摘要:【目的】faujasite(FAU)沸石分子篩膜作為重要的親水性、大孔徑(0.74 nm)的膜材料,在滲透汽化(pervaporation,PV)液體分離領(lǐng)域具有廣闊的應(yīng)用前景。促進(jìn)FAU沸石分子篩膜的開發(fā)、應(yīng)用,在PV領(lǐng)域的發(fā)展應(yīng)得到重視。【研究現(xiàn)狀】綜述近年來FAU沸石分子篩膜的制備方法,包括原位合成法、干凝膠法、二次生長法、微波加熱法等,分析各種方法的特點;探討如何通過制備參數(shù)調(diào)控實現(xiàn)FAU沸石分子篩膜性能提升的策略;總結(jié)FAU沸石分子篩膜的PV分離機制,在PV領(lǐng)域的應(yīng)用進(jìn)展和所面臨的挑戰(zhàn)?!菊雇坑行е苽錈o缺陷的FAU沸石分子篩膜,提高分離性能,應(yīng)進(jìn)一步聚焦于FAU沸石分子篩膜的制備方法創(chuàng)新、制備工藝優(yōu)化和膜結(jié)構(gòu)精密調(diào)控;FAU沸石分子篩膜有望在工業(yè)分離過程中發(fā)揮更大的作用。
關(guān)鍵詞:FAU分子篩膜;沸石;滲透汽化;分離機制;膜分離
中圖分類號:TB4;O611.4文獻(xiàn)標(biāo)志碼:A
引用格式:
王青,陳慧媛,吳涵鈺,等.FAU沸石分子篩膜的制備及滲透汽化研究進(jìn)展[J].中國粉體技術(shù),2024,30(5):21-34.
WANG Qing,CHEN Huiyuan,WU Hanyu,et al.Progress in preparation and pervaporation of FAU zeolite membranes[J].China Powder Science and Technology,2024,30(5):21?34.
膜分離技術(shù)具有能耗低、效率高、設(shè)備簡單和過程易控制等特點,被譽為21世紀(jì)高精分離技術(shù)之一。膜分離技術(shù)通過具有選擇性的膜材料將含有2種或2種以上組分的混合物分開,該技術(shù)過程包括微濾、超濾、反滲透、納濾、電滲析、氣體分離和滲透汽化(pervaporation,PV)[1]。膜材料的性質(zhì)是決定膜分離性能的重要因素。無機膜材料具有良好的力學(xué)強度、水熱溫穩(wěn)定性、化學(xué)穩(wěn)定性和運行壽命長等優(yōu)點,逐漸成為嚴(yán)苛條件下應(yīng)用的理想膜材料[2]。沸石分子篩是一種常見的無機膜材料,具有分子級別的均勻孔道,主要通過選擇性吸附和分子篩分實現(xiàn)混合物的分離[1]。
沸石分子篩是一類具有開放骨架結(jié)構(gòu)的硅鋁酸鹽,骨架由角共享TO4四面體(T通常為Si、Al或P等元素)連接而成[3]。四面體的不同連接方式導(dǎo)致了沸石類型的多樣性。根據(jù)國際沸石協(xié)會數(shù)據(jù)庫信息,每種沸石類型都有一個獨特的代碼,目前已知的沸石拓?fù)浣Y(jié)構(gòu)數(shù)量達(dá)到了256種。常見沸石分子篩的骨架拓?fù)浣Y(jié)構(gòu)如圖1所示。如linde type A(LTA,孔徑為0.41 nm)、chabazite(CHA,孔徑為0.38 nm)、mordenite framework inverted(MFI,孔徑為0.55 nm),mordenite(MOR,孔徑為0.70 nm)和faujasite(FAU,孔徑為0.74 nm)等[4-5]。近幾年,研究者已經(jīng)成功開發(fā)出高質(zhì)量的LTA[6]、MOR[7]、MFI[8-9]和FAU[10]等沸石分子篩膜,在多個領(lǐng)域展現(xiàn)出巨大的應(yīng)用潛力。
FAU具有12元環(huán)孔道,是一種低硅高鋁沸石,Si與Al物質(zhì)的量比為1~3。根據(jù)Si與Al物質(zhì)的量比的不同可分為NaX和NaY2種類型[11]。由于FAU分子篩膜具有較大的孔徑(0.74 nm)和良好的極性(親水性)已被成功應(yīng)用于PV液體分離,并表現(xiàn)出高的通量和選擇性,受到研究者的關(guān)注[12-14]。本文中以近年來FAU沸石分子篩膜取得的研究為基礎(chǔ),綜述FAU沸石分子篩膜的制備方法、結(jié)構(gòu)優(yōu)化與調(diào)控、PV機制和應(yīng)用,旨在為FAU沸石分子篩膜在PV領(lǐng)域的研究提供參考。
1 FAU沸石分子篩膜的制備方法
1.1原位合成法
原位水熱合成法是制備分子篩膜最常用的方法之一[16]。原位合成法制備分子篩膜的實驗過程如圖2所示。在原位合成過程中,通過將支撐體浸入合成溶液中,并在特定的溫度和自生壓力下,在多孔支撐體表面生長出連續(xù)的薄沸石層[17-18]。通常,合成溶液的組成包含硅源(如膠體二氧化硅、氣相二氧化硅、硅酸鈉、四乙氧基硅烷等)、鋁源(如氫氧化鋁、鋁酸鈉、鋁箔等)、有機結(jié)構(gòu)導(dǎo)向劑(如四烷基銨鹽、冠醚等)、堿以及水[19-21]。Mao等[22]以偏高嶺土為鋁源和硅酸鈉為硅源,采用原位水熱生長法合成了FAU沸石分子篩膜。該膜在溫度小于50℃時對質(zhì)量分?jǐn)?shù)為70%的乙醇溶液的滲透通量和分離因子分別為1.41 kg/(h?m2)和16.8。
1.2干凝膠法
制備分子篩膜的過程包括在載體上沉積含有沸石顆粒的凝膠層,隨后在一定溫度和自生壓力下進(jìn)行蒸汽處理(合成)。干凝膠法合成沸石膜的實驗流程示意圖如圖3所示。該方法可以通過2種常用路徑實現(xiàn):1)氣相轉(zhuǎn)化法,特點是將結(jié)構(gòu)導(dǎo)向劑(structure directing agent,SDA)摻入合成溶液中;2)蒸汽輔助結(jié)晶(steam?assisted conversion,SAC)法,特點是將SDA摻入凝膠中并通過蒸汽相供應(yīng)水分,通過SDA和水蒸氣滲透到凝膠層中進(jìn)行沸石晶體的成核和生長[19]。
干凝膠法通過減少硅源、鋁源和SDA的使用,顯著降低了膜的制備成本。另一方面,原位合成法的缺點是晶體可能在合成溶液的主體中成核和生長,并被納入到膜層中,導(dǎo)致膜層形成缺陷的風(fēng)險[23]。干凝膠合成方法能夠避免這個問題,但該方法的主要缺點在于合成所需的時間較長,可能需要數(shù)天才能完成,并且可能需要重復(fù)合成數(shù)次。只有少數(shù)研究者報道了通過干凝膠法合成FAU沸石分子篩膜。
目前關(guān)于SAC法制備FAU沸石分子膜的報道較少,但在另一孔徑相似的BEA型(孔徑為0.67 nm)沸石分子膜的制備過程中充分展示了SAC制備法的優(yōu)勢。Ueno等[23]采用SAC法在涂有晶種和稀合成凝膠的管狀二氧化硅載體上制備了BEA沸石分子篩膜,在稀合成凝膠條件下通過蒸汽輔助轉(zhuǎn)化法合成沸石膜示意圖如圖4所示。在優(yōu)化條件下,使用H2O和SiO2物質(zhì)的量比為500的稀釋合成凝膠,在24 h內(nèi)合成了致密且連續(xù)的膜層。在合成過程中,SiO2作為晶種層生長所需的硅源,使得支撐體表面SiO2的濃度局部增加,促進(jìn)了膜的生長[23]。這種新穎且簡單的制膜方法將稀合成凝膠與SAC法相結(jié)合,有效利用SiO2載體表面的溶解硅源,極大地減少了原料的消耗。
1.3二次生長法
二次生長法又稱為晶種法,包括2個過程。首先合成沸石晶種,并在載體表面沉積晶種;其次進(jìn)行膜的水熱合成,二次生長法合成沸石膜的流程示意圖如圖5所示[24]。將沸石晶種沉積到載體上的方法包括浸涂、過濾、擦涂、靜電、真空涂覆、旋涂和化學(xué)沉積等[25]。沉積在載體上的晶種在水熱合成過程中充當(dāng)晶體生長的核心,使得晶體的成核和生長被成功解耦[19]。二次生長法所需的合成溶液濃度通常低于成核過程或晶種合成時的濃度,有效降低了晶體在合成溶液主體中的形成,從而使得晶體的生長主要發(fā)生在載體表面的晶種層上。此外,通過控制晶種層可以調(diào)控晶體生長的速度和方向,可以避免形成不期望的沸石相[19]。例如,為了提高膜的分離性能,在載體上預(yù)先組裝良好排列的晶種來控制膜層晶體的微觀結(jié)構(gòu)和擇優(yōu)取向。
1.4微波加熱法
利用微波能量快速、均勻地直接加熱反應(yīng)體系[27]。傳統(tǒng)的加熱方法(如傳導(dǎo)、對流和熱輻射)需要外部熱源,并且依賴于熱量傳遞到材料表面和材料內(nèi)部的快慢[28]。微波加熱法與常規(guī)加熱法合成沸石膜的路線示意圖如圖6所示。與傳統(tǒng)的水熱合成方法相比,微波合成具有合成時間短、所得沸石粒徑分布窄、合成溶液組成寬和晶體純度高等優(yōu)點[29]。此外,微波技術(shù)可以與傳統(tǒng)的合成方法相結(jié)合,豐富了沸石膜的合成路線。例如,已有報道將原位微波合成法和微波輔助二次生長法用于沸石膜的制備[28]。目前,通過微波加熱已成功制備了LTA、MFI、AFI、FAU、SOD和ETS-4等類型沸石分子篩膜。
2制備過程優(yōu)化
隨著研究者們的不斷努力,開發(fā)了多種沸石分子篩膜的優(yōu)化制備方法以獲得高的分離性能。Nazir等[30]采用二次水熱合成法制備FAU(NaX)沸石膜。研究發(fā)現(xiàn),晶種的大小對FAU沸石膜的生長有顯著影響。晶種尺寸對FAU沸石膜生長的影響如圖7所示??疾觳煌叽纾ㄖ睆綖?.75~5.5μm)的晶種對FAU分子篩膜生長的影響。結(jié)果表明,小晶種(直徑為0.75μm)顆粒之間的空隙最小,所形成的晶種層較為致密,有效降低了膜層的缺陷,獲得了高質(zhì)量的FAU沸石膜。此外,在獲得相同厚度的膜層方面,小尺寸的晶種表現(xiàn)出更高的活性,促進(jìn)了膜層的快速生長,從而顯著縮短膜的制備時間。
李子祎等[32]采用大、小2種尺寸的晶種和二步變溫?zé)峤糠ㄖ苽渚ХN層,獲得了高性能的沸石分子篩膜。采用大、小晶種和二步變溫?zé)峤糠ㄖ苽浞惺さ氖疽鈭D如圖8所示,首先在高溫(溫度為120℃)下涂覆大晶種以填充大孔載體表面的缺陷,該過程有效地改善了載體表面的平整度。其次,在低溫下涂覆小晶種。采用該方法制備的膜層平整致密、無針孔缺陷,對于合成高質(zhì)量、致密的FAU沸石分子篩膜具有重要的參考意義[31-33]。
單次原位合成法在載體上直接結(jié)晶通常會導(dǎo)致非均勻的沸石層。Zhu等[34]采用二階段原位合成法在多孔α-Al2O3管上制備了沸石分子篩膜。其中第1階段合成旨在通過FAU沸石的原位成核在支撐體上形成均勻覆蓋的沸石薄膜。第2階段合成使用稀釋的合成溶液進(jìn)行,在預(yù)先形成的沸石層上繼續(xù)生長并形成致密的沸石膜層。這種二階段原位合成方法能夠有效抑制LTA沸石和P型沸石等雜晶相的形成。二階段原位合成法制備沸石膜的SEM圖像如圖9所示。該膜在溫度為65℃下對質(zhì)量分?jǐn)?shù)為90%乙醇溶液表現(xiàn)出優(yōu)異的分離性能,分離因子高達(dá)380,通量為1.48 kg/(m2·h)。
3 FAU分子篩膜在PV中的應(yīng)用
3.1 PV
由于FAU分子篩膜具有較大的孔徑(0.74 nm)和良好的親水性,在PV脫水過程中表現(xiàn)出較高的通量和選擇性而備受研究者關(guān)注[14]。據(jù)報道,獲得等量產(chǎn)品,PV所消耗的能量不到傳統(tǒng)精餾工藝的10%[35]。PV實驗裝置示意圖如圖10所示。將膜垂直浸入進(jìn)料液中。進(jìn)料側(cè)保持在大氣壓下,而滲透側(cè)通過真空泵抽真空使壓力保持在接近0。采用浸入液氮中的冷阱收集滲透側(cè)樣品和使用氣相色譜儀分析進(jìn)料液和滲透液樣品的組成。值得注意的是PV實驗通常需要運行穩(wěn)定后,每隔一段時間(如30~60 min)取一次樣品;每個測試條件至少取3次樣品,測試結(jié)果取平均值以確保測試結(jié)果的準(zhǔn)確性。表征膜的PV分離性能的評價體系有2種,通量與分離因子(或分離指數(shù))、滲透速率與選擇性。前者因計算過程簡單,易于獲得而被廣泛使用。隨著計算機軟件(如Aspen)的不斷發(fā)展和各種物性數(shù)據(jù)的易于獲得,后者逐漸受到關(guān)注。滲透通量和分離因子的值不僅取決于膜材料的內(nèi)在特性,還取決于PV的操作條件,如進(jìn)料溫度和濃度。這是由于在不同PV條件下,各組分的活度系數(shù)(γi)和飽和蒸氣壓(pio)的不同導(dǎo)致了質(zhì)量傳遞的驅(qū)動力變化。使用滲透速率和選擇性可以有效解耦操作條件對PV性能的影響,從而闡明和量化膜固有性質(zhì)對分離性能的貢獻(xiàn)[36]。滲透通量J、分離因子αi/j、分離指數(shù)(PSI)、滲透速率(Pi)和選擇性(selectivity)的計算公式如式(1)~(5)所示[37-41]:
式中:m是在收集時間t內(nèi)通過有效膜面積A收集的滲透側(cè)樣品質(zhì)量;y和x分別是滲透液和進(jìn)料液中i(或j)組分的摩爾分?jǐn)?shù);Jm,i是i組分的摩爾通量,pf,i和pp,i分別為i組分在進(jìn)料側(cè)和滲透側(cè)的分壓。
3.2 PV分離機制
在PV過程中,溶解-擴散模型被認(rèn)為是滲透組分通過致密聚合物膜的傳質(zhì)機制[42-43]。對于無機多孔膜,研究者提出了2種傳輸機制,即吸附-擴散機制和分子篩分機制。吸附-擴散機制與分子篩分機制示意圖如圖11所示[44-45]。吸附-擴散機制類似于溶解-擴散機制,傳質(zhì)過程包括3個連續(xù)步驟:分子在膜表面吸附、擴散通過膜、在滲透側(cè)解吸[22]。吸附和擴散過程是連續(xù)的過程,由于解吸的速度很快,通??梢院雎詫髻|(zhì)過程的影響[46-48]。分子篩分機制是一種基于分子大小和形狀差異的傳質(zhì)機制,即具有大分子被截留和小分子透過的分離效果[39,49]。深入理解微孔沸石膜的PV分離機制,對于闡明膜結(jié)構(gòu)與性能之間的關(guān)系、預(yù)測合適的應(yīng)用體系以及獲得高分離效率至關(guān)重要[10]。
Wang等[38]為了揭示FAU分子篩膜的PV分離機制,考察了氣體和液體分子通過FAU分子篩膜的滲透行為,分子篩膜的滲透汽化分離機制及性能預(yù)測示意圖如圖12所示。由圖12(a)可知,F(xiàn)AU分子篩膜具有良好的H2滲透性,滲透速率為1.1×10-6 mol/(m2·s·Pa),且任意氣體的滲透速率比值(如H2與N2,N2與CH4)均接近努森選擇性,表明氣體分子通過FAU分子篩膜遵循努森擴散機制。在相同的分子大小范圍內(nèi)(0.289~0.506 1 nm),PV滲透速率(水、甲醇、乙醇、正丙醇、異丙醇和叔丁醇)卻隨著分子大小的增加而逐漸降低。結(jié)果表明,基于FAU分子篩膜的PV分離機制并非依賴于分子篩分。
與氣體分子相比,液體分子的極性和高親水性的FAU分子篩膜之間的親和力不容忽視。親水性膜材料對極性組分有較強的親和力,有利于極性組分的透過,而對非極性組分則相反[39,50-51]。由圖12(b)可知,PV滲透速率隨著極性指數(shù)的降低而降低,與極性指數(shù)呈現(xiàn)良好的指數(shù)相關(guān)性,相關(guān)系數(shù)的平方(R2)高達(dá)0.99。值得注意的是,具有相同分子大小的正丙醇和異丙醇的滲透速率完全取決于其極性指數(shù)。這一結(jié)果揭示了FAU分子篩膜的PV分離機制主要是吸附-擴散,而不是分子篩分。
根據(jù)無機多孔膜的吸附-擴散機制,組分i的滲透速率Pi等于其吸附速率Si與擴散系數(shù)Di之積(Pi=Si×Di)。Si取決于極性指數(shù)(親和力)的差異,而FAU分子篩膜的孔徑(0.74 nm)遠(yuǎn)大于液體分子(0.295 5~0.506 1 nm),使得滲透分子的大小對Di的影響較小。如圖12(c)所示,親水性FAU分子篩膜的PV脫水性能取決于水分子相對于有機溶劑的吸附速率差異,可以根據(jù)滲透分子的極性指數(shù)特征進(jìn)行預(yù)測。Wang等[38]通過建立極性指數(shù)來預(yù)測PV性能,提供了一種新穎、便捷且環(huán)保的性能評估方法。
3.3 FAU分子篩膜的PV應(yīng)用進(jìn)展
在PV領(lǐng)域的應(yīng)用主要包括PV脫水和PV脫有機物。在PV脫水中,F(xiàn)AU分子篩膜通過對水的優(yōu)先選擇性滲透,實現(xiàn)水的分離和純化[24,52]。在PV脫有機物中,F(xiàn)AU沸石分子篩膜則通過對親水性有機物的選擇性滲透(如甲醇、乙醇),達(dá)到有機物的分離和提純。目前,F(xiàn)AU沸石分子篩膜已經(jīng)在海水淡化、廢水處理、石油化工和醫(yī)藥化工等領(lǐng)域取得了顯著的成就和良好的應(yīng)用前景[37,53-54]。
Zhu等[14]通過將FAU(NaY)沸石分子篩膜中的Na+離子與K+、Ag+、Mg2+、Ca2+、Zn2+和Co2+進(jìn)行離子交換,考察了離子交換對FAU沸石分子篩膜的PV脫水性能的影響,離子交換法促進(jìn)沸石膜的滲透汽化脫水性能如圖13所示。研究發(fā)現(xiàn),通過二價金屬離子取代Na+顯著改善了FAU分子篩膜的脫水性能。通過X射線衍射和掃描電子顯微鏡表征分析,離子交換后的FAU沸石分子篩膜的晶相結(jié)構(gòu)和膜層形態(tài)均未改變。Zn-FAU分子篩膜的表面和截面SEM圖像如圖14所示。由圖可知,離子交換未改變膜層FAU沸石晶體的無取向性和八面體形態(tài)。相比于未離子交換前,該膜對質(zhì)量分?jǐn)?shù)為90%乙醇溶液的分離因子增加了230%,并具有良好的重現(xiàn)性。
Zhou等[10]使用3-氨基丙基三乙氧基硅烷(3-triethoxysilylpropylamine,APTES)對管狀載體進(jìn)行改性,成功合成了相純且共生良好的FAU沸石分子篩膜,并考察了該膜用于碳酸二甲酯(dimethyl carbo-nate,DMC)PV脫水的分離性能。該膜在溫度為80℃時對質(zhì)量分?jǐn)?shù)為90%的DMC溶液進(jìn)行脫水9 h后,進(jìn)料側(cè)的DMC的質(zhì)量分?jǐn)?shù)高達(dá)99%,表現(xiàn)出優(yōu)異的分離能力。此外,在商業(yè)化應(yīng)用方面,Zhou等[10]成功在長度為80、100 cm的α-Al2O3管上制備了FAU分子篩膜,這些膜在DMC溶液的脫水過程中同樣表現(xiàn)出優(yōu)異的分離性能。純相的FAU沸石分子篩膜的PV脫水性能顯著高于其他膜材料的分離性能,F(xiàn)AU沸石分子篩膜的高分離性能在有機溶劑脫水方面表現(xiàn)出巨大的應(yīng)用潛力。
4總結(jié)與展望
FAU沸石分子篩膜作為一種重要的無機膜材料,因優(yōu)異的水熱穩(wěn)定性、化學(xué)穩(wěn)定性和分離性能,在PV液體分離領(lǐng)域得到了廣泛關(guān)注。本文中綜述了FAU沸石分子篩膜的制備方法、結(jié)構(gòu)優(yōu)化與調(diào)控、PV分離機制以及應(yīng)用研究進(jìn)展。
1)FAU沸石分子篩膜的制備方法包括原位合成法、干凝膠法、二次生長法和微波加熱法等,不同的制備方法對膜的性能和結(jié)構(gòu)有著不同的影響。
2)通過調(diào)控制備參數(shù)可以實現(xiàn)FAU沸石分子篩膜的性能提升。例如,適當(dāng)?shù)墓桎X比有助于提高膜的親水性和通量,而合理的晶化條件則有助于減少膜的缺陷和提高選擇性。
3)FAU沸石分子篩膜的PV分離主要依賴于選擇性吸附實現(xiàn)混合物的分離。FAU沸石分子篩膜的較大孔徑和良好的親和性使其在有機溶劑脫水等應(yīng)用中表現(xiàn)出優(yōu)異的分離性能。
4)高質(zhì)量的FAU沸石分子篩膜在溶劑分離領(lǐng)域展現(xiàn)出良好的應(yīng)用前景,尤其在苛刻條件下表現(xiàn)出優(yōu)異的穩(wěn)定性和耐久性。
盡管FAU沸石分子篩膜在PV領(lǐng)域取得了顯著進(jìn)展,但其實際應(yīng)用仍面臨一些挑戰(zhàn)。未來的研究應(yīng)側(cè)重于以下幾個方面,以進(jìn)一步提升FAU沸石分子篩膜的性能和應(yīng)用范圍。
1)進(jìn)一步優(yōu)化FAU沸石分子篩膜的制備工藝,如開發(fā)更高效的晶化方法和改進(jìn)膜層結(jié)構(gòu),減少膜缺陷和提高膜的均勻性,從而提升分離性能和穩(wěn)定性。
2)探索和開發(fā)新型FAU沸石分子篩材料,如離子交換、摻雜改性和構(gòu)筑復(fù)合膜,以提高膜的選擇性和通量。通過引入功能性材料或基團(tuán),可以進(jìn)一步增強FAU沸石分子篩膜的分離性能和適用范圍。
3)尚需通過理論模擬和實驗驗證相結(jié)合的方法,深入研究FAU沸石分子篩膜的分離機制,尤其是在復(fù)雜混合體系中的分離行為;揭示其分離性能的內(nèi)在機制,為膜材料的設(shè)計和優(yōu)化提供理論依據(jù)。
4)在FAU沸石分子篩膜的應(yīng)用中,注重環(huán)境友好和可持續(xù)發(fā)展,開發(fā)低能耗、低成本的制備工藝和應(yīng)用技術(shù),推動綠色化工的發(fā)展。
綜上所述,F(xiàn)AU沸石分子篩膜在PV領(lǐng)域具有廣闊的應(yīng)用前景。通過不斷優(yōu)化制備工藝,開發(fā)新型FAU膜材料,加強構(gòu)筑機制及分離機制研究,推動工業(yè)化應(yīng)用,進(jìn)一步提高FAU沸石分子篩膜的分離性能和應(yīng)用范圍,為化學(xué)工業(yè)和環(huán)保領(lǐng)域提供更加高效和可持續(xù)的分離方案。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Authors’Contributions)
陳慧媛和王青參與論文構(gòu)思和寫作。吳涵鈺、劉嶠、范蘢和牛鑫蒲參與文獻(xiàn)檢索和論文修改。王青、胡坤宏和徐農(nóng)參與論文審閱、編輯和修改。所有作者均閱讀并同意了最終稿件的提交。
WANG Qing and CHEN Huiyuan contributed to the conceptualization and writing of the manuscript.WU Hanyu,LIU Qiao,F(xiàn)AN Long and NIU Xinpu participated in the literature search and revision.WANG Qing,HU Kunhong,and XU Nong participated in the review,editing and revision.ALL authors have read the last version of paper and consented for submission.
參考文獻(xiàn)(References)
[1]WEE S-L,TYE C-T,BHATIA S.Membrane separation process-pervaporation through zeolite membrane[J].Separation and Purification Technology,2008,63(3):500-516.
[2]KAYVANI FARD A,MCKAY G,BUEKENHOUDT A,et al.Inorganic membranes:preparation and application for water treatment and desalination[J].Materials,2018,11(1):74.
[3]NARAYANAN S,TAMIZHDURAI P,MANGESH V L,et al.Recent advances in the synthesis and applications of morden-ite zeolite-review[J].RSC Advances,2021,11(1):250-267.
[4]XU H,WU P.New progress in zeolite synthesis and catalysis[J].National science review,2022,9(9):nwac045.
[5]SONG W,LI G,GRASSIAN V H,et al.Development of improved materials for environmental applications:nanocrystalline NaY zeolites[J].Environmental scienceamp;technology,2005,39(5):1214-1220.
[6]MA N,WANG R,HE G,et al.Preparation of high?performance zeolite NaA membranes in clear solution by adding SiO2 into Al2O3 hollow?fiber precursor[J].AIChE Journal,2018,64(7):2679-2688.
[7]YAN Z,WU X,ZHU B,et al.Improvement of esterification conversion by rapid pervaporation dehydration using a high-flux and acid-resistant MOR zeolite membrane[J].Separation and Purification Technology,2022,286:120415.
[8]PENG L,WU Z,WANG B,et al.Fabrication of high-stability W-MFI zeolite membranes for ethanol/water mixturesepara-tion[J].Journal of Membrane Science,2022,659:120729.
[9]WANG Q,WU A,ZHONG S,et al.Highly-oriented silicalite membranes for butane isomer separation[J].Journal of Membrane Science,2017,540:50-59.
[10]ZHOU J,ZHOU C,XU K,et al.Seeding-free synthesis of large tubular zeolite FAU membranes for dewatering of dimethyl carbonate by pervaporation[J].Microporous and Mesoporous Materials,2020,292:109713.
[11]YANG S,NAVROTSKY A,PHILLIPS B L.An in situ calorimetric study of the synthesis of FAU zeolite[J].Microporous and Mesoporous Materials,2001,46(2/3):137-151.
[12]THANG H V,GRAJCIAR L,NACHTIGALL P,et al.Adsorption of CO2 in FAU zeolites:effect of zeolite composition[J].Catalysis Today,2014,227:50-56.
[13]GUEUDRéL,QUOINEAUD A A,PIRNGRUBER G,et al.Evidence of multiple cation site occupation in zeolite NaY with high Si/Al ratio[J].The Journal of Physical Chemistry C,2008,112(29):10899-10908.
[14]ZHU M,AN X,GUI T,et al.Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane[J].Chinese Journal of Chemical Engineering,2023,59:176-181.
[15]LI Y,LI L,YU J.Applications of zeolites in sustainable chemistry[J].Chem,2017,3(6):928-949.
[16]LIU Y,WANG N,PAN J H,et al.In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified sub?strates[J].Journal of the American Chemical Society,2014,136(41):14353-14356.
[17]YANG K,ZHANG X,CHAO C,et al.In-situ preparation of NaA zeolite/chitosan porous hybrid beads for removal of ammonium from aqueous solution[J].Carbohydrate polymers,2014,107:103-109.
[18]FENG H,LI C,SHAN H.In-situ synthesis and catalytic activity of ZSM-5 zeolite[J].Applied Clay Science,2009,42(3/4):439-445.
[19]NAZIR L S M,YEONG Y F,CHEW T L.Methods and synthesis parameters affecting the formation of FAU type zeolitemembrane and its separation performance:a review[J].Journal of Asian Ceramic Societies,2020,8(3):553-571.
[20]YU L,ZENG C,WANG C,et al.In situ impregnation?gelation?hydrothermal crystallization synthesis of hollow fiber zeo?liteNaA membrane[J].Microporous and Mesoporous Materials,2017,244:278-283.
[21]ZHU G,QIU S,YU J,et al.Synthesis and characterization of high-quality zeolite LTA and FAU single nanocrystals[J].Chemistry of materials,1998,10(6):1483-1486.
[22]冒進(jìn),王藝頻,劉菁,等.地質(zhì)聚合物原位合成八面沸石膜及其滲透汽化性能[J].硅酸鹽學(xué)報,2013,41(9):1244-1250.
MAO J,WANG Y,LIU J,et al.In-situ synthesis of faujasite zeolite membrane from geopolymer and its pervaporation pro-perties[J].Journal of the Chinese Ceramic Society,2013,41(9):1244-1250.
[23]UENO K,YAMADA S,NEGISHI H,et al.Fabrication of pure-silica BEA-type zeolite membranes on tubular silica sup?ports coated with dilute synthesis gel via steam-assisted conversion[J].Separation and Purification Technology,2020,247:116934.
[24]MATSUKATA M,SEKINE Y,KIKUCHI E,et al.Synthesis of FAU-Zeolite membrane by a secondary growth method:influence of seeding on membrane growth and its performance in the dehydration of isopropyl alcohol-water mixture[J].ACS Omega,2021,6(14):9834-9842.
[25]KOSINOV N,GASCON J,KAPTEIJN F,et al.Recent developments in zeolite membranes for gas separation[J].Journal of Membrane Science,2016,499:65-79.
[26]WANG Q,CHEN H,HE F,et al.High-performance FAU zeolite membranes derived from nano-seeds for gas separation[J].Membranes,2023,13(11):858.
[27]ZHU G,LI Y,ZHOU H,et al.Microwave synthesis of high performance FAU-type zeolite membranes:optimization,characterization and pervaporation dehydration of alcohols[J].Journal of Membrane Science,2009,337(1/2):47-54.
[28]LI Y,YANG W.Microwave synthesis of zeolite membranes:a review[J].Journal of Membrane Science,2008,316(1/2):3-17.
[29]XU X,YANG W,LIU J,et al.Fast formation of NaA zeolite membrane in the microwave field[J].Chinese Science Bul?letin,2000,45:1179-1181.
[30]NAZIR L S M,YEONG Y F,CHEW T L.Study on the effect of seed particle size toward the formation of NaX zeolite mem?branes via vacuum-assisted seeding technique[J].Journal of Asian Ceramic Societies,2021,9(2):586-597.
[31]XIAO W,CHEN Z,ZHOU L,et al.A simple seeding method for MFI zeolite membrane synthesis on macroporous support by microwave heating[J].Microporous and Mesoporous Materials,2011,142(1):154-160.
[32]李子祎,潘恩澤,王佳軒,等.ZSM-5沸石分子篩膜的制備及脫鹽性能研究[J].化工學(xué)報,2021,72(10):5247-5256.
LI Z,PAN E,WANG J,et al.Preparation of ZSM-5 zeolite membrane and its application in desalination[J].CIESCJournal,2021,72(10):5247-5256.
[33]ZHANG X,LIU H,YEUNG K L.Influence of seed size on the formation and microstructure of zeolite silicalite-1 mem?branes by seeded growth[J].Materials Chemistry and Physics,2006,96(1):42-50.
[34]ZHU G,LI Y,CHEN H,et al.An in situ approach to synthesize pure phase FAU-type zeolite membranes:effect of aging and formation mechanism[J].Journal of Materials Science,2008,43:3279-3288.
[35]KARAN S,JIANG Z,LIVINGSTON A G.Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J].Science,2015,348(6241):1347-1351.
[36]GUO W F,CHUNG T-S,MATSUURA T.Pervaporation study on the dehydration of aqueous butanol solutions:acompari?son of flux vs.permeance,separation factor vs.selectivity[J].Journal of Membrane Science,2004,245(1/2):199-210.
[37]WANG Q,QIAN C,XU N,et al.Synthesis optimization and separation mechanism of ZSM-5 zeolite membranes for per?vaporation dehydration of organic solvents[J].Science of The Total Environment,2024,929:172641.
[38]WANG Q,GUO Y,XU N,et al.FAU zeolite membranes synthesized using nanoseeds-separation mechanism and optimi?zation for the pervaporation dehydration of various organic solvents[J].Journal of Membrane Science,2024,696:122522.
[39]WANG Q,XU N,LIU Q,et al.Low-temperature cross-linking fabrication of sub-nanoporous SiC-based membranes for application to the pervaporation removal of methanol[J].Journal of Membrane Science,2022,662:121008.
[40]DONG G,NAGASAWA H,YU L,et al.Pervaporation removal of methanol from methanol/organic azeotropes using organosilica membranes:Experimental and modeling[J].Journal of Membrane Science,2020,610:118284.
[41]WANG Q,YOKOJI M,NAGASAWA H,et al.Microstructure evolution and enhanced permeation of SiC membranes derived from allylhydridopolycarbosilane[J].Journal of Membrane Science,2020,612:118392.
[42]CHENG X,PAN F,WANG M,et al.Hybrid membranes for pervaporation separations[J].Journal of Membrane Science,2017,541:329-346.
[43]LIU G,JIN W.Pervaporation membrane materials:recent trends and perspectives[J].Journal of Membrane Science,2021,636:119557.
[44]RAZA W,YANG J,WANG J,et al.HCl modification and pervaporation performance of BTESE membrane for the dehydr-ation of acetic acid/water mixture[J].Separation and Purification Technology,2020,235:116102.
[45]SONG Y,PAN F,LI Y,et al.Mass transport mechanisms within pervaporation membranes[J].Frontiers of Chemical Science and Engineering,2019,13:458-474.
[46]XIA B,WANG S,LI B,et al.Seeding-free synthesis of FAU-type membrane with dry gel modifiedα-alumina support[J].Microporous and Mesoporous Materials,2021,323:111219.
[47]DAOU T J,DOS SANTOS T,NOUALI H,et al.Synthesis of FAU-type zeolite membranes with antimicrobial activity[J].Molecules,2020,25(15):3414.
[48]BETTENS B,DEKEYZER S,VAN DER BRUGGEN B,et al.Transport of pure components in pervaporation through a microporous silica membrane[J].The Journal of Physical Chemistry B,2005,109(11):5216-5222.
[49]WANG Q,KAWANO Y,YU L,et al.Development of high-performance sub-nanoporous SiC-based membranes derived from polytitanocarbosilane[J].Journal of Membrane Science,2020,598:117688.
[50]DOBRAK A,VERRECHT B,VAN DEN DUNGEN H,et al.Solvent flux behavior and rejection characteristics of hydro?philic and hydrophobic mesoporous and microporous TiO2 and ZrO2 membranes[J].Journal of Membrane Science,2010,346(2):344-352.
[51]CASTRO-MU?OZ R,GONZáLEZ-VALDEZ J,AHMAD MZ.High-performance pervaporation chitosan-based membranes:new insights and perspectives[J].Reviews in Chemical Engineering,2021,37(8):959-974.
[52]ZHU M,HUANG S,GONG Y,et al.Effect of flouride on preparation and pervaporation performance of NaY zeolite memb-rane for EtOH/ETBE mixture[J].Microporous and Mesoporous Materials,2019,282:48-52.
[53]NAZIR L S M,YEONG Y F,CHEW T L.Controlled growth of faujasite zeolite with NaX topology by manipulating solution aging and Na2O/Al2O3 ratios[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,600:124803.
[54]IKEDA A,HASEGAWA Y.Efficient transesterification of methyl acetate with 2-propanol by the selective removal of methanol using zeolite membranes[J].Chemistry Letters,2021,50(1):113-115.
[55]ZHANG F,XU L,HU N,et al.Preparation of NaY zeolite membranes in fluoride media and their application in dehydra?tion of bio-alcohols[J].Separation and Purification Technology,2014,129:9-17.
[56]WANG Z,KUMAKIRI I,TANAKA K,et al.NaY zeolite membranes with high performance prepared by a variable-temperature synthesis[J].Microporous and Mesoporous Materials,2013,182:250-258.
[57]KWON Y,CHAUDHARI S,KIM C,et al.Ag-exchanged NaY zeolite introduced polyvinyl alcohol/polyacrylic acid mixed matrix membrane for pervaporation separation of water/isopropanol mixture[J].RSC Advances,2018,8(37):20669-20678.
[58]KULKARNI S S,KITTUR A A,KARIDURAGANAVAR M Y,et al.Pervaporation dehydration of isopropyl alcohol with NaY zeolite incorvorated hybrid membranes[J].Journal of Applied Polymer Science,2008,109(3):2043-2053.
[59]SEKULIC J,LUITEN M W J,TEN ELSHOF J E,et al.Microporous silica and doped silica membrane for alcohol dehydra?tion by pervaporation[J].Desalination,2002,148(1/2/3):19-23.
[60]LIN X,KIKUCHI E,MATSUKATA M J C C.Preparation of mordenite membranes onα-alumina tubular supports for per?vaporation of water-isopropyl alcohol mixtures[J].2000(11):957-958.
[61]NAGASAWA H,MATSUDA N,KANEZASHI M,et al.Pervaporation and vapor permeation characteristics of BTESE-derived organosilica membranes and their long-term stability in a high-water-content IPA/water mixture[J].2016,498:336-344.
[62]GONG G,WANG J,NAGASAWA H,et al.Fabrication of a layered hybrid membrane using an organosilica separation layer on a porous polysulfone support,and the application to vapor permeation[J].2014,464:140-148.
Progress in preparation and pervaporation of FAU zeolite membranes
WANG Qing1,2,CHEN Huiyuan1,WUHanyu1,LIU Qiao1,XUNong1,2,F(xiàn)AN Long1,NIU Xinpu3,HU Kunhong1
1.School of Energy,Materials and Chemical Engineering,Hefei University,Hefei 230601,China;
2.State Key Laboratory of Materials-Oriented Chemical Engineering,Nanjing Tech University,Nanjing 211816,China;
3.Department of Chemical Engineering,Hiroshima University,Hiroshima 739-8527,Japan
Abstract
Significance FAU zeolite membranes have garnered substantial scientific and technological interest due to their potential in vari?ous separation processes,especially pervaporation.These membranes are notable for their high thermal stability,chemical resis?tance,and exceptional selectivity,making them promising candidates for applications in chemical processing,biomolecular sensing,and environmental protection.Specifically,the large pore size(0.74 nm)and high hydrophilicity of FAU zeolites enable effective separation of liquid mixtures,making them highly valuable for industrial applications such as the dehydration of organic solvents and wastewater treatment.The development of FAU zeolite membranes not only enhances separation efficiency but also offers a sustainable and energy-efficient alternative to traditional separation methods.
Progress Over recent decades,significant advancements have been made in synthesizing and applying FAU zeolite membranes for pervaporation.Various synthesis methods,including in-situ synthesis,dry gel conversion,secondary growth,and microwave-assisted synthesis,have been explored to enhance membrane quality and performance.Optimization of synthesis parameters such as temperature,time,and gel composition has shown promising results in achieving defect-free membranes with high selectivity and flux.Techniques like ion exchange and 3-aminopropyltriethoxysilane(APTES)modification of tubular supports have further enhanced membrane properties.Furthermore,a deep understanding of the pervaporation separation mechanism of FAU zeolite membranes is crucial for elucidating the relationship between membrane structure and pervaporation performance,predicting suitable application systems,and achieving high separation efficiency.Most recently,researchers have investigated the pervaporation separation mechanism of FAU membranes through the relationship between single gas permeance,pervaporation permeance,and polarity index(affinity).The results indicated that within a similar range of permeate molecule sizes,gas permeation exhibited Knudsen selectivity.However,the PV permeance showed a good correlation with the polarity index,suggesting that the PV separation process through FAU membranes is governed by an adsorption-diffusion mechanism.
This strong correlation provides a novel,convenient,and environmentally friendly tool for predicting PV performance.Addition?ally,researchers have explored the application of FAU membranes in the pervaporation of various mixtures,demonstrating their potential for the efficient separation of water and organic solvents.Despite these advancements,the synthesis of defect-free,reproducible,industrially scalable,and cost-effective FAU membranes with high separation performance remains a crucial chal?lenge to be addressed.
Conclusions and Prospects Significant progress has been achieved in developing FAU zeolite membranes for pervaporation.However,challenges persist in achieving reproducibility,scalability,and minimal defects.Future research should focus on optimizing synthesis conditions,exploring advanced characterization techniques,and validating membrane performance in industrial settings.Innovative synthesis methods tailored for FAU zeolite membranes,such as vacuum-seeding and microwave heating,warrant further exploration.Detailed studies on pervaporation mechanisms are essential for better understanding and controlling the separation process.Industrial application studies are crucial for validating laboratory-scale successes and adapt?ing membranes for practical use.Improving mechanical stability and reducing defects are key to successful implementation in real-world applications.Addressing these challenges through systematic research and technological innovation could establish FAU zeolite membranes as pioneers in membrane separation,particularly in pervaporation and other separation processes.
Keywords:FAU molecular sieve membrane;zeolite;pervaporation;separation mechanism;membrane separation
(責(zé)任編輯:武秀娟)