摘要:目的肝星狀細胞(HSC)和硫化氫(H2S)信號分子作為肝細胞癌(HCC)微環(huán)境中重要的組分,參與調(diào)控HCC的發(fā)生發(fā)展等多種生物學(xué)進程。本研究通過HSC與肝癌細胞系共培養(yǎng),探討HSC通過分泌H2S參與調(diào)控肝癌細胞凋亡的作用及其機制。方法以HSC細胞系(LX-2)及肝癌細胞系(HepG2、PLC/PRF/5)為研究對象。RT-qPCR和Western Blot(WB)法檢測LX-2中H2S關(guān)鍵合成酶——胱硫醚γ-裂解酶(CSE)mRNA及表達水平;ELISA測定上清液LX-2產(chǎn)生的H2S濃度;二代測序、細胞免疫熒光、染色質(zhì)免疫沉淀(ChIP)及WB檢測H2S(內(nèi)源性和外源性)作用HepG2和PLC/PRF/5細胞后,JNK/JunB-TNFSF14信號通路基因、結(jié)合位點及相關(guān)蛋白。Transwell小室將LX-2分別與HepG2和PLC/PRF/5共培養(yǎng),CCK-8和流式細胞術(shù)檢測肝癌細胞的細胞活力、凋亡,WB測定H2S-TNFSF14信號通路相關(guān)蛋白。所有細胞實驗均重復(fù)3次。計量資料兩組間比較采用成組t檢驗;多組間比較采用單因素方差分析或重復(fù)測量方差分析,進一步兩兩比較采用Dunnett-t檢驗。結(jié)果LX-2主要通過CSE合成H2S,LX-2培養(yǎng)上清液中H2S濃度隨著時間延長逐漸增加[(22.89±0.08)pg/mL vs(28.29±0.15)pg/mL vs(36.19±1.90)pg/mL,F(xiàn)=79.63,Plt;0.05]。LX-2中CSE mRNA水平顯著高于CBS mRNA和MPST mRNA(1.008±0.13 vs 0.320±0.014 vs 0.05±0.02,F(xiàn)=80.84,Plt;0.05)。當(dāng)CSE被炔丙基甘氨酸(PPG)抑制之后,隨著PPG濃度增加,H2S濃度下降(Plt;0.05)。LX-2分別與HepG2、PLC/PRF/5共培養(yǎng),隨著培養(yǎng)時間延長,HepG2(87.48%±0.82%vs 70.48%±0.641%vs 52.89%±0.57%vs 45.20%±0.69%,F(xiàn)=1 517.13,Plt;0.001)和PLC/PRF/5(92.41%±0.48%vs 74.10%±0.73%vs 53.70%±0.60%vs 44.00%±0.27%,F(xiàn)=2 626.21,Plt;0.001)細胞活力降低;凋亡增加(HepG2:12.88%±0.64%vs 15.5%±0.16%vs 18.43%±0.37%vs 13.01%±0.58%,F(xiàn)=142.15,Plt;0.001;PLC/PRF/5:8.51±0.05 vs 12.80±0.33 vs 15.59±0.21 vs 10.72±0.30,F(xiàn)=676.40,Plt;0.001),第3天最顯著。二代測序顯示,內(nèi)源性H2S(LX-2產(chǎn)生)和NaHS(外源性H2S供體)參與調(diào)控HepG2中多種基因表達。NaHS和LX-2通過釋放H2S,激活肝癌細胞中JNK/JunB信號通路、上調(diào)凋亡基因TNFSF14表達,且p-JunB與TNFSF14基因轉(zhuǎn)錄調(diào)控區(qū)域結(jié)合增加。結(jié)論在肝癌微環(huán)境中,HSC通過信號分子CSE/H2S,激活了肝癌細胞中JNK/JunB信號通路,TNFSF14表達增加,從而促進了肝癌細胞凋亡。
關(guān)鍵詞:癌,肝細胞;肝星狀細胞;硫化氫
基金項目:中德研究小組項目(GZ1517)
Role and mechanism of hepatic stellate cells in regulating the apoptosis of hepatocellular carcinoma cells through cystathionineγ-lyase/hydrogen sulfide
SHANG Hongwei1,MA Yanan2,3,LU Xin1,LYU Lingna2,DING Huiguo2.(1.School of Basic Medical Sciences,Capital Medical University,Beijing 100069,China;2.Department of Hepatology and Gastroenterology,Beijing YouAn Hospital,Capital Medical University,Beijing 100069,China;3.Oncology Center,Shanxi Bethune Hospital,Taiyuan 030000,China)
Corresponding author:DING Huiguo,dinghuiugo@ccmu.edu.cn(ORCID:0000-0002-8716-4926)
Abstract:Objective As important components in the microenvironment of hepatocellular carcinoma(HCC),hepatic stellate cells(HSCs)and hydrogen sulfide(H2S)participate in various biological processes that regulate the development and progression of HCC.Through the co-culture of HSCs and HCC cells,this article aims to investigate the role and mechanism of HSCs in regulating the apoptosis of HCC cells by secreting H2S.Methods The HSC cell line(LX-2)and HCC cell lines(HepG2 and PLC/PRF/5)were used for experiment.RT-qPCR and Western Blot(WB)were used to measure the mRNA and protein expression levels of cystathionineγ-lyase(CSE),a key synthase for H2S;ELISA was used to measure the concentration of H2S in supernatant;next-generation sequencing,cell immunofluorescence assay,chromatin immunoprecipitation(ChIP),and WB were used to measure the JNK/JunB-TNFSF14 signaling pathway genes,binding sites,and related proteins after HepG2 cells were treated by H2S.LX-2 cells were co-cultured with HepG2 or PLC/PRF/5 cells in a Transwell chamber;CCK-8 assay and flow cytometry were used to measure the viability and apoptosis of HCC cells,and WB was used to measure the H2S-TNFSF14 signaling pathway-related proteins.All cell experiments were repeated three times.The independent-samples t test was used for comparison of continuous data between two groups;a one-way analysis of variance or the analysis of variance with repeated measures was used for comparison between multiple groups,and the Dunnett-t test was used for further comparison between two groups.Results LX-2 cells synthesized H2S mainly through CSE,and the concentration of H2S in supernatant of LX-2 cells gradually increased over time(22.89±0.08 pg/mL vs 28.29±0.15 pg/mL vs 36.19±1.90 pg/mL,F(xiàn)=79.63,Plt;0.05).In LX-2 cells,the mRNA expression level of CSE was significantly higher than that of CBS and MPST(1.008±0.13 vs 0.320±0.014 vs 0.05±0.02,F(xiàn)=80.84,Plt;0.05).When CSE was inhibited by PPG,the concentration of H2S decreased with the increase in the concentration of PPG(Plt;0.05).LX-2 cells were co-cultured with HepG2 or PLC/PRF/5 cells,and over the time of culture,there were significant reductions in the viability of HepG2 cells(87.48%±0.82%vs 70.48%±0.641%vs 52.89%±0.57%vs 45.20%±0.69%,F(xiàn)=1 517.13,Plt;0.001)and PLC/PRF/5 cells(92.41%±0.48%vs 74.10%±0.73%vs 53.70%±0.60%vs 44.00%±0.27%,F(xiàn)=2626.21,Plt;0.001)and significant increases in the apoptosis of HepG2 cells(12.88%±0.64%vs 15.5%±0.16%vs 18.43%±0.37%vs 13.01%±0.58%,F(xiàn)=142.15,Plt;0.001)and PLC/PRF/5 cells(8.51±0.05 vs 12.80±0.33 vs 15.59±0.21 vs 10.72±0.30,F(xiàn)=676.40,Plt;0.001),with the most significant changes on day 3.Next-generation sequencing showed that endogenous H2S and NaHS(endogenous H2S donor)were involved in regulating the expression of various genes in HepG2 cells.By releasing H2S,NaHS and LX2 activated the JNK/JunB signaling pathway and upregulated the expression of the apoptosis gene TNFSF14 in HCC cells,with increased binding between p-JunB and the transcriptional regulatory regions of the TNFSF14 gene.Conclusion In the microenvironment of HCC,HSCs activate the JNK/JunB signaling pathway in HCC cells through the signal molecules CSE/H2S,and there is an increase in the expression of TNFSF14,thereby promoting the apoptosis of HCC cells.
Key words:Carcinoma,Hepatocellular;Hepatic Stellate Cells;Hydrogen Sulfide
Research funding:Sino-German Cooperation Group(GZ1517)
肝星狀細胞(HSC)作為肝細胞癌(HCC)微環(huán)境中最主要的竇周細胞,在HCC的發(fā)生發(fā)展中發(fā)揮了重要作用[1-2]。體外研究[3-4]表明,在HSC與HCC細胞的共培養(yǎng)體系中,HSC通過分泌生長因子、細胞外基質(zhì)蛋白和金屬基質(zhì)蛋白酶誘導(dǎo)腫瘤細胞向惡性表型轉(zhuǎn)化,同時增強肝癌細胞的侵襲與遷移能力。在皮下移植異種裸鼠肝癌模型[5]中發(fā)現(xiàn),HSC通過促進HCC細胞增殖和抑制細胞凋亡,從而促進腫瘤生長。研究[6-7]還發(fā)現(xiàn),HSC通過分泌血管內(nèi)皮生長因子、血小板源性生長因子和轉(zhuǎn)化生長因子等生長因子,促進腫瘤的血管生成。硫化氫(hydrogen sulfide,H2S)是繼一氧化碳和一氧化氮后第3種重要的內(nèi)源性氣體信號分子,參與氧化應(yīng)激、細胞增殖與凋亡、血管擴張、血管再生、炎癥等多種病理生理過程[8]。內(nèi)源性H2S由半胱氨酸和同型半胱氨酸經(jīng)胱硫醚γ-裂解酶(cystathionineγ-lyase,CSE)、胱硫醚β-合酶(cystathionineβ-synthase,CBS)及3-巰基丙酮酸轉(zhuǎn)硫酶(3-mercapto-pyruvate sulphurtransferase,MPST)合成產(chǎn)生[9]。前期研究[10]發(fā)現(xiàn),外源性H2S供體——NaHS,通過PI3K/Akt/mTOR信號通路誘導(dǎo)肝癌細胞自噬,從而促進了細胞凋亡,抑制細胞增殖與遷移。然而,在肝癌微環(huán)境中HSC是否通過H2S參與調(diào)控HCC的生物學(xué)過程尚不明確。因此,本研究通過HSC與肝癌細胞系共培養(yǎng),探討HSC通過分泌H2S參與調(diào)控肝癌細胞凋亡的作用及其機制。
1材料與方法
1.1材料DMEM細胞培養(yǎng)基、胎牛血清、胰蛋白酶、青霉素-鏈霉素、CSE抑制劑——炔丙基甘氨酸(propargylglycine,PPG)及JNK/JunB抑制劑——SP600125試劑購自賽默飛世爾科技(中國)有限公司;H2S檢測ELISA試劑盒購自南京金益柏生物科技有限公司;RNA提取、逆轉(zhuǎn)錄及SYBR等RT-qPCR試劑購自寶日醫(yī)生物技術(shù)(北京)有限公司;Transwell小室購自美國康寧公司;CCK-8試劑盒購自美國Abmole奧默生物公司;Annexin V-FITC/PI細胞凋亡試劑盒購自上海翊圣生物科技有限公司;人源β-actin、GAPDH、JNK、JunB、p-JNK/JunB抗體和二抗、ChIP試劑盒購自美國Cell Signaling technology公司;腫瘤壞死因子超家族成員-14(tumor necrosis factor superfamily member-14,TNFSF14)多克隆抗體購于美國Affinity Biosciences公司。
1.2細胞培養(yǎng)肝星狀細胞系(LX-2)及肝癌細胞系(HepG2、PLC/PRF/5),用含10%胎牛血清及1%的青霉素-鏈霉素混合液的DMEM培養(yǎng)基,置于37℃,5%(體積分數(shù))CO2恒溫細胞孵育箱內(nèi)培養(yǎng)。Transwell小室建立共培養(yǎng)體系,上室接種LX-2,下室接種HepG2或PLC/PRF/5,按照說明書操作。所有細胞實驗重復(fù)3次。
1.3 ELISA定量測定H2S LX-2產(chǎn)生的H2S濃度及NaHS釋放的H2S,按照說明書進行操作。在酶標(biāo)板對應(yīng)的孔中分別加入標(biāo)品及待檢測的LX-2培養(yǎng)上清液和NaHS,隨后進行孵育和洗板,加入顯色液37℃孵育15 min,加入終止液終止反應(yīng)。酶標(biāo)儀450 nm波長測定,根據(jù)標(biāo)準(zhǔn)曲線,計算所測樣本中H2S濃度。
1.4 RNA提取、二代測序及RT-q PCR Trizol法提取總RNA。取1μg總RNA,按照Takara逆轉(zhuǎn)錄試劑盒合成cDNA,SYBR Green Master Mix說明書配置20μL RT PCR體系,ABI 7500進行RT-q PCR。所需的引物序列見表1。LX-2與HepG2共培養(yǎng)(LX-2共培養(yǎng)組)、NaHS處理HepG2(NaHS處理組)及對照組(單獨HepG2培養(yǎng))提取的HepG2細胞總RNA送至北京諾禾致源科技股份有限公司進行轉(zhuǎn)錄組二代測序分析,對差異基因[以|log2(fold change)|≥1為差異表達基因的標(biāo)準(zhǔn)]進行聚類分析和Veen分析。
1.5蛋白提取及Western Blot(WB)檢測取LX-2共培養(yǎng)組及NaHS處理組的HepG2細胞,PBS清洗2次,隨后在10 cm2培養(yǎng)皿中加入1 mL RAPI裂解液,冰上裂解20 min,轉(zhuǎn)移裂解液到EP管中,4℃,12 000×g離心30 min,上清即為細胞總蛋白。BCA試劑盒對提取的蛋白進行定量分析,加入對應(yīng)體積的蛋白上樣緩沖液后置于100℃金屬浴5 min,使蛋白變性,用于后續(xù)WB檢測。SDS-PAGE膠用于分析所提取的蛋白,取20μg蛋白上樣電泳,轉(zhuǎn)膜,牛奶封閉,隨后加入對應(yīng)的抗體4℃孵育過夜,將孵育好的膜放到對應(yīng)的二抗中,室溫孵育1 h后,加入化學(xué)發(fā)光液測定和分析。
1.6 CCK-8檢測細胞活力將生長狀態(tài)良好的細胞接種在96孔板,LX-2分別與HepG2、PLC/PRF/5共培養(yǎng)1、2、3、4天,單獨HepG2、PLC/PRF/5培養(yǎng)分別作為對照組。按照說明書,每孔加入10μL CCK-8試劑,隨后置于37℃培養(yǎng)箱內(nèi)孵育1 h后,酶標(biāo)儀450 nm測定吸光度值。細胞活力計算:細胞活力(%)=[A450(樣本-空白)]/[A450(對照-空白)]×100%。
1.7流式細胞術(shù)測定細胞凋亡將處理好的細胞制備成為單細胞懸液,按照Annexin V-FITC/PI細胞凋亡試劑盒說明書,加入5μL Annexin V孵育,再加入5μL PI避光孵育,F(xiàn)ACS流式細胞儀(BD公司)進行檢測。
1.8細胞免疫熒光染色細胞均勻接種到已放入無菌蓋玻片的24孔板中,NaHS處理HepG2細胞0、1、2、8、24 h。取處理好的細胞,加入1 mL 4%多聚甲醛固定,隨后進行透膜處理,加入1%BSA稀釋抗體p-JunB(1∶500),4℃孵育過夜。1%BSA稀釋FITC標(biāo)記的熒光二抗(1∶500)避光條件下,室溫孵育1 h。DAPI染核及封片,熒光顯微鏡下采集圖像,Image J軟件分析目的蛋白平均免疫熒光強度。
1.9染色質(zhì)免疫共沉淀(chromatin immunoprecipitation,ChIP)LX-2分別與HepG2和PLC/PRF/5共培養(yǎng),以及NaHS分別處理HepG2和PLC/PRF/5細胞后,ChIP方法測定p-JunB與TNFSF14啟動子結(jié)合力。WB測定HepG2和PLC/PRF/5細胞核中p-JunB表達,應(yīng)用4',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole,DAPI)對細胞核DNA染色(藍色)和FITC標(biāo)記的抗體測定細胞核p-JunB表達(綠色)。LX-2與NaHS處理后的HepG2和PLC/PRF/5細胞用4%多聚甲醛固定10 min,核酸酶將DNA特異性的消化為DNA片段,隨后加入JunB、p-JunB抗體,從而特異性的富集目的蛋白質(zhì)和DNA復(fù)合體,通過對復(fù)合體進行富集純化,收集DNA用于PCR檢測。
1.10統(tǒng)計學(xué)方法采用SPSS 21.0統(tǒng)計軟件進行數(shù)據(jù)分析。計量資料以±s表示,兩組間比較采用成組t檢驗;多組間比較采用單因素方差分析或重復(fù)測量方差分析,進一步兩兩比較采用Dunnett-t檢驗。Plt;0.05為差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1 LX-2通過CSE產(chǎn)生H2S LX-2培養(yǎng)上清液中H2S濃度隨著時間延長逐漸增加[(22.89±0.08)pg/mL vs(28.29±0.15)pg/mL vs(36.19±1.90)pg/mL,F(xiàn)=79.63,Plt;0.05](圖1a)。LX-2中CSE mRNA水平顯著高于CBS mRNA和MPST mRNA(1.008±0.13 vs 0.320±0.014 vs 0.05±0.02,F(xiàn)=80.84,Plt;0.05)(圖1b)。在LX-2中加入不同劑量PPG后,隨著PPG濃度增加,H2S濃度下降(Plt;0.05)(圖1c)。PPG特異性、濃度依賴性的降低CSE mRNA及蛋白水平(圖1d、e)。
2.2 LX-2抑制肝癌細胞活力、促進凋亡LX-2分別與HepG2、PLC/PRF/5共培養(yǎng),隨著培養(yǎng)時間延長,HepG2(87.48%±0.82%vs 70.48%±0.641%vs 52.89%±0.57%vs 45.20%±0.69%,F(xiàn)=1 517.13,Plt;0.001)和PLC/PRF/5(92.41%±0.48%vs 74.10%±0.73%vs 53.70%±0.60%vs 44.00%±0.27%,F(xiàn)=2 626.21,Plt;0.001)細胞活力降低(圖2a、b);凋亡增加(HepG2:12.88%±0.64%vs 15.5%±0.16%vs 18.43%±0.37%vs 13.01%±0.58%,F(xiàn)=142.15,Plt;0.001;PLC/PRF/5:8.51±0.05 vs 12.80±0.33 vs 15.59±0.21 vs 10.72±0.30,F(xiàn)=676.40,Plt;0.001),第3天最顯著(圖2c、d)。
2.3內(nèi)源性和外源性H2S調(diào)控肝癌細胞多種基因LX-2與HepG2共培養(yǎng)及NaHS處理HepG2后,轉(zhuǎn)錄組測序顯示分別上調(diào)1 047和1 183個基因,共同上調(diào)659個基因;分別下調(diào)997和1 144個基因,共同下調(diào)342個基因(圖3a)。其中,30個變化最大的基因,包括TGM2、PDE2A、AQP7P1、SOCS3、B3GNT3、LGALS7B、CPNE7、TCAF2、AXL、CD3D、BEAN1、KIF26B、SLC1A7、TFF1、IGFBP3、ADAMTS16、ACTA1、SLC2A5、SERPINE2、KCNMB4、LSP1、A4GALT、TNFSF14、NPPB、MUC5B、NKAIN4、TRAF5、PFKP、EHD2、MTMR11(圖3b)。選擇促凋亡基因TNFSF14進行分析,與對照組相比,NaHS處理組TNFSF14基因增加約2.8倍,LX-2共培養(yǎng)組TNFSF14基因增加約2倍(Plt;0.05)(圖3c)。
2.4 H2S通過激活JNK/JunB信號通路調(diào)控TNFSF14轉(zhuǎn)錄ChIP實驗發(fā)現(xiàn),與對照組相比,NaHS處理的HepG2和PLC/PRF/5細胞中p-JunB與TNFSF14基因轉(zhuǎn)錄調(diào)控區(qū)域結(jié)合增加(圖4a);p-JunB定位于細胞核中,NaHS作用1 h熒光強度開始升高,8 h達到高值(圖4b);且與WB結(jié)果一致(圖4c)。PPG干預(yù)后,HepG2和PLC/PRF/5胞核蛋白p-JunB表達明顯下降(圖4d);經(jīng)SP600125(JNK/JunB抑制劑)處理后,顯示JNK/JunB-TNFSF14信號通路被抑制。NaHS處理也顯示了相似結(jié)果(圖4e)。延長NaHS處理時間,細胞核p-JunB表達增加,但JunB表達無明顯變化。結(jié)果提示,LX-2和NaHS通過釋放H2S,激活JNK/JunB信號通路調(diào)控TNFSF14基因轉(zhuǎn)錄。
3討論
第3個重要的內(nèi)源性氣體信號分子H2S自1992年被發(fā)現(xiàn),較多研究[11-12]證實了H2S及其合成酶的多種功能,參與了血管擴張、血管生成、炎癥免疫、氧化應(yīng)激和細胞凋亡與自噬的調(diào)控等過程,在腫瘤和非腫瘤性疾病,特別是心血管疾病的病理生理中具有重要作用。因此,H2S及其合成酶可能是治療的靶點。但是,CSE/H2S在肝癌發(fā)生發(fā)展中的作用研究較少[13]。由肝細胞及肝竇周細胞,包括HSC、肝竇內(nèi)皮細胞、Kuffer細胞、肝癌細胞和細胞外基質(zhì)等組成的復(fù)雜腫瘤微環(huán)境(tumor microenvironment,TME)中,HSC及信號分子H2S促進肝癌細胞凋亡的機制尚未闡明[14]。本研究發(fā)現(xiàn),HSC主要通過CSE產(chǎn)生信號分子H2S,激活了肝癌細胞中的JNK/JunB信號通路,上調(diào)TNFSF14基因,TNFSF14表達增加,從而促進了肝癌細胞的凋亡,發(fā)揮抗腫瘤作用。Han等[15]發(fā)現(xiàn),HepG2中TNFSF14下調(diào)Bcl-2和survivin,通過線粒體及p53獨立途徑,誘導(dǎo)肝癌細胞凋亡。體外研究[16]表明,在HepG2和SMMC-7721細胞中,TNFSF14與LT-βR結(jié)合,激活caspase-9和caspase-3,抑制STAT3磷酸化下調(diào)Bcl-XL表達,進而誘導(dǎo)肝癌細胞凋亡,提示線粒體途徑也是TNFSF14誘導(dǎo)細胞凋亡的關(guān)鍵因素。由此可見,TNFSF14通過線粒體凋亡途徑和死亡受體凋亡途徑等,促進肝癌細胞凋亡。此外,TNFSF14還表達于免疫細胞,如活化T淋巴細胞,未成熟樹突狀細胞和活化自然殺傷細胞,TNFSF14信號轉(zhuǎn)導(dǎo)對T淋巴細胞激活和誘導(dǎo)細胞凋亡具有重要作用[17]。TNFSF14也通過激活抗腫瘤免疫效應(yīng),間接殺傷腫瘤細胞和觸發(fā)腫瘤細胞凋亡,表現(xiàn)出強大的免疫抗腫瘤活性,在多種不同的腫瘤中發(fā)揮抗瘤作用[18]。因此推測,在肝癌微環(huán)境中,H2S通過激活肝癌細胞中凋亡基因TNFSF14表達及多種細胞凋亡信號途徑,促進肝癌細胞凋亡。
TNFSF14誘導(dǎo)肝癌細胞凋亡的分子機制尚不清楚。本研究ChIP實驗證明,無論是在HepG2還是在PLC/PRF/5中,轉(zhuǎn)錄因子p-JunB均可與TNFSF14基因的轉(zhuǎn)錄調(diào)控區(qū)域結(jié)合,且H2S增強了p-JunB與TNFSF14基因啟動子的結(jié)合能力。H2S生成酶CSE抑制劑——PPG和p-JNK抑制劑SP600125,均顯著抑制了H2S對JNK/JunB信號通路的激活,導(dǎo)致TNFSF14表達降低。上述結(jié)果提示H2S在調(diào)節(jié)肝癌細胞TNFSF14表達中具有重要作用。細胞免疫熒光和WB也證明了外源性H2S供體NaHS及HSC合成的內(nèi)源性H2S,促進了肝癌細胞p-JunB的表達及核轉(zhuǎn)位。JunB作為Jun家族的重要成員之一,是轉(zhuǎn)錄因子AP-1(轉(zhuǎn)錄激活蛋白-1)的主要成分,對各種刺激如輻射、應(yīng)激及生長信號等作出生理或病理應(yīng)答,參與細胞增殖與分化、轉(zhuǎn)化、凋亡、炎癥等過程,在腫瘤的形成、轉(zhuǎn)移和侵襲中發(fā)揮重要作用[19]。也有研究[20]發(fā)現(xiàn),JNK/JunB促進HepG2凋亡并抑制了其增殖與侵襲能力。因此,本研究首次闡明了TNFSF14啟動子的轉(zhuǎn)錄活性受到轉(zhuǎn)錄因子JunB的調(diào)控,H2S可激活轉(zhuǎn)錄因子JunB,促進p-JunB的核轉(zhuǎn)位,進而上調(diào)肝癌細胞凋亡基因TNFSF14。CSE/H2S可能是防治HCC具有潛力的新靶點。
總之,在TME中活化HSC合成分泌信號分子H2S,通過激活肝癌細胞中的JNK/JunB-TNFSF14信號通路,從而促進肝癌細胞凋亡、抑制腫瘤細胞活力,可能是HSC在TME中調(diào)節(jié)肝癌細胞生物學(xué)功能的新機制之一。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:尚宏偉負責(zé)實驗指導(dǎo),收集分析數(shù)據(jù),撰寫及修改論文;馬亞楠負責(zé)實驗設(shè)計,收集分析數(shù)據(jù);路欣、呂翎娜負責(zé)收集分析數(shù)據(jù);丁惠國負責(zé)課題設(shè)計,審核文章并最后定稿。尚宏偉和馬亞楠對本文貢獻等同,同為第一作者。
參考文獻:
[1]MYOJIN Y,HIKITA H,SUGIYAMA M,et al.Hepatic stellate cells in hepatocellular carcinoma promote tumor growth via growth differen?tiation factor 15 production[J].Gastroenterology,2021,160(5):1741-1754.e16.DOI:10.1053/j.gastro.2020.12.015.
[2]MA YN,WANG SS,LIEBE R,et al.Crosstalk between hepatic stel?late cells and tumor cells in the development of hepatocellular carci?noma[J].Chin Med J,2021,134(21):2544-2546.DOI:10.1097/CM9.0000000000001726.
[3]SUFLE?EL RT,MELINCOVICI CS,GHEBAN BA,et al.Hepatic stel?late cells-from past till present:Morphology,human markers,human cell lines,behavior in normal and liver pathology[J].Rev Roum De Morphol Embryol,2020,61(3):615-642.DOI:10.47162/RJME.61.3.01.
[4]LIN N,CHEN ZJ,LU Y,et al.Role of activated hepatic stellate cells in proliferation and metastasis of hepatocellular carcinoma[J].Hepa?tol Res,2015,45(3):326-336.DOI:10.1111/hepr.12356.
[5]GENG ZM,LI QH,LI WZ,et al.Activated human hepatic stellate cells promote growth of human hepatocellular carcinoma in a subcu?taneous xenograft nude mouse model[J].Cell Biochem Biophys,2014,70(1):337-347.DOI:10.1007/s12013-014-9918-3.
[6]YANG HX,TAN MJ,GAO ZQ,et al.Role of hydrogen sulfide and hy?poxia in hepatic angiogenesis of portal hypertension[J].J Clin Transl Hepatol,2023,11(3):675-681.DOI:10.14218/JCTH.2022.00217.
[7]LIU Y,XUN ZZ,MA K,et al.Identification of a tumour immune bar?rier in the HCC microenvironment that determines the efficacy of immunotherapy[J].J Hepatol,2023,78(4):770-782.DOI:10.1016/j.jhep.2023.01.011.
[8]SHACKELFORD R,OZLUK E,ISLAM MZ,et al.Hydrogen sulfide and DNA repair[J].Redox Biol,2021,38:101675.DOI:10.1016/j.redox.2020.101675.
[9]ANDRéS CMC,PéREZ DE LA LASTRA JM,ANDRéS JUAN C,et al.Chemistry of hydrogen sulfide-pathological and physiological func?tions in mammalian cells[J].Cells,2023,12(23):2684.DOI:10.3390/cells12232684.
[10]WANG SS,CHEN YH,CHEN N,et al.Hydrogen sulfide promotes au?tophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway[J].Cell Death Dis,2017,8(3):e2688.DOI:10.1038/cddis.2017.18.
[11]ZHANG CH,JIANG ZL,MENG Y,et al.Hydrogen sulfide and its do?nors:Novel antitumor and antimetastatic agents for liver cancer[J].Cell Signal,2023,106:110628.DOI:10.1016/j.cellsig.2023.110628.
[12]YUAN ZN,ZHENG YQ,WANG BH.Prodrugs of hydrogen sulfide and related sulfur species:Recent development[J].Chin J Nat Med,2020,18(4):296-307.DOI:10.1016/S1875-5364(20)30037-6.
[13]YOUNESS RA,HABASHY DA,KHATER N,et al.Role of hydrogen sulfide in oncological and non-oncological disorders and its regula?tion by non-coding RNAs:A comprehensive review[J].Noncoding RNA,2024,10(1):7.DOI:10.3390/ncrna10010007.
[14]GAO W,LIU YF,ZHANG YX,et al.The potential role of hydrogen sul?fide in cancer cell apoptosis[J].Cell Death Discov,2024,10(1):114.DOI:10.1038/s41420-024-01868-w.
[15]HAN B,WU LQ,MA X,et al.Synergistic effect of IFN-γgene on LIGHT-induced apoptosis in HepG2 cells via down regulation of Bcl-2[J].Artif Cells Blood Substit Immobil Biotechnol,2011,39(4):228-238.DOI:10.3109/10731199.2010.538403.
[16]ZHENG QY,CAO ZH,HU XB,et al.LIGHT/IFN-γtriggersβcells apoptosis via NF-κB/Bcl2-dependent mitochondrial pathway[J].JCell Mol Med,2016,20(10):1861-1871.DOI:10.1111/jcmm.12876.
[17]ZHANG N,LIU XH,QIN JL,et al.LIGHT/TNFSF14 promotes CAR-Tcell trafficking and cytotoxicity through reversing immunosuppressive tumor microenvironment[J].Mol Ther,2023,31(9):2575-2590.DOI:10.1016/j.ymthe.2023.06.015.
[18]SKEATE JG,OTSMAA ME,PRINS R,et al.TNFSF14:LIGHTing the way for effective cancer immunotherapy[J].Front Immunol,2020,11:922.DOI:10.3389/fimmu.2020.00922.
[19]SHAULIAN E,KARIN M.AP-1 as a regulator of cell life and death[J].Nat Cell Biol,2002,4(5):E131-E136.DOI:10.1038/ncb0502-e131.
[20]YAN P,ZHOU B,MA YD,et al.Tracking the important role of JUNB in hepatocellular carcinoma by single-cell sequencing analysis[J].Oncol Lett,2020,19(2):1478-1486.DOI:10.3892/ol.2019.11235.
收稿日期:2024-08-07;錄用日期:2024-08-26
本文編輯:林姣
引 證 本 文 : SHANG HW, MA YN, LU X, et al. Role and mechanism of hepatic stellate cells in regulating the apoptosis of hepatocellular carcinoma cells through cystathionine γ -lyase/ hydrogen sulfide[J]. J Clin Hepatol, 2024, 40(11): 2238- 2245.
尚宏偉, 馬亞楠, 路欣, 等. 肝星狀細胞通過胱硫醚γ-裂解酶/硫化 氫(CSE/H2S)調(diào)控肝細胞癌細胞凋亡的作用及其機制[J]. 臨床 肝膽病雜志, 2024, 40(11): 2238-2245.