【摘要】動脈粥樣硬化是多種心血管疾病的病理學(xué)基礎(chǔ),而T細(xì)胞則是其發(fā)生發(fā)展過程中的重要免疫細(xì)胞。T細(xì)胞可極化成不同的表型,在動脈粥樣硬化發(fā)展過程中發(fā)揮相應(yīng)的功能,如Th1和Th17細(xì)胞具有促炎作用,而Th2和Treg細(xì)胞具有抑炎作用,不同的T細(xì)胞亞群比例和功能失衡也是動脈粥樣硬化斑塊形成與發(fā)展的重要原因。在不同的微環(huán)境中代謝重編程通過調(diào)節(jié)代謝途徑來改變T細(xì)胞的分化方向,進(jìn)而改變動脈粥樣硬化的發(fā)展方向。現(xiàn)就T細(xì)胞在動脈粥樣硬化中的促炎與抑炎作用做一綜述,重點(diǎn)介紹促炎性或抑炎性T細(xì)胞的代謝重編程對動脈粥樣硬化的調(diào)控及其mTOR和AMPK信號轉(zhuǎn)導(dǎo)的分子機(jī)制。
【關(guān)鍵詞】動脈粥樣硬化;T細(xì)胞;代謝重編程;信號通路
基金項(xiàng)目:國家自然科學(xué)基金(82101662)
通信作者:王朝暉,E-mail:wwwzh129@163.com;安恬慧,E-mail:tianhuian90@hust.edu.cn
【DOI】10.16806/j.cnki.issn.1004-3934.2024.09.010
Role and Mechanism of T Cell Metabolic Reprogramming in Regulation of Atherosclerosis Progression
CHANG Shuye,AN Tianhui,WANG Zhaohui
(Department of Geriatrics,Union Hospital Tongji Medical College Huazhong University of Science and Technology,Wuhan 430000,Hubei,China)
【Abstract】Atherosclerosis is the pathological basis of a variety of cardiovascular diseases,and T cells are important immune cells in the process of its development.T cells can be polarized into different phenotypes and play corresponding roles in the development of atherosclerosis.For example,Th1 and Th17 cells have pro-inflammatory effects,while Th2 and Treg cells have anti-inflammatory effects.The proportion and functional imbalance of different T cell subsets are also important reasons for the formation and development of atherosclerotic plaques.Metabolic reprogramming changes the differentiation direction of T cells by regulating metabolic pathways in different microenvironments,thereby changing the development direction of atherosclerosis.This article reviews the proinflammatory and anti-inflammatory roles of T cells in atherosclerosis,focusing on the regulation of atherosclerosis by metabolic reprogramming of proinflammatory/anti-inflammatory T cells and the molecular mechanisms underlying mTOR and AMPK signaling.
【Keywords】Atherosclerosis;T cell;Metabolic reprogramming;Signal pathway
缺血性心腦血管?。ㄈ绻跔顒用}粥樣硬化性心臟病、急性心肌梗死和腦卒中等)是中國致死率、致殘率最高的疾病之一,動脈粥樣硬化(atherosclerosis,AS)是其最為重要的病理學(xué)基礎(chǔ)。有研究[1]證實(shí),AS既是一種代謝性疾病,也是一種慢性炎癥性疾病。T細(xì)胞中輔助性T細(xì)胞(helper T cell,Th細(xì)胞)和調(diào)節(jié)性T細(xì)胞(T regulatory cell,Treg細(xì)胞)在介導(dǎo)AS炎癥反應(yīng)中發(fā)揮了關(guān)鍵作用,如Th1和Th17細(xì)胞具有促炎作用,Th2和Treg細(xì)胞卻具有抑炎作用[2]。研究表明,Th1/Th17、Th2/Treg細(xì)胞形成的促炎或抑炎反應(yīng)的平衡方向,決定著AS進(jìn)展或逆轉(zhuǎn)的方向。
在AS疾病中,T細(xì)胞具有高度的表型可塑性,其細(xì)胞分化取決于微環(huán)境(如高脂血癥、高血糖、缺氧、氧化應(yīng)激、凋亡和細(xì)胞壞死等)的變化[3-4]。多項(xiàng)研究[4]表明,當(dāng)T細(xì)胞處于缺氧和高糖環(huán)境中,會激活細(xì)胞中的糖酵解程序,使其更多地向Th1和Th17細(xì)胞方向分化;而當(dāng)處于氧氣充足、高血脂等環(huán)境時,則會激活氧化磷酸化(oxidative phosphorylation,OXPHOS)、脂肪酸氧化(fatty acid oxidation,F(xiàn)AO)等程序,細(xì)胞更多地向Th2和Treg細(xì)胞方向分化。近年免疫代謝領(lǐng)域?qū)⑦@種可以改變關(guān)鍵代謝途徑的過程稱之為“代謝重編程”,其可調(diào)節(jié)Th1/Th17細(xì)胞和Th2/Treg細(xì)胞的分化方向[5]。換言之,代謝重編程是AS斑塊內(nèi)T細(xì)胞向促炎性或抑炎性細(xì)胞分化的內(nèi)在核心驅(qū)動力,決定著AS的命運(yùn)和功能以及AS進(jìn)展或逆轉(zhuǎn)的方向。
現(xiàn)就T細(xì)胞在AS中的促炎與抑炎作用做一綜述,并重點(diǎn)探究T細(xì)胞代謝重編程在調(diào)節(jié)AS發(fā)生發(fā)展中的關(guān)鍵作用及其分子機(jī)制,回顧免疫代謝這一新興且富有潛力的領(lǐng)域在治療AS中的新進(jìn)展。
1" AS中促炎性/抑炎性T細(xì)胞的作用
1.1" 促炎性T細(xì)胞促進(jìn)AS進(jìn)程
T細(xì)胞是AS斑塊中重要的組成成分,約占所有細(xì)胞的10%。Th1細(xì)胞是斑塊中含量最多的細(xì)胞[6],通過分泌促炎因子如γ干擾素、白細(xì)胞介素(interleukin,IL)-2等促進(jìn)AS進(jìn)展[7]。與無癥狀A(yù)S患者相比,近期發(fā)生腦卒中患者的斑塊中Th1更豐富,提示Th1可能介導(dǎo)了AS斑塊的進(jìn)展甚至破裂[8]。Th17細(xì)胞同樣具有促炎及促進(jìn)AS進(jìn)展的作用,這主要通過分泌其特征性的細(xì)胞因子IL-17和IL-6等來實(shí)現(xiàn)[9-10]。與穩(wěn)定型心絞痛患者和健康個體相比,不穩(wěn)定型心絞痛或急性心肌梗死患者的Th17細(xì)胞數(shù)量增多[11]。
1.2" 抑炎性T細(xì)胞延緩AS進(jìn)程
Th2細(xì)胞主要通過分泌IL-4、IL-5和IL-13等實(shí)現(xiàn)抗炎及延緩甚至逆轉(zhuǎn)AS進(jìn)展的作用[12]。Treg細(xì)胞能分泌IL-10和轉(zhuǎn)化生長因子β等抑炎因子[13],在AS中具有強(qiáng)大的保護(hù)作用。有研究[14]證實(shí),急性冠脈綜合征患者的Treg細(xì)胞數(shù)量減少,并且減少的程度與AS斑塊的穩(wěn)定性呈負(fù)相關(guān)。另外,血液中較低的Treg細(xì)胞比率,預(yù)示著較高的主要不良心血管事件發(fā)生率。
2" T細(xì)胞代謝重編程調(diào)控AS的進(jìn)程
“代謝重編程”這一概念最早來源于腫瘤細(xì)胞,其描述的是細(xì)胞在受到外界環(huán)境刺激時可通過改變其代謝途徑來增強(qiáng)或減弱合成反應(yīng),同時賦予細(xì)胞新的功能,是細(xì)胞分化、增殖和獲得效應(yīng)功能的關(guān)鍵[15]。最近研究[16]表明,代謝重編程也同樣存在于AS中。作為AS的重要免疫細(xì)胞,在不同的細(xì)胞微環(huán)境中,T細(xì)胞通過代謝重編程改變T細(xì)胞的極性,從而影響AS進(jìn)展/逆轉(zhuǎn)的方向。
2.1" T細(xì)胞的主要代謝途徑
與體內(nèi)大多數(shù)細(xì)胞代謝類似,T細(xì)胞代謝途徑通常包括糖酵解途徑、OXPHOS、三羧酸循環(huán)(tricarboxylic acid cycle,TAC)、磷酸戊糖途徑(pentose-phosphate pathway,PPP)、FAO、脂肪酸合成(fatty acid synthesis,F(xiàn)AS)和氨基酸代謝等。
糖酵解途徑和OXPHOS作為在細(xì)胞內(nèi)提供腺苷三磷酸(adenosine triphosphate,ATP)的兩個主要途徑,在機(jī)體的生長發(fā)育過程中發(fā)揮著巨大作用。在生理?xiàng)l件下,細(xì)胞主要通過OXPHOS來進(jìn)行葡萄糖代謝,而糖酵解途徑僅在缺氧條件下才會被激活。在氧氣充足的情況下,細(xì)胞通過OXPHOS途徑將丙酮酸產(chǎn)生乳酸的這一方式稱為“瓦博格效應(yīng)”[17]或有氧糖酵解。糖酵解同時也提供了許多其他代謝途徑的代謝中間體[18]。作為糖酵解途徑的第一個產(chǎn)物,葡萄糖-6-磷酸可轉(zhuǎn)化為果糖-6-磷酸以產(chǎn)生丙酮酸,用于合成糖原,或穿梭在PPP中合成嘌呤和嘧啶。一旦葡萄糖轉(zhuǎn)化為丙酮酸,它就可在細(xì)胞質(zhì)中被乳酸脫氫酶還原為乳酸,或者通過丙酮酸脫氫酶轉(zhuǎn)化為乙酰輔酶A并導(dǎo)入線粒體以推動TAC。此外,PPP產(chǎn)生核糖-5-磷酸為體內(nèi)合成各種核苷酸和核酸提供原料。同時,PPP產(chǎn)生的大量煙酰胺腺嘌呤二核苷酸磷酸,可為各種代謝反應(yīng)提供氫氣[19]。
在線粒體中,除了葡萄糖可進(jìn)入到TAC中產(chǎn)生能量外,其他底物如脂肪酸也可進(jìn)入到TAC中。FAO是脂肪酸降解的關(guān)鍵過程,該過程產(chǎn)生的乙酰輔酶A參與TAC。相反,乙酰輔酶A通過檸檬酸-丙酮酸循環(huán)從線粒體返回細(xì)胞質(zhì),可在一系列酶促反應(yīng)中生成脂肪酸[20]。
2.2" 促炎性/抑炎性T細(xì)胞代謝重編程調(diào)控AS的進(jìn)程
T細(xì)胞活化后會快速增殖為不同的細(xì)胞亞型,當(dāng)促炎性T細(xì)胞或抑炎性T細(xì)胞發(fā)生葡萄糖及脂質(zhì)代謝重編程時,會直接影響AS的進(jìn)展方向?,F(xiàn)主要對促炎性Th1/Th17細(xì)胞、抑炎性Th2/Treg細(xì)胞進(jìn)行闡述。
2.2.1" 促炎性T細(xì)胞代謝重編程對AS的調(diào)控
活化的Th1和Th17細(xì)胞具有較高的葡萄糖攝取和代謝能力。實(shí)驗(yàn)[21]表明,在受到各種炎癥刺激后,機(jī)體內(nèi)的Th1和Th17細(xì)胞的糖酵解速率增加,而Th1和Th17細(xì)胞的糖酵解速率不同,Th17細(xì)胞的糖酵解速率更高,且能產(chǎn)生更多的乳酸。如前文所述,丙酮酸可被乳酸脫氫酶還原為乳酸,也可通過丙酮酸脫氫酶轉(zhuǎn)化為乙酰輔酶A,而丙酮酸脫氫酶激酶1(pyruvate dehydrogenase kinase 1,PDK1)可對丙酮酸脫氫酶進(jìn)行負(fù)調(diào)控,進(jìn)而促進(jìn)糖酵解、增加乳酸的生成。Th17細(xì)胞的PDK1活性更高,故其糖酵解速率更高。此外,Th17細(xì)胞的分化也依賴于PDK1活性[21]。
有研究[22]表明,AS中T細(xì)胞的促炎表型部分是由于增加OXPHOS向有氧糖酵解的轉(zhuǎn)換而介導(dǎo)的。AS斑塊的特征是存在局部缺氧區(qū)域。在缺氧條件下,低氧誘導(dǎo)因子-1α(hypoxia-inducible factor-1α,HIF-1α)穩(wěn)定并激活糖酵解途徑、抑制Th1功能[23]。另有研究[24]發(fā)現(xiàn),糖酵解過程中HIF-1α的活化促進(jìn)了炎癥性Th17細(xì)胞的分化,從而加劇炎癥過程。
正常生理狀態(tài)下,乙酰輔酶A羧化酶(acetyl-CoA carboxylase,ACC)作為FAS過程中的關(guān)鍵酶,可將乙酰輔酶A轉(zhuǎn)化為丙二酰輔酶A。T細(xì)胞的激活和增殖已被證明需要膽固醇或其衍生物來構(gòu)建細(xì)胞膜,并通過結(jié)合不同的轉(zhuǎn)錄因子作為信號來促進(jìn)細(xì)胞事件[25]。缺乏驅(qū)動FAS的ACC1的T細(xì)胞無法分化為Th17細(xì)胞而分化為Treg細(xì)胞[26]。有小鼠研究[26]表明,抑制ACC1的同時也抑制了Th17細(xì)胞的產(chǎn)生。
膽固醇沉積是AS發(fā)生發(fā)展中很重要的一環(huán),高膽固醇血癥可導(dǎo)致T細(xì)胞向Th1細(xì)胞方向分化。有研究[27]顯示高膽固醇血癥情況下,Th1細(xì)胞分化增加,Treg細(xì)胞分化受阻。此外,過多的攝入膽固醇也會促進(jìn)Th17細(xì)胞分化[28]。過量攝取長鏈脂肪酸可增加Th1和Th17細(xì)胞的分化和增殖[29]。另有研究[30]表明,他汀類藥物通過降低膽固醇水平會限制Th17細(xì)胞分化,同時促進(jìn)Th2細(xì)胞分化。
2.2.2" 抑炎性T細(xì)胞的代謝途徑對AS的調(diào)控
Th2細(xì)胞相較于其他亞型,具有最強(qiáng)的糖酵解作用,能表達(dá)最多的葡萄糖轉(zhuǎn)運(yùn)蛋白(glucose transporter,Glut)1。多項(xiàng)實(shí)驗(yàn)[31]表明,Th2細(xì)胞的分化似乎更依賴于脂質(zhì)代謝。在體外 ,Treg細(xì)胞在初始T細(xì)胞分化時通過上調(diào)Glut1和Glut3來增加葡萄糖的攝取和消耗。然而,糖酵解可促進(jìn)Treg細(xì)胞的增殖和遷移,但降低了Treg細(xì)胞中叉頭框蛋白P3抗體的表達(dá),從而限制了Treg細(xì)胞的免疫抑制功能[32]。AS斑塊產(chǎn)生的HIF-1α可上調(diào)糖酵解,使Treg細(xì)胞的抑炎作用受到抑制,加速AS的進(jìn)展。而HIF-1α缺乏則會阻止這一過程,從而增強(qiáng)Treg細(xì)胞的抑制功能[33]。
與其他T細(xì)胞亞群相比,Treg細(xì)胞表現(xiàn)出較突出的脂質(zhì)代謝能力。如小鼠通過角鯊烯給藥后膜膽固醇富集,與此同時,外周T細(xì)胞含量增加,通過脂筏內(nèi)IL-1受體拮抗劑、IL-2受體拮抗劑和IL-1受體拮抗劑亞基的共定位以及增強(qiáng)的信號轉(zhuǎn)導(dǎo)器、轉(zhuǎn)錄激活劑4和轉(zhuǎn)錄激活劑5磷酸化來促進(jìn)Th2細(xì)胞分化。然而,這種膽固醇富集并不影響Treg細(xì)胞的抑制功能[34]。AS中膽固醇代謝失衡是其重要的病理學(xué)基礎(chǔ),當(dāng)膽固醇大量蓄積于細(xì)胞內(nèi),具有抑炎效應(yīng)的Treg細(xì)胞將會轉(zhuǎn)化為促炎性T細(xì)胞來促進(jìn)AS的進(jìn)展[25]。
Th2細(xì)胞可特異性表達(dá)過氧化物酶體增殖物激活受體γ,并能在Th2細(xì)胞分化程序后期調(diào)節(jié)脂肪酸代謝[31]。有研究[35]表明,他汀類藥物通過降低膽固醇水平會限制Th17細(xì)胞分化,同時促進(jìn)Th2細(xì)胞分化,進(jìn)而延緩AS的發(fā)展。
2.3" 促炎性/抑炎性T細(xì)胞代謝重編程的關(guān)鍵分子機(jī)制
細(xì)胞的代謝過程會涉及到多種信號轉(zhuǎn)導(dǎo)通路,哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)和AMP活化的蛋白質(zhì)激酶(AMP-activated protein kinase,AMPK)是T細(xì)胞代謝重編程調(diào)控AS進(jìn)程的關(guān)鍵分子,具有重要的功能和作用(見圖1)。
2.3.1" mTOR
在T細(xì)胞分化成熟過程中,哺乳動物雷帕霉素復(fù)合物(mTOR complex,mTORC)1和mTORC2的機(jī)制靶點(diǎn)是細(xì)胞代謝的關(guān)鍵調(diào)節(jié)因子[36],其中mTORC1的激活,可增強(qiáng)糖酵解代謝、加快細(xì)胞生長[37]。刺激T細(xì)胞抗原受體后,mTORC1和髓細(xì)胞增生原癌基因(cellular myelocytomatosis oncogene,c-Myc)通過增強(qiáng)Glut1和CD98的表達(dá)來促進(jìn)葡萄糖和氨基酸的攝取。在T細(xì)胞激活后,線粒體的生物合成通過過氧化物酶體增殖物激活受體γ共激活因子1來介導(dǎo)。同時,細(xì)胞也會增加絲氨酸的獲取,絲氨酸通過線粒體絲氨酸羥甲基轉(zhuǎn)移酶的代謝來上調(diào)非典型谷氨酸半胱氨酸連接酶的表達(dá),而胱氨酸的攝取則促進(jìn)谷胱甘肽的合成。谷胱甘肽限制復(fù)合物Ⅲ中活性氧的積累可促進(jìn)T細(xì)胞活化。鈣的輸入導(dǎo)致活化T細(xì)胞核因子和AMPK的激活,后者可能限制mTOR的激活以保持T細(xì)胞的分化潛力。在第一次分裂過程中,糖酵解調(diào)節(jié)劑mTOR1和c-Myc的不對稱遺傳導(dǎo)致兩個子細(xì)胞的T細(xì)胞命運(yùn)不同?;罨腁MPK限制了ACC1的活性,而過氧化物酶體增殖物激活受體表達(dá)的增加導(dǎo)致FAS上調(diào),從而調(diào)節(jié)活化后的脂肪酸代謝[38]。
T細(xì)胞分化成不同的細(xì)胞亞群具有不同的作用和代謝需求,而mTOR信號轉(zhuǎn)導(dǎo)及其對代謝重編程的調(diào)節(jié)對T細(xì)胞的代謝具有較為重要的作用。如Th細(xì)胞中的Th1和Th17細(xì)胞亞群依賴于mTORC1信號轉(zhuǎn)導(dǎo)的選擇性調(diào)節(jié),Th2細(xì)胞亞群則依賴于mTORC2信號轉(zhuǎn)導(dǎo)的選擇性調(diào)節(jié),而抑制mTOR使T細(xì)胞分化為表達(dá)叉頭框蛋白P3抗體的Treg細(xì)胞[39]。
2.3.2" AMPK
AMPK復(fù)合物是一種絲氨酸/蘇氨酸激酶,是體內(nèi)的能量代謝傳感器。AMPK通過兩種不同的信號通路被T細(xì)胞抗原受體信號激活。第一種是依賴肝激酶B1(liver kinase B1,LKB1)的激活途徑:當(dāng)細(xì)胞內(nèi)AMP/ATP比例增高時,AMPK則被激活,并且可通過促進(jìn)分解代謝和抑制合成代謝來補(bǔ)充ATP的產(chǎn)生[40]。第二種是鈣輸入介導(dǎo)的鈣調(diào)磷酸酶激活途徑以及Ca2+-鈣調(diào)蛋白依賴性蛋白激酶的下游激活途徑[41]。
在T細(xì)胞活化過程中,許多上游調(diào)節(jié)因子可調(diào)節(jié)AMPK活性,從該激酶發(fā)出的信號可影響許多下游過程,因此將AMPK置于T細(xì)胞代謝重塑的中心。AMPK活化可抑制糖酵解和FAS。在早期T細(xì)胞活化中,細(xì)胞內(nèi)鈣離子的增加可激活A(yù)MPK,限制mTOR信號轉(zhuǎn)導(dǎo),阻止下游介質(zhì)的活化并可防止糖酵解合成代謝的早期參與[42]。缺乏AMPK的T細(xì)胞對糖酵解的依賴性增加以及細(xì)胞在葡萄糖消耗時線粒體不能重新接合,均支持這一觀點(diǎn)[43]。
人們普遍認(rèn)為AMPK能促進(jìn)Treg細(xì)胞的分化[44]。AMPK在LKB1缺陷型T細(xì)胞中活性降低,可導(dǎo)致糖酵解代謝增加、FAO代謝降低。同樣在LKB1缺陷的T細(xì)胞中,當(dāng)沒有炎癥發(fā)生時,會優(yōu)先分化為Th1和Th17細(xì)胞[45]??傮w而言,內(nèi)環(huán)境對T細(xì)胞亞群代謝狀態(tài)和功能的影響需更多研究來進(jìn)一步證實(shí)。
3" 總結(jié)與展望
綜上,目前關(guān)于AS與T細(xì)胞的研究均提示不同的T細(xì)胞亞群在AS中發(fā)揮著不同的作用,如Th1/Th17細(xì)胞的促炎性作用和Th2/Treg細(xì)胞的抗炎作用。近年,越來越多關(guān)于代謝重編程的研究證實(shí),細(xì)胞代謝途徑與分化和功能之間存在著緊密聯(lián)系。另外,很多關(guān)于免疫代謝的研究也證實(shí)T細(xì)胞代謝途徑與分化和功能之間有復(fù)雜關(guān)系,同時靶向調(diào)節(jié)T細(xì)胞在自身免疫性疾病及癌癥治療中均有較為突出的進(jìn)展,但T細(xì)胞代謝重編程與心血管疾病之間的緊密聯(lián)系仍在探索中,特別是在AS發(fā)生發(fā)展中需更多的研究來證實(shí)T細(xì)胞代謝重編程的作用,如何通過靶向調(diào)節(jié)T細(xì)胞的微環(huán)境及代謝過程來預(yù)防和治療AS將是新的研究方向。值得注意的是,通過靶向調(diào)節(jié)T細(xì)胞代謝的治療是否會受制于靶向藥物對于其他細(xì)胞和器官的影響,這也將是靶向調(diào)節(jié)T細(xì)胞代謝關(guān)鍵位點(diǎn)藥物的關(guān)鍵所在。
參考文獻(xiàn)
[1]Libby P.The changing landscape of atherosclerosis[J].Nature,2021,592(7855):524-533.
[2]Saigusa R,Winkels H,Ley K.T cell subsets and functions in atherosclerosis[J].Nat Rev Cardiol,2020,17(7):387-401.
[3]Wik JA,Sklhegg BS.T cell metabolism in infection[J].Front Immunol,2022,13:840610.
[4]Madden MZ,Rathmell JC.The complex integration of T-cell metabolism and immunotherapy[J].Cancer Discov,2021,11(7):1636-1643.
[5]Aso K,Kono M,Kanda M,et al.Itaconate ameliorates autoimmunity by modulating T cell imbalance via metabolic and epigenetic reprogramming[J].Nat Commun,2023,14(1):984.
[6]Chen J,Xiang X,Nie L,et al.The emerging role of Th1 cells in atherosclerosis and its implications for therapy[J].Front Immunol,2023,13:1079668.
[7]Lee S,Bartlett B,Dwivedi G.Adaptive immune responses in human atherosclerosis[J].Int J Mol Sci,2020,21(23):9322.
[8]Fernandez DM,Rahman AH,F(xiàn)ernandez NF,et al.Single-cell immune landscape of human atherosclerotic plaques[J].Nat Med,2019,25(10):1576-1588.
[9]Wang F,Li Y,Yang Z,et al.Targeting IL-17A enhances imatinib efficacy in Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia[J].Nat Commun,2024,15(1):203.
[10]Zeng J,Li M,Zhao Q,et al.Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases[J].J Pharm Anal,2023,13(6):545-562.
[11]Lin M,Wang B,Wei B,et al.Characteristics,prognostic determinants of monocytes,macrophages and T cells in acute coronary syndrome:protocol for a multicenter,prospective cohort study[J].BMC Cardiovasc Disord,2023,23(1):220.
[12]Durham SR,Shamji MH.Allergen immunotherapy:past,present and future[J].Nat Rev Immunol,2023,23(5):317-328.
[13]Dikiy S,Rudensky AY.Principles of regulatory T cell function[J].Immunity,2023,56(2):240-255.
[14]Wolf D,Gerhardt T,Winkels H,et al.Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B100-reactive CD4+T-regulatory cells[J].Circulation,2020,142(13):1279-1293.
[15]Li YJ,Zhang C,Martincuks A,et al.STAT proteins in cancer:orchestration of metabolism[J].Nat Rev Cancer,2023,23(3):115-134.
[16]Hinkley H,Counts DA,VonCanon E,et al.T Cells in atherosclerosis:key players in the pathogenesis of vascular disease[J].Cells,2023,12(17):2152.
[17]Zhong X,He X,Wang Y,et al.Warburg effect in colorectal cancer:the emerging roles in tumor microenvironment and therapeutic implications[J].J Hematol Oncol,2022,15(1):160.
[18]Bian X,Jiang H,Meng Y,et al.Regulation of gene expression by glycolytic and gluconeogenic enzymes[J].Trends Cell Biol,2022,32(9):786-799.
[19]Hayes JD,Dinkova-Kostova AT,Tew KD.Oxidative stress in cancer[J].Cancer Cell,2020,38(2):167-197.
[20]Guertin DA,Wellen KE.Acetyl-CoA metabolism in cancer[J].Nat Rev Cancer,2023,23(3):156-172.
[21]Almeida L,Dhillon-LaBrooy A,Carriche G,et al.CD4+ T-cell differentiation and function:unifying glycolysis,fatty acid oxidation,polyamines NAD mitochondria[J].J Allergy Clin Immunol,2021,148(1):16-32.
[22]Xu R,Yuan W,Wang Z.Advances in glycolysis metabolism of atherosclerosis[J].J Cardiovasc Transl Res,2023,16(2):476-490.
[23]McGettrick AF,O’Neill LAJ.The role of HIF in immunity and inflammation[J].Cell Metab,2020,32(4):524-536.
[24]Morianos I,Trochoutsou AI,Papadopoulou G,et al.Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-α-dependent pathways[J].Proc Natl Acad Sci U S A,2020,117(22):12269-12280.
[25]Aguilar-Ballester M,Herrero-Cervera A,Vinué ,et al.Impact of cholesterol metabolism in immune cell function and atherosclerosis[J].Nutrients,2020,12(7):2021.
[26]Han A,Peng T,Xie Y,et al.Mitochondrial-regulated Tregs:potential therapeutic targets for autoimmune diseases of the central nervous system[J].Front Immunol,2023,14:1301074.
[27]Wang H,Zhang H,Wang Y,et al.Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis[J].J Hepatol,2021,75(6):1271-1283.
[28]Shan J,Jin H,Xu Y.T cell metabolism:a new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus[J].Front Immunol,2020,11:1027.
[29]Wagner A,Wang C,F(xiàn)essler J,et al.Metabolic modeling of single Th17 cells reveals regulators of autoimmunity[J].Cell,2021,184(16):4168-4185.e21.
[30]Prado DS,Damasceno LEA,Sonego AB,et al.Pitavastatin ameliorates autoimmune neuroinflammation by regulating the Treg/Th17 cell balance through inhibition of mevalonate metabolism[J].Int Immunopharmacol,2021,91:107278.
[31]Kabat AM,Hackl A,Sanin DE,et al.Resident Th2 cells orchestrate adipose tissue remodeling at a site adjacent to infection [J].Sci Immunol,2022,7(76):eadd3263.
[32]Yang J,Chen Y,Li X,et al.Complex interplay between metabolism and CD4+ T-cell activation,differentiation,and function:a novel perspective for atherosclerosis immunotherapy[J].Cardiovasc Drugs Ther,2023.DOI:10.1007/s10557-023-07466-9.
[33]Miska J,Lee-Chang C,Rashidi A,et al.HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of Tregs in glioblastoma[J].Cell Rep,2022,39(10):110934.
[34]Song X,Sun X,Oh SF,et al.Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis[J].Nature,2020,577(7790):410-415.
[35]Kim BK,Hong SJ,Lee YJ,et al.Long-term efficacy and safety of moderate-intensity statin with ezetimibe combination therapy versus high-intensity statin monotherapy in patients with atherosclerotic cardiovascular disease (RACING):a randomised,open-label,non-inferiority trial[J].Lancet,2022,400(10349):380-390.
[36]Liu GY,Sabatini DM.mTOR at the nexus of nutrition,growth,ageing and disease[J].Nat Rev Mol Cell Biol,2020,21(4):183-203.
[37]Battaglioni S,Benjamin D,Wlchli M,et al.mTOR substrate phosphorylation in growth control[J].Cell,2022,185(11):1814-1836.
[38]Li Q,Wang Y,Wu S,et al.CircACC1 regulates assembly and activation of AMPK complex under metabolic stress[J].Cell Metab,2019,30(1):157-173.e7.
[39]Ma J,Hu W,Liu Y,et al.CD226 maintains regulatory T cell phenotype stability and metabolism by the mTOR/Myc pathway under inflammatory conditions[J].Cell Rep,2023,42(10):113306.
[40]Steinberg GR,Hardie DG.New insights into activation and function of the AMPK[J].Nat Rev Mol Cell Biol,2023,24(4):255-272.
[41]Lee H,Zandkarimi F,Zhang Y,et al.Energy-stress-mediated AMPK activation inhibits ferroptosis[J].Nat Cell Biol,2020,22(2):225-234.
[42]Zhao Q,Duck LW,Huang F,et al.CD4+ T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis[J].Sci Immunol,2020,5(54):eabc6373.
[43]Mayer KA,Smole U,Zhu C,et al.The energy sensor AMPK orchestrates metabolic and translational adaptation in expanding T helper cells[J].FASEB J,2021,35(4):e21217.
[44]Luo Y,Guo J,Zhang P,et al.Mesenchymal stem cell protects injured renal tubular epithelial cells by regulating mTOR-mediated Th17/Treg axis[J].Front Immunol,2021,12:684197.
[45]Baixauli F,Piletic K,Puleston DJ,et al.An LKB1-mitochondria axis controls TH17 effector function[J].Nature,2022,610(7932):555-561.
收稿日期:2023-12-16