善心肌纖維化和心臟功能[29]。攜帶p16INK4a啟動(dòng)子激活的細(xì)胞表現(xiàn)出衰老特征,并且衰老相關(guān)的β-半乳糖苷酶被激活,促炎細(xì)胞因子分泌增加,以及與衰老相關(guān)分泌表型的信使RNA表達(dá)增加[30]。筆者課題組既往的研究[31]發(fā)現(xiàn),p16INK4a過(guò)表達(dá)還可抑制血清和糖皮質(zhì)激素誘導(dǎo)激酶1泛素化降解,從而引起氧化磷酸化-糖酵解的代謝轉(zhuǎn)變。而血清和糖皮質(zhì)激素誘導(dǎo)激酶1可激活NLRP3炎癥小體和環(huán)狀鳥(niǎo)苷酸-腺苷酸合成酶介導(dǎo)的膠質(zhì)細(xì)胞促炎途徑。在高脂喂養(yǎng)小鼠的肺組織和細(xì)胞中,p16INK4a過(guò)表達(dá)增加糖酵解,使M2型丙酮酸激酶表達(dá)增加而促進(jìn)炎癥反應(yīng)。衰老細(xì)胞表現(xiàn)出“氧化磷酸化-糖酵解”代謝重塑[31]??顾ダ纤幬铮缫赃_(dá)沙替尼和槲皮素為代表的“senolytics”類藥物,有望成為治療衰老相關(guān)代謝功能障礙及其并發(fā)癥的選擇[32]。
5 治療
5.1 脂肪酸氧化抑制劑
曲美他嗪是一種3-酮脂酰輔酶A硫解酶抑制劑,可抑制線粒體內(nèi)該酶的活性。其作為一種自由脂肪酸氧化抑制劑,通過(guò)抑制缺血心肌脂肪酸β氧化而發(fā)揮作用,將心臟代謝從脂肪酸產(chǎn)能向葡萄糖產(chǎn)能轉(zhuǎn)變,從而產(chǎn)生更多的高能磷酸[33]。目前曲美他嗪已被中華醫(yī)學(xué)會(huì)/歐洲心臟病學(xué)會(huì)/美國(guó)心臟病學(xué)會(huì)/美國(guó)心臟協(xié)會(huì)指南收錄,成為指南推薦的第一個(gè)代謝藥物。曲美他嗪還可通過(guò)增加NO的產(chǎn)生來(lái)改善內(nèi)皮功能、降低血管阻力、增加冠狀動(dòng)脈及循環(huán)血流量,進(jìn)而改善心衰預(yù)后[34]。
5.2 鈉-葡萄糖共轉(zhuǎn)運(yùn)蛋白抑制劑
鈉-葡萄糖共轉(zhuǎn)運(yùn)蛋白(sodium-glucose co-transporter,SGLT)是一類位于小腸黏膜(SGLT-1)和腎近曲小管(SGLT-1和SGLT-2)中的葡萄糖轉(zhuǎn)運(yùn)基因家族成員,在《2023 ESC急慢性心力衰竭診斷和治療指南(更新版)》[35]中SGLT抑制劑被列為HFpEF治療的ⅠA類推薦。SGLT抑制劑可改善HFpEF患者的左心房功能障礙,使心衰患者獲益[36]。且SGLT-2抑制劑被證明可顯著降低伴或不伴2型糖尿病患者的心衰住院率、心血管死亡率、全因死亡率和心肌梗死發(fā)生率[37]。這類藥物還可減少心外膜脂肪組織浸潤(rùn)并改變脂肪因子信號(hào)轉(zhuǎn)導(dǎo),這可能與SGLT-2抑制劑可抑制炎癥和氧化應(yīng)激有關(guān)[38]。
5.3 其他
沙庫(kù)巴曲纈沙坦由沙庫(kù)巴曲與纈沙坦復(fù)方組成,通過(guò)抑制腦啡肽酶,阻斷血管緊張素Ⅱ1型受體而起作用,并通過(guò)抑制炎癥反應(yīng)、抗心肌細(xì)胞肥大、抑制心肌纖維化等來(lái)改善左心室重塑和舒張功能障礙,從而對(duì)HFpEF產(chǎn)生積極的影響[39]。另外,最近的臨床證據(jù)[40]表明,司美格魯肽對(duì)HFpEF也具有一定的療效??筛纳?HFpEF患者的癥狀和運(yùn)動(dòng)功能,同時(shí)在一定程度上減輕炎癥和降低肥胖患者的體重。這表明司美格魯肽可能作為一種有效的治療選擇,有助于HFpEF患者的病情控制和生活質(zhì)量改善。
6 探索
有學(xué)者[41]強(qiáng)調(diào)鈣調(diào)節(jié)對(duì)心肌收縮舒張功能的影響,并認(rèn)為其可改變衰竭心肌的鈣敏感性而進(jìn)一步影響心臟功能?;蛘呃眉{米載體靶向遞送藥物,從而有效地延長(zhǎng)治療藥物在體內(nèi)的持續(xù)時(shí)間,提高其生物利用度并增加在受損心肌上的停留時(shí)間[42]。亦或者應(yīng)用T細(xì)胞靶向的脂質(zhì)納米顆粒來(lái)產(chǎn)生T調(diào)節(jié)細(xì)胞,這些細(xì)胞可遷移到活動(dòng)性纖維化區(qū)域并通過(guò)旁分泌效應(yīng)來(lái)抑制炎癥,作為抗成纖維細(xì)胞嵌合抗原受體T細(xì)胞殺死活性成纖維細(xì)胞,可有效減輕心肌纖維化[43]。另外腸道菌群代謝物,如三甲胺N-氧化物、短鏈脂肪酸和膽汁酸作為炎癥的重要影響因素,也介導(dǎo)HFpEF的各種病理生理機(jī)制,被認(rèn)為是導(dǎo)致HFpEF的主要原因之一[44]。因此靶向腸道菌群的藥物也可能是治療HFpEF的有效途徑之一。這些治療方案未來(lái)或許有望成為治療HFpEF的新方式。
7 總結(jié)與展望
HFpEF是其發(fā)生發(fā)展過(guò)程中代謝重塑、炎癥應(yīng)激及其產(chǎn)生一系列的負(fù)向表型相互作用的結(jié)果。衰竭心肌細(xì)胞的ATP產(chǎn)生下降、相關(guān)蛋白活性異常使得心肌細(xì)胞能量利用發(fā)生障礙,激活炎癥反應(yīng),導(dǎo)致心肌細(xì)胞壞死和凋亡,然而這些過(guò)程又會(huì)導(dǎo)致心肌纖維化的發(fā)生,加重心肌重構(gòu),阻止由于ATP不足導(dǎo)致的能量缺乏,進(jìn)而解決心衰患者心臟代謝問(wèn)題,可防止左心室功能惡化,阻止心衰的發(fā)展,使患者從中獲益。解決HFpEF患者代謝重塑問(wèn)題,以及將代謝重塑與心衰的治療聯(lián)系起來(lái),可能是未來(lái)治療HFpEF的重要研究方向之一。更深入地探討代謝重塑與HFpEF之間的關(guān)系,可能為開(kāi)發(fā)新的治療策略提供重要思路,有望為改善 HFpEF患者的預(yù)后和生活質(zhì)量做出積極貢獻(xiàn)。
參考文獻(xiàn)
[1]Schiattarella GG,Alcaide P,Condorelli G,et al.Immunometabolic mechanisms of heart failure with preserved ejection fraction[J].Nat Cardiovasc Res,2022,1(3):211-222.
[2]Schiattarella GG,Rodolico D,Hill JA.Metabolic inflammation in heart failure with preserved ejection fraction[J].Cardiovasc Res,2021,117(2):423-434.
[3]Osataphan S,Macchi C,Singhal G,et al.SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms[J].JCI Insight,2019,4(5):e123130.
[4]Iroz A,Montagner A,Benhamed F,et al.A specific ChREBP and PPARα cross-talk is required for the glucose-mediated FGF21 response[J].Cell Rep,2017,21(2):403-416.
[5]Gudenkauf B,Shaya G,Mukherjee M,et al.Insulin resistance is associated with subclinical myocardial dysfunction and reduced functional capacity in heart failure with preserved ejection fraction[J].J Cardiol,2024,83(2):100-104.
[6]Sun Q,Güven B,Wagg CS,et al.Mitochondrial fatty acid oxidation is the major source of cardiac ATP production in heart failure with preserved ejection fraction[J].Cardiovasc Res,2024,120(4):360-371.
[7]Schiattarella GG,Altamirano F,Tong D,et al.Nitrosative stress drives heart failure with preserved ejection fraction[J].Nature,2019,568(7752):351-356.
[8]Güven B,Sun Q,Wagg CS,et al.Obesity is a major determinant of impaired cardiac energy metabolism in heart failure with preserved ejection fraction[J].J Pharmacol Exp Ther,2024,388(1):145-155.
[9]Panico C,F(xiàn)elicetta A,Kunderfranco P,et al.Single-cell RNA sequencing reveals metabolic stress-dependent activation of cardiac macrophages in a model of dyslipidemia-induced diastolic dysfunction[J].Circulation,2023 Dec 21.DOI:10.1161/CIRCULATIONAHA.122.062984.
[10]Lau ES,Roshandelpoor A,Zarbafian S,et al.Eicosanoid and eicosanoid-related inflammatory mediators and exercise intolerance in heart failure with preserved ejection fraction[J].Nat Commun,2023,14(1):7557.
[11]Yang J,Zou Y,Lv X,et al.Didymin protects pancreatic beta cells by enhancing mitochondrial function in high-fat diet-induced impaired glucose tolerance[J].Diabetol Metab Syndr,2024,16(1):7.
[12]Ofosu-Boateng M,Shaik F,Choi S,et al.High-fat diet induced obesity promotes inflammation,oxidative stress,and hepatotoxicity in female FVB/N mice[J].Biofactors,2024,50(3):572-591.
[13]Sun H,Olson KC,Gao C,et al.Catabolic defect of branched-chain amino acids promotes heart failure[J].Circulation,2016,133(21):2038-2049.
[14]Murashige D,Jang C,Neinast M,et al.Comprehensive quantification of fuel use by the failing and nonfailing human heart[J].Science,2020,370(6514):364-368.
[15]Gao C,Hou L.Branched chain amino acids metabolism in heart failure[J].Front Nutr,2023,10:1279066.
[16]Murashige D,Jung JW,Neinast MD,et al.Extra-cardiac BCAA catabolism lowers blood pressure and protects from heart failure[J].Cell Metab,2022,34(11):1749-1764.e7.
[17]Schwartz B,Gjini P,Gopal DM,et al.Inefficient batteries in heart failure:metabolic bottlenecks disrupting the mitochondrial ecosystem[J].JACC Basic Transl Sci,2022,7(11):1161-1179.
[18]Ahmad F,Singh AP,Tomar D,et al.Cardiomyocyte-GSK-3α promotes mPTP opening and heart failure in mice with chronic pressure overload[J].J Mol Cell Cardiol,2019,130:65-75.
[19]Tong D,Schiattarella GG,Jiang N,et al.NAD+ repletion reverses heart failure with preserved ejection fraction[J].Circ Res,2021,128(11):1629-1641.
[20]Higashikuni Y,Liu W,Numata G,et al.NLRP3 inflammasome activation through heart-brain interaction initiates cardiac inflammation and hypertrophy during pressure overload[J].Circulation,2023,147(4):338-355.
[21]Halade GV,Lee DH.Inflammation and resolution signaling in cardiac repair and heart failure[J].EBioMedicine,2022,79:103992.
[22]Srinivas BK,Bourdi A,O’Regan JD,et al.Interleukin-1β disruption protects male mice from heart failure with preserved ejection fraction pathogenesis[J].J Am Heart Assoc,2023,12(14):e029668.
[23]LaPenna KB,Li Z,Doiron JE,et al.Combination sodium nitrite and hydralazine therapy attenuates heart failure with preserved ejection fraction severity in a “2-hit” murine model[J].J Am Heart Assoc,2023,12(4):e028480.
[24]Momot K,Krauz K,Czarzasta K,et al.Evaluation of nitrosative/oxidative stress and inflammation in heart failure with preserved and reduced ejection fraction[J].Int J Mol Sci,2023,24(21):15944.
[25]Zuo GF,Wang LG,Huang L,et al.TAX1BP1 downregulation by STAT3 in cardiac fibroblasts contributes to diabetes-induced heart failure with preserved ejection fraction[J].Biochim Biophys Acta Mol Basis Dis,2024,1870(2):166979.
[26]Cheng X,Zhao H,Wen X,et al.NLRP3-inflammasome inhibition by MCC950 attenuates cardiac and pulmonary artery remodelling in heart failure with preserved ejection fraction[J].Life Sci,2023,333:122185.
[27]Shen S,Duan J,Hu J,et al.Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction[J].Eur J Pharmacol,2022,929:175126.
[28]Liu N,Gong Z,Li Y,et al.CTRP3 inhibits myocardial fibrosis through the P2X7R-NLRP3 inflammasome pathway in SHR rats[J].J Hypertens,2024,42(2):315-328.
[29]Shi J,Sun J,Liu L,et al.P16ink4a overexpression ameliorates cardiac remodeling of mouse following myocardial infarction via CDK4/pRb pathway[J].Biochem Biophys Res Commun,2022,595:62-68.
[30]Liang Y,Gu T,Peng S,et al.p16INK4a plays critical role in exacerbating inflammaging in high fat diet induced skin[J].Oxid Med Cell Longev,2022,2022:3415528.
[31]Gu X,Meng H,Peng C,et al.Inflammasome activation and metabolic remodelling in p16-positive aging cells aggravates high-fat diet-induced lung fibrosis by inhibiting NEDD4L-mediated K48-polyubiquitin-dependent degradation of SGK1[J].Clin Transl Med,2023,13(6):e1308.
[32]Palmer AK,Xu M,Zhu Y,et al.Targeting senescent cells alleviates obesity-induced metabolic dysfunction[J].Aging Cell,2019,18(3):e12950.
[33]Shu H,Peng Y,Hang W,et al.Trimetazidine in heart failure[J].Front Pharmacol,2021,11:569132.
[34]Marzilli M,Vinereanu D,Lopaschuk G,et al.Trimetazidine in cardiovascular medicine[J].Int J Cardiol,2019,293:39-44.
[35]Authors/Task Force Members,McDonagh TA,Metra M,et al.2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure:developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology(ESC) with the special contribution of the Heart Failure Association(HFA) of the ESC[J].Eur J Heart Fail,2024,26(1):5-17.
[36]Borlaug BA,Reddy YNV,Braun A,et al.Cardiac and metabolic effects of dapagliflozin in heart failure with preserved ejection fraction:the CAMEO-DAPA trial[J].Circulation,2023,148(10):834-844.
[37]Chen J,Jiang C,Guo M,et al.Effects of SGLT2 inhibitors on cardiac function and health status in chronic heart failure:a systematic review and meta-analysis[J].Cardiovasc Diabetol,2024,23(1):2.
[38]Pandey AK,Bhatt DL,Pandey A,et al.Mechanisms of benefits of sodium-glucose cotransporter 2 inhibitors in heart failure with preserved ejection fraction[J].Eur Heart J,2023,44(37):3640-3651.
[39]Shi YJ,Yang CG,Qiao WB,et al.Sacubitril/valsartan attenuates myocardial inflammation,hypertrophy,and fibrosis in rats with heart failure with preserved ejection fraction[J].Eur J Pharmacol,2023,961:176170.
[40]Borlaug BA,Kitzman DW,Davies MJ,et al.Semaglutide in HFpEF across obesity class and by body weight reduction:a prespecified analysis of the STEP-HFpEF trial[J].Nat Med,2023,29(9):2358-2365.
[41]Saad NS,Mashali MA,Repas SJ,et al.Altering calcium sensitivity in heart failure:a crossroads of disease etiology and therapeutic innovation[J].Int J Mol Sci,2023,24(24):17577.
[42]Li S,Li F,Wang Y,et al.Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury:current strategies and future prospective[J].Drug Deliv,2024,31(1):2298514.
[43]Jardin B,Epstein JA.Emerging mRNA therapies for cardiac fibrosis[J].Am J Physiol Cell Physiol,2024,326(1):C107-C111.
[44]Yu W,Jiang Y,Xu H,et al.The interaction of gut microbiota and heart failure with preserved ejection fraction:from mechanism to potential therapies[J].Biomedicines,2023,11(2):442.
收稿日期:2024-03-07