摘 要:
旨在比較豬源副干酪乳酪桿菌(Lacticaseibacillus paracasei)、羅伊氏黏液乳桿菌(Limosilactobacillus reuteri)、約氏乳桿菌(Lactobacillus johnsonii)作為口服疫苗載體,表達(dá)外源蛋白刺激仔豬產(chǎn)生免疫能力的強(qiáng)弱,以期選取合適乳酸菌作為受體菌載體。
本研究首先體外鑒定表達(dá)PEDV S1蛋白的重組豬源副干酪乳酪桿菌(pPG-T7g10-S1/L. paracasei 27-2)、豬源羅伊氏黏液乳桿菌(pPG-T7g10-S1/L. reuteri J31)、豬源約氏乳酸桿菌(pPG-T7g10-S1/L. johnsonii 6332)的耐酸耐膽鹽能力,考察3株重組菌的抗逆性。結(jié)果表明,3株重組菌均能夠耐受酸和膽鹽環(huán)境,且與其野生型菌株沒(méi)有顯著差異。接下來(lái)為比較3株重組菌的免疫效果,口服免疫初生仔豬后,利用間接ELISA和中和試驗(yàn)檢測(cè)仔豬產(chǎn)生的特異性抗體水平及其中和活性;并測(cè)定免疫后仔豬血清和腸黏膜中各細(xì)胞因子水平。結(jié)果顯示,口服免疫后,與對(duì)照組相比,3株免疫組仔豬血清IgG抗體和鼻拭子、肛拭子、腸黏液中SIgA抗體水平均顯著升高,且可持續(xù)至第28天左右,其中pPG-T7g10-S1/L. paracasei 27-2組誘導(dǎo)產(chǎn)生的抗體水平顯著高于其他兩組免疫組(P<0.05);仔豬產(chǎn)生特異性的IgG和 SIgA對(duì) PEDV均具有中和活性。仔豬血清中細(xì)胞因子IFN-γ、IL-2、IL-4、IL-10水平和對(duì)照組相比顯著升高(P<0.05),但3株重組菌組間細(xì)胞因子水平未見明顯差異;仔豬空腸黏膜中細(xì)胞因子IFN-γ、IL-2、IL-4、IL-5、IL-6、IL-17、IL-21、TGF-β、APRIL和BALL水平與對(duì)照組相比有所升高,且pPG-T7g10-S1/L. paracasei 27-2 組IL-4、IL-5、IL-6、TGF-β、IL-17、IL-21和BALL相比其他組顯著升高(P<0.05)。綜上所述,本研究分別將質(zhì)粒組成型表達(dá)PEDV主要保護(hù)性抗原S1的重組豬源副干酪乳酪桿菌、豬源羅伊氏黏液乳桿菌和豬源約氏乳酸桿菌口服免疫仔豬,結(jié)果顯示能夠刺激機(jī)體產(chǎn)生針對(duì)PEDV的黏膜免疫、體液免疫和細(xì)胞免疫,且相較于其他2株重組菌,重組豬源副干酪乳酪桿菌pPG-T7g10-S1/L. paracasei 27-2的口服免疫效果最好。該試驗(yàn)結(jié)果為構(gòu)建更為有效的乳酸菌口服疫苗提供了科學(xué)數(shù)據(jù)。
關(guān)鍵詞: 豬流行性腹瀉;S1 蛋白;副干酪乳酪桿菌;羅伊氏黏液乳桿菌;約氏乳桿菌;口服疫苗;免疫分析
中圖分類號(hào):S852.659.6
文獻(xiàn)標(biāo)志碼:A""" 文章編號(hào):0366-6964(2024)05-2090-10
收稿日期:2023-07-18
基金項(xiàng)目:“十四五”國(guó)家重點(diǎn)研發(fā)項(xiàng)目(2022YFD1800800);國(guó)家自然科學(xué)基金青年項(xiàng)目(32102707);黑龍江省自然科學(xué)基金聯(lián)合引導(dǎo)項(xiàng)目(LH2021C043)
作者簡(jiǎn)介:馬茹夢(mèng) (1997-),女,河南三門峽人,碩士生,主要從事動(dòng)物微生物學(xué)與免疫學(xué)研究,E-mail: mrm0134@163.com
*通信作者:王曉娜,主要從事獸醫(yī)微生物與免疫學(xué)的教學(xué)與研究,E-mail:xiaonawang0319@163.com;李一經(jīng),主要從事獸醫(yī)微生物與免疫學(xué)的教學(xué)與研究,E- mail:yijingli@163.com
Comparative Study on the Immune Response Induced by the Different Porcine
Receptor Bacteria with Expressing the Protective Antigen S1 of Porcine Epidemic Diarrhea Virus
MA" Rumeng1, ZHAO" Yuliang1, MA" Mingshuang1, GUO Guihai1, LIU" Xinzi1, LI" Jiaxuan1,2, CUI" Wen1,2, JIANG" Yanping1,2, SHAN" Zhifu1,2, ZHOU" Han1,2, WANG" Li1,2, QIAO" Xinyuan1,2, TANG" Lijie1,2, WANG" Xiaona1,2*, LI" Yijing1,2*
(1.College of Veterinary Medicines, Northeast Agricultural University, Harbin 150030," China;
2.Provincial Key Laboratory of Animal Disease Prevention and Control Technology and Preparation Development, Harbin 150030," China)
Abstract:
The aim was to compare the strength of Lacticaseibacillus paracasei of porcine origin, Limosilactobacillus reuteri of porcine origin, and Lactobacillus johnsonii of porcine origin as oral vaccine vectors to express exogenous proteins to stimulate immunity production in piglets with a view to selecting suitable lactic acid bacteria as receptor vectors.
In this study, the acid and bile salt tolerance of recombinant porcine Lacticaseibacillus paracasei (pPG-T7g10-S1/L. paracasei 27-2), Limosilactobacillus reuteri (pPG-T7g10-S1/L. reuteri J31) and Lactobacillus johnsonii (pPG-T7g10-S1/L. johnsonii 6332) were measured in vitro to investigate the resistance of the three strains expressing PEDV S1 protein.
The results showed that all the three recombinant strains could tolerate acid and bile salt environment, and there was no significant difference with their wild type strains. Then to compare the immune effects, the newborn piglets were orally immunized with the three recombinant strains, separately. Indirect ELISA and neutralization test were used to detect the specific antibodies and neutralizing activity of the piglets, and the levels of each cytokine in serum and intestinal mucosa of the immunized piglets were measured. The results showed that after oral immunization, compared with the control group, the levels of serum IgG antibody and SIgA antibody in nasal swabs, anal swabs and intestinal mucus of piglets in the three recombinant strains groups were significantly increased, lasted to the 28th day. The antibody level induced by pPG-T7g10-S1/L. paracasei 27-2 group was significantly higher than that of the other two groups (Plt;0.05). Pigley-produced specific IgG and SIgA both showed neutralizing activity against PEDV. The levels of IFN-γ, IL-2, IL-4 and IL-10 in the serum of piglets were significantly higher than those in the control group (Plt;0.05), but there was no significant difference in the levels of cytokines among the three recombinant strains. The levels of cytokines IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-17, IL-21, TGF-β, APRIL and BALL in the jejunal mucosa of piglets were higher than those in the control group. The levels of IL-4, IL-5, IL-6, TGF-β, IL-17, IL-21 and BALL in pPG-T7g10-S1/L. paracasei 27-2 group were significantly higher than those in other groups (Plt;0.05). In conclusion, in this study, oral immunization of piglets with recombinant L. paracasei, L. reuteri and L. johnsonii, constitutively expressing the major protective antigen S1 of PEDV, showed that they could stimulate mucosal immunity, humoral immunity and cellular immunity against PEDV. Compared with the other two recombinant strains, the recombinant porcine pPG-T7g10-S1/L. paracasei 27-2 had the best oral immunization effect. The results of this experiment provide scientific data for the construction of a more effective oral vaccine for lactic acid bacteria.
Key words: porcine epidemic diarrhea; S1 protein; Lacticaseibacillus paracasei; Limosilactobacillus reuteri; Lactobacillus johnsonii; oral vaccines; immune analysis
*Corresponding authors:" WANG Xiaona,E-mail:xiaonawang0319@163.com;LI Yijing,E- mail:yijingli@163.com
豬流行性腹瀉(porcine epidemic diarrhea,PED)是由冠狀病毒科冠狀病毒屬的豬流行性腹瀉病毒(porcine epidemic diarrhea virus,PEDV)引起的各日齡豬嘔吐、水樣腹瀉、脫水及仔豬高致死率為特征的急性腸道傳染病[1]。流行病學(xué)資料表明,哺乳期仔豬感染PEDV后死亡率可達(dá)50%以上,其中7日齡內(nèi)仔豬死亡率可達(dá)100%[2]。疫苗免疫接種是預(yù)防該病的主要措施,但傳統(tǒng)強(qiáng)毒滅活苗和弱毒活疫苗對(duì)PEDV感染的控制并不理想。PEDV的S1蛋白在病毒與宿主細(xì)胞受體結(jié)合、病毒的膜融合與進(jìn)入、激活宿主免疫系統(tǒng)與產(chǎn)生中和抗體等方面起重要作用[3-4]。因此,S1蛋白成為PEDV 診斷和基因工程疫苗研究的靶點(diǎn)。
PEDV呈典型的黏膜感染,提高機(jī)體黏膜免疫屏障防控PED是十分有效的[5-6]。腸道黏膜作為機(jī)體免疫的第一道屏障,在PEDV的免疫保護(hù)中發(fā)揮重要作用,腸道黏膜表面特異性SIgA水平直接決定疾病的發(fā)生和疾病臨床表現(xiàn)的嚴(yán)重程度。因此,針對(duì)PEDV黏膜感染與黏膜免疫的特點(diǎn),研制能有效刺激黏膜免疫系統(tǒng)產(chǎn)生免疫應(yīng)答的疫苗對(duì)PED的防治具有重要的科學(xué)意義。
口服疫苗因具有操作簡(jiǎn)單、風(fēng)險(xiǎn)性低、可同時(shí)誘導(dǎo)局部黏膜免疫和全身免疫等優(yōu)勢(shì)而受到關(guān)注[7]?;谌樗峋邪l(fā)的口服疫苗已有眾多報(bào)道[8-10]。乳酸菌活載體口服疫苗具有常規(guī)滅活疫苗的安全性,又具有弱毒疫苗的持久性,同時(shí)還能夠增強(qiáng)機(jī)體非特異性免疫和非特異性抗菌抗腹瀉能力。但當(dāng)前所用乳酸菌部分來(lái)源于體外環(huán)境,由于菌株生存的環(huán)境條件發(fā)生變化,環(huán)境之間的差異導(dǎo)致其應(yīng)用效果不佳,無(wú)法充分發(fā)揮其益生作用。有學(xué)者認(rèn)為,理想的動(dòng)物用乳酸菌最好從同源動(dòng)物自身消化道中分離篩選[11]。因此本源乳酸菌成為誘導(dǎo)黏膜免疫的理想抗原傳遞載體。本研究體外驗(yàn)證質(zhì)粒成功表達(dá)PEDV保護(hù)性抗原S1的重組豬源副干酪乳酪桿菌、豬源羅伊氏黏液乳桿菌與豬源約氏乳桿菌,并對(duì)其抗逆性進(jìn)行了檢測(cè),將重組菌口服免疫新生仔豬并比較分析其誘導(dǎo)的免疫應(yīng)答水平,篩選候選豬源乳酸桿菌活載體,為新型口服疫苗的研發(fā)與臨床應(yīng)用奠定一定的理論和實(shí)踐基礎(chǔ)。
1 材料與方法
1.1 材料
1.1.1 細(xì)菌、病毒
豬源副干酪乳酪桿菌27-2株(Lacticaseibacillus paracasei 27-2)[12]、豬源羅伊氏黏液乳桿菌J31株(Limosilactobacillus reuteri J31, GenBank登錄號(hào):MK921700)和豬源約氏乳桿菌6332株(Lactobacillus johnsonii 6332, GenBank登錄號(hào):MH492312)由本實(shí)驗(yàn)室分離并保存。
表達(dá)PEDV S1蛋白的重組豬源副干酪乳酪桿菌pPG-T7g10-S1/L.paracasei 27-2、重組豬源羅伊氏黏液乳桿菌pPG-T7g10-S1/L.reuteri J31、重組豬源約氏乳桿菌pPG-T7g10-S1/L. johnsonii 6332和對(duì)照菌株重組豬源副干酪乳酪桿菌pPG-T7g10-PPT/L. paracasei 27-2、重組豬源羅伊氏黏液乳酪桿菌pPG-T7g10-PPT/L. reuteri J31、重組豬源約氏乳桿菌pPG-T7g10-PPT/L. johnsonii 6332由本實(shí)驗(yàn)室構(gòu)建并保存。PEDV流行毒株(CH/HLJ/2019)毒株由本實(shí)驗(yàn)室于2019 年分離鑒定并保存,S1基因以PEDV(CH/HLJ/2019)毒株為模板擴(kuò)增獲得[13]。
1.1.2 抗體
HRP標(biāo)記山羊抗豬IgG和SIgA抗體購(gòu)自艾博抗(上海)貿(mào)易有限公司。HRP標(biāo)記山羊抗鼠IgG和FITC標(biāo)記的山羊抗鼠IgG抗體均購(gòu)自北京中杉金橋生物技術(shù)有限公司。
1.1.3 動(dòng)物
28頭抗體血清陰性、健康的杜長(zhǎng)大新生仔豬,購(gòu)自東北農(nóng)業(yè)大學(xué)阿城實(shí)驗(yàn)實(shí)習(xí)基地(哈爾濱)。
1.2 方法
1.2.1 耐酸性和膽鹽耐受性測(cè)定
野生型乳酸桿菌L. paracasei 27-2、L. reuteri J31、L. johnsonii 6332和重組乳酸桿菌pPG-T7g10-S1/L. paracasei 27-2、pPG-T7g10-S1/L.reuteri J31和pPG-T7g10-S1/L. johnsonii 6332分別接種于pH=2、pH=3、pH=4和pH=5.85和膽鹽濃度為0.1%和0.5%的MRS液體培養(yǎng)基中,37 ℃靜置培養(yǎng)6 h后,采用10倍比稀釋的方法在平板上進(jìn)行活菌計(jì)數(shù),利用如下公式計(jì)算菌株的耐酸性和耐膽鹽情況。菌株的耐酸性(膽鹽耐受性)=對(duì)應(yīng)pH(膽鹽濃度下)的活菌數(shù)/正常MRS培養(yǎng)下的活菌數(shù)×100%,每個(gè)試驗(yàn)設(shè)3個(gè)重復(fù)。
1.2.2 實(shí)驗(yàn)動(dòng)物分組及免疫接種
將28頭新生仔豬,隨機(jī)分成7(1~7組)組,每組4頭。1~3組:分別口服2 mL 1×1011CFU·mL-1 的pPG-T7g10-S1/L.paracasei 27-2、pPG-T7g10-S1/L. reuteri J31和pPG-T7g10-S1/L. johnsonii 6332。4~6組:分別口服2 mL 1×1011CFU·mL-1 的pPG-T7g10-PPT/L.paracasei 27-2、pPG-T7g10-PPT/L. reuteri J31和pPG-T7g10-PPT/L. johnsonii 6332。7組作為空白對(duì)照組,口服2 mL PBS。
1.2.3 樣品采集與體液免疫、黏膜免疫與細(xì)胞免疫指標(biāo)檢測(cè)
免疫后第0、3、7、10、14、17、21、24、28、35和42天采集仔豬血液,收取上層血清,并同時(shí)采集仔豬鼻拭子、肛拭子樣本,-80℃冰箱保存;免疫后第7、14、21天刮取仔豬空腸黏液,-80℃冰箱保存。采用ELISA方法檢測(cè)仔豬空腸黏液,鼻拭子和肛拭子中SIgA,血清中IgG和細(xì)胞因子IL-2、IL-4、IL-10與IFN-γ含量;采用熒光定量PCR方法檢測(cè)空腸細(xì)胞因子IFN-γ、IL-2、IL-4、IL-5、IL-6、IL-17、IL-21、TGF-β、APRIL和BAFF轉(zhuǎn)錄水平。
1.2.4 抗體中和活性測(cè)定
采集免疫后第7天仔豬的血清和空腸黏液,檢測(cè)血清和腸黏膜中抗體中和PEDV病毒的活性。血清樣本和腸黏液上清過(guò)濾除菌并熱滅活,于96孔細(xì)胞培養(yǎng)板中進(jìn)行2倍比稀釋至1∶256,每孔100 μL;每孔加入100 μL含100 TCID50的PEDV病毒液,同時(shí)設(shè)陽(yáng)性血清對(duì)照、陰性血清對(duì)照、病毒對(duì)照與空白對(duì)照,37℃條件下靜置1 h;將混合物與長(zhǎng)滿單層Vero細(xì)胞作用2 h,棄上清后補(bǔ)加細(xì)胞培養(yǎng)液;于37℃含5% CO2溫箱中培養(yǎng),待陽(yáng)性對(duì)照病變后,記錄并計(jì)算中和效價(jià)。
1.2.5 統(tǒng)計(jì)分析
使用GraphPad Prism(8.4.3版)統(tǒng)計(jì)軟件對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。數(shù)據(jù)以“平均值±標(biāo)準(zhǔn)差(x-±s)”表示,并使用SPSS進(jìn)行雙向方差分析和多重比較(LSD)檢驗(yàn)。不同字母表示在同一時(shí)間點(diǎn)存在顯著差異(Plt;0.05)
2 結(jié) 果
2.1 耐酸和耐膽鹽性能分析
3株重組乳酸桿菌及野生型乳酸桿菌耐酸和耐膽鹽性能結(jié)果如表1所示,6株乳桿菌都具有一定的耐酸和耐膽鹽能力,重組乳桿菌和野生型乳桿菌的耐酸和耐膽鹽性能沒(méi)有顯著差異;在pH為4.0條件下,pPG-T7g10-S1/L. paracasei 27-2的存活率顯著高于pPG-T7g10-S1/L. johnsonii 6332(Plt;0.05)。在pH為3.0條件下,pPG-T7g10-S1/L. paracasei 27-2的存活率顯著高于其他2組(Plt;0.05)。在0.1%膽鹽條件下,pPG-T7g10-S1/L.paracasei 27-2與pPG-T7g10-S1/L. reuteri J31的存活率顯著高于pPG-T7g10-S1/L. johnsonii 6332組(Plt;0.05)。
上述結(jié)果表明,3株重組菌間的耐酸性和膽鹽耐受性存在差異,pPG-T7g10-S1/L. paracasei 27-2對(duì)酸耐受性顯著高于其他組,pPG-T7g10-S1/L. paracasei 27-2與pPG-T7g10-S1/L. reuteri J31對(duì)膽鹽的耐受性顯著高于其他組。
2.2 重組乳桿菌免疫新生仔豬的免疫應(yīng)答評(píng)價(jià)
口服免疫3株重組乳酸桿菌后的血清及黏液抗體水平結(jié)果如圖1所示,口服pPG-T7g10-S1/L. paracasei 27-2、pPG-T7g10-S1/L. reuteri J31和pPG-T7g10-S1/L. johnsonii 6332組血清特異性IgG水平、黏膜特異性SIgA抗體水平均在第7天達(dá)到峰值且可持續(xù)至第21天 左右,其中pPG-T7g10-S1/L. paracasei 27-2組的特異性SIgA顯著高于其他組(Plt;0.05)。以上結(jié)果表明3株重組菌均可有效誘導(dǎo)仔豬的體液和黏膜免疫且pPG-T7g10-S1/L. paracasei 27-2組可誘導(dǎo)產(chǎn)生更強(qiáng)的腸道黏膜免疫。
2.3 抗體中和活性測(cè)定
血清和腸黏液抗體中和活性結(jié)果如表2所示,口服重組菌pPG-T7g10-S1/L. paracasei 27-2、pPG-T7g10-S1/L. reuteri J31和pPG-T7g10-S1/L. johnsonii 6332仔豬血清中IgG抗PEDV中和抗體效價(jià)分別為1∶44.67、1∶44.67和1∶41.69,仔豬腸黏液中SIgA抗PEDV中和抗體效價(jià)分別為1∶18.84、1∶18.20和1∶17.78,均顯著性高于PBS組(P<0.05),但3株重組菌間無(wú)顯著差異。以上結(jié)果表明,3株重組菌誘導(dǎo)仔豬產(chǎn)生的血清IgG抗體和腸黏液SIgA抗體均具有中和PEDV的活性,具有預(yù)防PEDV感染的作用。
2.4 血清和腸道細(xì)胞因子檢測(cè)
血清細(xì)胞因子表達(dá)水平結(jié)果如圖2所示,重組菌pPG-T7g10-S1/L. paracasei 27-2、pPG-T7g10-S1/L. reuteri J31和pPG-T7g10-S1/L. johnsonii 6332 誘導(dǎo)血清中細(xì)胞因子 IFN-γ、IL-2、IL-4、IL-10的水平均顯著高于對(duì)照組(P<0.05),但3株重組菌組間細(xì)胞因子水平未見明顯差異,表明3株重菌口服免疫仔豬后均可誘導(dǎo)產(chǎn)生了Th1和Th2型細(xì)胞免疫反應(yīng)。
腸黏膜細(xì)胞因子轉(zhuǎn)錄水平結(jié)果如圖3所示,3株重組菌誘導(dǎo)的IFN-γ、IL-2、IL-4、IL-5、IL-6、IL-17、IL-21、TGF-β、BAFF和APRIL細(xì)胞因子水平均高于對(duì)照組;重組菌pPG-T7g10-S1/L. paracasei 27-2的TNF-β、IL-17和APRIL細(xì)胞因子水平顯著高于重組菌pPG-T7g10-S1/L. reuteri J31和pPG-T7g10-S1/L. johnsonii 6332,IL-4、IL-6和IL-21細(xì)胞因子水平顯著高于其他3株重組菌(P<0.05)。
3 討 論
近年來(lái),乳酸菌被廣泛應(yīng)用在口服活菌疫苗載體的研制上,對(duì)疫苗的發(fā)展產(chǎn)生了重要的促進(jìn)作用[14]。它具有維持腸道菌群平衡、增強(qiáng)機(jī)體免疫力、免疫調(diào)節(jié)與促進(jìn)腸道內(nèi)營(yíng)養(yǎng)物質(zhì)的消化吸收等廣泛的益生作用;此外,乳酸菌還能通過(guò)細(xì)胞壁相關(guān)分子與宿主細(xì)胞發(fā)生作用,激活免疫相關(guān)的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)通路,調(diào)控細(xì)胞因子以及抗體的分泌水平,從而增強(qiáng)免疫功能[15-16]。此外,有研究證實(shí),在動(dòng)物腸道細(xì)菌在與特定宿主物種的長(zhǎng)期進(jìn)化過(guò)程中,同一菌種的不同亞種已經(jīng)產(chǎn)生了不同的特性,以更好地適應(yīng)宿主[11]。因此,利用本源動(dòng)物乳酸菌作為活載體表達(dá)異源抗原,制備口服疫苗,對(duì)科學(xué)防控黏膜感染性疾病,特別是腸道疾病具有重要意義。
PED是由PEDV感染引起的各日齡豬嘔吐、水樣腹瀉、脫水及仔豬高致死率為特征的急性腸道傳染病[1]。給養(yǎng)豬業(yè)造成了巨大的經(jīng)濟(jì)損失。因此,研制針對(duì)PEDV的有效疫苗至關(guān)重要。目前已經(jīng)在PEDV S蛋白中鑒定出了多個(gè)中和表位區(qū)域,其中S1亞基含有包括COE區(qū)在內(nèi)的大量中和表位,能夠廣泛、有效地誘導(dǎo)機(jī)體產(chǎn)生中和抗體[17]。已有許多研究利用S1基因作為候選抗原研制疫苗[3,13,18-19]?;谝陨涎芯拷Y(jié)果,本研究選用PEDV流行毒株S1基因作為靶標(biāo)基因,構(gòu)建質(zhì)粒表達(dá)PEDV S1蛋白的不同豬源乳桿菌活菌載體系統(tǒng),利用豬源乳桿菌腸道黏膜良好的定植作用,能夠較為持久地刺激豬腸道免疫系統(tǒng),誘導(dǎo) PEDV 黏膜抗體的產(chǎn)生。
口服疫苗誘導(dǎo)的腸道黏膜免疫對(duì)黏膜感染性疾病的免疫預(yù)防具有獨(dú)特的免疫接種優(yōu)勢(shì)和潛在的應(yīng)用價(jià)值,但口服疫苗免疫動(dòng)物普遍存在著免疫應(yīng)答水平低,免疫保護(hù)效果差的瓶頸問(wèn)題,因此,提高口服疫苗免疫效力是亟待探索的科學(xué)問(wèn)題??诜呙缫_(dá)到良好的免疫效果需面臨諸多挑戰(zhàn)。其中之一是口服疫苗必須克服胃液、腸液、膽汁酸鹽對(duì)抗原物質(zhì)的破壞作用,使抗原物質(zhì)完整無(wú)損地被腸道免疫細(xì)胞所識(shí)別,才能啟動(dòng)免疫應(yīng)答。乳桿菌能夠抵抗胃腸道的強(qiáng)酸和腸道高膽鹽脅迫而在腸道中存活下來(lái),在體內(nèi)發(fā)揮其益生作用[20-21]。乳酸菌的這種抗逆性能也是制備乳酸菌活菌載體口服疫苗的優(yōu)勢(shì)所在。哺乳仔豬胃液中胃酸的主要成分為鹽酸,其pH通常在4左右[22],豬腸道內(nèi)膽鹽含量一般在0.03%~0.50%波動(dòng)[23]。本研究耐酸性與膽鹽耐受性結(jié)果表明,3株重組菌均具有一定的耐酸性和膽鹽耐受性,能夠直達(dá)靶標(biāo)部位,在一定程度上增強(qiáng)了免疫效果。但在耐酸與耐膽鹽能力中有所不同,其中豬源副干酪乳酪桿菌對(duì)酸耐受性相對(duì)較好,豬源羅伊氏黏液乳桿菌與豬源副干酪乳酪桿菌對(duì)膽鹽的耐受性相對(duì)較好,這些結(jié)果為選擇抗逆性強(qiáng)的乳酸菌制備口服疫苗提供了科學(xué)依據(jù)。因此,本研究中具有耐酸性、膽鹽耐受性的副干酪乳酪桿菌是誘導(dǎo)黏膜免疫應(yīng)答的優(yōu)勢(shì)候選菌株。
在免疫原性研究中,首先研究比較了兩種口服疫苗方案誘導(dǎo)的免疫反應(yīng)的差異,結(jié)果表明,免疫程序出生立即口服免疫一次相比于出生后連續(xù)免疫3 d,每天1次能更好地誘導(dǎo)全身和黏膜免疫應(yīng)答(結(jié)果未顯示)。選擇相對(duì)最佳的疫苗接種程序用于分析比較重組菌pPG-T7g10-S1/L. paracasei 27-2、pPG-T7g10-S1/L. reuteri J31和pPG-T7g10-S1/L. johnsonii 6332誘導(dǎo)的免疫應(yīng)答效果。對(duì)于腸道黏膜感染的病原,黏膜表面SIgA抗體水平是評(píng)價(jià)疫苗免疫效力和個(gè)體或畜群對(duì)腸道傳染病感染的免疫狀態(tài)。PEDV黏膜SIgA抗體檢測(cè)廣泛用于評(píng)估感染和疫苗對(duì)PEDV的免疫效果[24]。結(jié)果表明,3株重組菌均可顯著誘導(dǎo)仔豬產(chǎn)生針對(duì)PEDV的特異性SIgA抗體,與其他2株重組菌相比,重組菌pPG-T7g10-S1/L. paracasei 27-2口服免疫仔豬后能誘導(dǎo)更高、更持續(xù)的黏膜SIgA抗體水平。
有研究表明,IgA+B細(xì)胞的分化及IgA的分泌與多種細(xì)胞因子相關(guān)[25]。其中IL-5能夠刺激B細(xì)胞的增殖與分化,促進(jìn)活化的B細(xì)胞分化成IgA+B細(xì)胞。IL-4能夠促進(jìn)特異的重鏈穩(wěn)定區(qū)(CH)Ig類型的轉(zhuǎn)換,增加SIgA的細(xì)胞數(shù)量增加。IL-6主要誘導(dǎo)活化后期的B細(xì)胞大量合成分泌性Ig的mRNA,從而增加Ig(IgM、IgG和IgA)的分泌。在腸道黏膜免疫中,IL-6 也可以協(xié)同IL-4、IL-5誘導(dǎo)SIgA+B細(xì)胞分化成為是SIgA+漿細(xì)胞,使其最終分化為SIgA[26]。TGF-β可介導(dǎo)初始 B 細(xì)胞分化發(fā)育成IgA+B細(xì)胞,并產(chǎn)生抗原特異性的高親和力IgA。IL-21能夠通過(guò)促進(jìn)B細(xì)胞的增殖、漿細(xì)胞分化和IgA類別轉(zhuǎn)換,最終提高IgA的分泌[27]。檢測(cè)腸道細(xì)胞因子水平轉(zhuǎn)錄水平,結(jié)果顯示,3株重組菌誘導(dǎo)的IFN-γ、IL-2、IL-4、IL-5、IL-6、IL-17、IL-21和TGF-β細(xì)胞因子水平均高于對(duì)照組;重組菌pPG-T7g10-S1/L. paracasei 27-2組IL-4、IL-6、IL-21、TNF-β、IL-17和APRIL顯著高于其他組(P<0.05)。研究發(fā)現(xiàn),抗原刺激機(jī)體時(shí),B 細(xì)胞活化因子(BAFF)和增殖誘導(dǎo)配體(APRIL)的表達(dá)增加,可促進(jìn)B細(xì)胞增殖,延長(zhǎng)B細(xì)胞存活時(shí)間;同時(shí),二者可誘導(dǎo)B細(xì)胞免疫球蛋白類別轉(zhuǎn)換重組(CSR),使幼稚B細(xì)胞轉(zhuǎn)化為IgA或IgG分泌的漿細(xì)胞,同時(shí)促進(jìn)B細(xì)胞產(chǎn)生IgA[27-28]。本研究發(fā)現(xiàn),3株重組菌均可顯著促進(jìn)腸道中APRIL和BAFF的表達(dá),且pPG-T7g10-S1/L. paracasei 27-2組BAFF的表達(dá)顯著高于其他組,可有效地促進(jìn)B細(xì)胞的成熟和活化。IL-17是由Th17細(xì)胞合成并分泌的一種細(xì)胞因子,具有促炎和抗感染的作用[28-29]。在腸道炎癥性疾病過(guò)程中可緩解腸道炎癥的發(fā)病癥狀。有研究表明重組乳桿菌誘導(dǎo)的IL-17在全身和黏膜免疫應(yīng)答中的表達(dá),以防止TGEV感染[30]。同樣,在本項(xiàng)研究中,本研究發(fā)現(xiàn)3株重組乳桿菌可以顯著誘導(dǎo)仔豬腸黏膜中IL-17的表達(dá),其中pPG-T7g10-S1/L. paracasei 27-2組更顯著。推測(cè)這可能由于豬源副干酪乳酪桿菌具有較強(qiáng)的耐酸性及膽鹽耐受性,其可能更多地存活并定植于仔豬腸道而更強(qiáng)地刺激仔豬腸道B細(xì)胞的增殖,并延長(zhǎng)B細(xì)胞的存活時(shí)間,促進(jìn)活化的B細(xì)胞分化成IgA+B細(xì)胞和IgA+漿細(xì)胞,提高仔豬腸道SIgA的分泌。
綜上所述,本研究對(duì)表達(dá)PEDV S1蛋白的不同乳酸菌載體系統(tǒng)進(jìn)行了與免疫相關(guān)的體外試驗(yàn)和豬體內(nèi)免疫效力測(cè)定,綜合比較發(fā)現(xiàn),pPG-T7g10-S1/L. paracasei 27-2具有較強(qiáng)的抗酸、耐膽汁酸鹽作用,口服免疫動(dòng)物,能夠更好地誘導(dǎo)機(jī)體的局部黏膜免疫、系統(tǒng)體液免疫和細(xì)胞免疫應(yīng)答,該菌是作為口服疫苗載體良好的候選菌株。作為疫苗免疫效力的全面評(píng)價(jià),應(yīng)該進(jìn)行動(dòng)物的攻毒保護(hù)試驗(yàn),這也是本項(xiàng)研究后續(xù)開展的重要工作。
4 結(jié) 論
本研究成功構(gòu)建表達(dá)PEDV保護(hù)性抗原S1蛋白的3株豬源重組乳酸菌pPG-T7g10-S1/L. paracasei 27-2、pPG-T7g10-S1/L. reuteri J31和pPG-T7g10-S1/L. johnsonii 6332,經(jīng)口服途徑免疫仔豬后結(jié)果表明,3株重組菌均能夠誘導(dǎo)仔豬產(chǎn)生特異性的黏膜免疫、體液免疫和細(xì)胞免疫應(yīng)答,且重組豬源副干酪乳酪桿菌pPG-T7g10-S1/L. paracasei 27-2的效果更為顯著,為口服疫苗候選菌株的選取奠定基礎(chǔ)。
參考文獻(xiàn)(References):
[1] JUNG K, SAIF L J, WANG Q H. Porcine epidemic diarrhea virus (PEDV):an update on etiology, transmission, pathogenesis, and prevention and control[J]. Virus Res, 2020, 286:198045.
[2] 萬(wàn) 進(jìn), 李 智, 陳學(xué)友, 等. 淺談重要疫病對(duì)生豬產(chǎn)業(yè)的經(jīng)濟(jì)影響[J]. 中國(guó)動(dòng)物檢疫, 2023, 40(1):55-60.
WAN J, LI Z, CHEN X Y, et al. Discussion on the economic impact of major diseases on pig industry[J]. China Animal Health Inspection, 2023, 40(1):55-60. (in Chinese)
[3] 武旺盛. 兩種豬流行性腹瀉病毒S1亞單位疫苗的免疫原性[D]. 長(zhǎng)春:吉林農(nóng)業(yè)大學(xué), 2020.
WU W S. Immunogenicity of two porcine epidemic diarrhea virus S1 subunit vaccines[D]. Changchun:Jilin Agricultural University, 2020. (in Chinese)
[4] LIN H X, ZHOU H, GAO L, et al. Development and application of an indirect ELISA for the detection of antibodies to porcine epidemic diarrhea virus based on a recombinant spike protein[J]. BMC Vet Res, 2018, 14(1):243.
[5] SUNGSUWAN S, JONGKAEWWATTANA A, JARU-AMPORNPAN P. Nucleocapsid proteins from other swine enteric coronaviruses differentially modulate PEDV replication[J]. Virology, 2020, 540:45-56.
[6] LI Y C, WU Q X, HUANG L L, et al. An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine[J]. Nat Commun, 2018, 9(1):3811.
[7] ALOTAIBI B S, BUABEID M, IBRAHIM N A, et al. Recent strategies driving oral biologic administration[J]. Expert Rev Vaccines, 2021, 20(12):1587-1601.
[8] 王書博, 徐義剛, 陳秋艷, 等. 表達(dá)豬圓環(huán)病毒2型cap蛋白的重組羅伊氏乳酸桿菌在小鼠誘導(dǎo)的免疫應(yīng)答分析[J]. 畜牧獸醫(yī)學(xué)報(bào), 2020, 51(9):2238-2249.
WANG S B, XU Y G, CHEN Q Y, et al. Analysis of immune response induced by recombinant Lactobacillus reuteri expressing cap protein of porcine circovirus type 2 in mice[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9):2238-2249. (in Chinese)
[9] XIAO Y, WANG X N, LI Y, et al. Evaluation of the immunogenicity in mice orally immunized with recombinant Lactobacillus casei expressing porcine epidemic diarrhea virus S1 protein[J]. Viruses, 2022, 14(5):890.
[10] ZHAO Z L, WANG H, ZHANG D X, et al. Oral vaccination with recombinant Lactobacillus casei expressing Aeromonas hydrophila Aha1 against A. hydrophila infections in common carps[J]. Virulence, 2022, 13(1):794-807.
[11] MORAN N A, MCCUTCHEON J P, NAKABACHI A. Genomics and evolution of heritable bacterial symbionts[J]. Annu Rev Genet, 2008, 42:165-190.
[12] 李封賽. 表達(dá)豬輪狀病毒VP4營(yíng)養(yǎng)缺陷型乳桿菌的構(gòu)建及其誘導(dǎo)免疫應(yīng)答的研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué), 2022.
LI F S. Construction and analysis of induced immune response of expressing VP4 of porcine rotavirus with the auxotrophic Lactobacillu[D]. Harbin: Northeast Agricultural University, 2022. (in Chinese)
[13] 肖 雅. 組成型表達(dá)豬流行性腹瀉病毒保護(hù)性抗原S1重組乳酸菌的構(gòu)建及其免疫原性分析[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué), 2022.
XIAO Y. Construction and immunogenicity analysis of recombinant lactic acid bacteria constitutively expressing porcine epidemic diarrhea virus protective antigen S1[D]. Harbin: Northeast Agricultural University, 2022. (in Chinese)
[14] 陳妍卉, 劉軍亭, 于 潛, 等. 重組細(xì)菌活載體疫苗研究進(jìn)展[J]. 中國(guó)預(yù)防獸醫(yī)學(xué)報(bào), 2022, 44(2):219-224, 231.
CHEN Y H, LIU J T, YU Q, et al. Advances of recombinant live bacterial vector vaccine[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(2):219-224, 231. (in Chinese)
[15] TAKAHASHI T. Stimulation of the immune system by lactic acid bacteria[J]. Biosci Microflora, 2001, 20(1):1-8.
[16] ROCHA-RAMREZ L M, HERNNDEZ-CHIAS U, MORENO-GUERRERO S S, et al. Probiotic properties and immunomodulatory activity of Lactobacillus strains isolated from dairy products[J]. Microorganisms, 2021, 9(4):825.
[17] WANG X N, WANG L, HUANG X W, et al. Oral delivery of probiotics expressing dendritic cell-targeting peptide fused with porcine epidemic diarrhea virus COE antigen:a promising vaccine strategy against PEDV[J]. Viruses, 2017, 9(11):312.
[18] 聶民財(cái), 岳健國(guó), 鄧益超, 等. 表達(dá)豬流行性腹瀉病毒S1基因植物乳酸桿菌工程菌的免疫原性分析[J]. 生物工程學(xué)報(bào), 2021, 37(8):2779-2785.
NIE M C, YUE J G, DENG Y C, et al. Immunogenicity of engineered Lactobacillus plantarum expressing porcine epidemic diarrhea virus S1 gene[J]. Chinese Journal of Biotechnology, 2021, 37(8):2779-2785. (in Chinese)
[19] EGELKROUT E, HAYDEN C, FAKE G, et al. Oral delivery of maize-produced porcine epidemic diarrhea virus spike protein elicits neutralizing antibodies in pigs[J]. Plant Cell Tissue Organ Cult, 2020, 142(1):79-86.
[20] 張 楨. 豬源乳酸桿菌安全性和抗逆性研究及其合生元制劑對(duì)小鼠潰瘍性結(jié)腸炎的影響[D]. 南京:南京農(nóng)業(yè)大學(xué), 2020.
ZHANG Z. Thes safety and stress resistance of lactobacilli isolated from swine and the effect of its combination with prebiotics on ulcerative colitis in mice[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese)
[21] 趙東方. 羅伊氏乳酸桿菌的分離鑒定及其抵抗仔豬感染F4+ETEC效果的分析[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué), 2019.
ZHAO D F. Isolation and identification of Lactobacillus reuteri and its effection on F4+ETEC infection piglets[D]. Harbin:Northeast Agricultural University, 2019. (in Chinese)
[22] 李夢(mèng)嬌, 夏 東, 字正浩, 等. 二甲酸鉀對(duì)仔豬直腸內(nèi)乳酸桿菌和腸桿菌的影響[J]. 畜牧與獸醫(yī), 2015, 47(6):31-35.
LI M J, XIA D, ZI Z H, et al. Effect of dietary potassium diformate on population of Enterobacteria and Lactobacilli in rectum chyme of weaning piglets[J]. Animal Husbandry amp; Veterinary Medicine, 2015, 47(6):31-35. (in Chinese)
[23] 李金龍, 鄧 歡, 劉金艷, 等. 益生菌大腸桿菌Nissle 1917抗逆性能、豬腸上皮細(xì)胞黏附率及抑菌效果研究[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2017, 29(4):1241-1247.
LI J L, DENG H, LIU J Y, et al. Probiotics Escherichia coli Nissle 1917:stress resistance, swine intestinal epithelial cells adhesion rate and antimicrobial effects[J]. Chinese Journal of Animal Nutrition, 2017, 29(4):1241-1247. (in Chinese)
[24] 呂秀莉, 岳瑩雪, 平麗筠, 等. 益生菌黏附機(jī)制及其拮抗腸道致病菌研究進(jìn)展[J]. 食品科學(xué), 2023, 44(9):313-320.
L X L, YUE Y X, PING L Y, et al. Research progress on the adhesion mechanism and antagonistic effects against intestinal pathogens of probiotics[J]. Food Science, 2023, 44(9):313-320. (in Chinese)
[25] 宮德正, 鄒 原, 梅懋華. 腸粘膜免疫系統(tǒng)與細(xì)胞因子[J]. 大連醫(yī)科大學(xué)學(xué)報(bào), 2002, 24(1):56-60.
GONG D Z, ZOU Y, MEI M H. Intestinal mucosal immune system and cytokines[J]. Journal of Dalian Medical University, 2002, 24(1):56-60. (in Chinese)
[26] 曹晉宜, 韓軍麗, 王友湘, 等. 瑞士乳桿菌對(duì)小鼠腸道黏膜和腸組織中細(xì)胞因子影響的研究[J]. 食品科學(xué), 2009, 30(21):338-342.
CAO J Y, HAN J L, WANG Y X, et al. Effect of lactobacillus helveticus on cytokines in intestinal mucosa and tissue of mice[J]. Food Science, 2009, 30(21):338-342. (in Chinese)
[27] 劉 果. 豬流行性腹瀉病毒誘導(dǎo)派伊爾結(jié)內(nèi)T細(xì)胞依賴性IgA+B細(xì)胞分化的機(jī)制研究[D]. 蘭州:中國(guó)農(nóng)業(yè)科學(xué)院, 2020.
LIU G. Study on the differentiation mechanisms of T cell-dependent IgA+ B cell in Peyer’s patches induced by porcine epidemic diarrhea virus[D]. Lanzhou: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[28] FAGARASAN S, KAWAMOTO S, KANAGAWA O, et al. Adaptive immune regulation in the gut:T cell-dependent and T cell-independent IgA synthesis[J]. Annu Rev Immunol, 2010, 28:243-273.
[29] HOU X Y, JIANG X P, JIANG Y P, et al. Oral immunization against PEDV with recombinant Lactobacillus casei expressing dendritic cell-targeting peptide fusing COE protein of PEDV in piglets[J]. Viruses, 2018, 10(3):106.
[30] JIANG X P, YU M L, QIAO X Y, et al. Up-regulation of MDP and tuftsin gene expression in Th1 and Th17 cells as an adjuvant for an oral Lactobacillus casei vaccine against anti-transmissible gastroenteritis virus[J]. Appl Microbiol Biotechnol, 2014, 98(19):8301-8312.
(編輯 孟 培)