摘 要: 本研究以約克夏豬為對(duì)照,旨在分析藏豬和約克夏豬的血液生理指標(biāo)和免疫相關(guān)器官組織表達(dá)譜方面的差異,結(jié)合藏豬外周血淋巴細(xì)胞在LPS刺激下,促炎因子IL-1β、IL-6和TNF-α的表達(dá)情況,探究IL-1β、IL-6及TNF-α對(duì)藏豬免疫性狀的影響。試驗(yàn)選擇180日齡的藏豬和約克夏豬各40頭按品種分為兩個(gè)試驗(yàn)組,采集新鮮血液用于檢測(cè)血液生理指標(biāo);采集豬外周淋巴血用于培養(yǎng)外周血淋巴細(xì)胞。隨機(jī)選取藏豬和約克夏豬各8頭按品種分為兩個(gè)試驗(yàn)組,前腔靜脈采集新鮮血液、屠宰后采集黃豆樣大小的肝臟、脾臟、下頜淋巴結(jié)組織Trizol法提取RNA。每個(gè)個(gè)體樣品設(shè)置3個(gè)重復(fù),借助RT-qPCR和一代測(cè)序技術(shù)檢測(cè)IL-1β、IL-6、TNF-α基因表達(dá)情況和基因多態(tài)性。設(shè)置4組濃度的LPS(0、1、10、100 μg·mL-1),每組設(shè)置3個(gè)重復(fù)去刺激外周血淋巴細(xì)胞,于0、24、36、48、72 h收集細(xì)胞,用RT-qPCR檢測(cè)促炎因子mRNA的表達(dá)情況。結(jié)果表明:1)藏豬的WBC、RBC、HGB、HCT和PLT水平極顯著高于約克夏豬(P<0.01),同時(shí),平均MCV和PCT也在藏豬中顯著高于約克夏豬(P<0.05)。2)RT-qPCR結(jié)果表明,在藏豬的血液、脾臟和肝臟組織中,IL-1β、IL-6和TNF-α基因的mRNA表達(dá)量也均顯著高于約克夏豬(P<0.01);在藏豬的下頜淋巴結(jié)中,IL-1β和TNF-α基因的表達(dá)量顯著高于約克夏豬(P<0.05),IL-6基因的mRNA表達(dá)量極顯著高于約克夏豬(P<0.01)。3)SNP位點(diǎn)篩選結(jié)果發(fā)現(xiàn),在IL-1β基因3′側(cè)翼區(qū)存在5個(gè)突變位點(diǎn),其中G690T、C1383G、C1480T、A1497G位點(diǎn)在藏豬和約克夏豬群體間存在極顯著差異(P<0.01),C1454T位點(diǎn)在藏豬和約克夏豬群體存在顯著差異(P<0.05);IL-6基因3′側(cè)翼區(qū)存在1個(gè)有義突變位點(diǎn)C265T,兩品種間呈顯著差異(P<0.05),在5′側(cè)翼區(qū)存在1個(gè)有義突變位點(diǎn)A-72G,兩品種間呈極顯著差異(P<0.01);TNF-α基因在5′側(cè)翼區(qū)存在1個(gè)有義突變位點(diǎn),但兩品種間差異不顯著(P>0.05)。4)不同濃度LPS刺激藏豬外周血淋巴細(xì)胞試驗(yàn)結(jié)果表明,10 μg·mL-1濃度的LPS對(duì)藏豬外周血淋巴細(xì)胞的增殖效應(yīng)最為顯著。在1、10 μg·mL-1濃度LPS刺激下,IL-1β基因作出較明顯應(yīng)答,在100 μg·mL-1濃度LPS刺激下,IL-6基因作出較強(qiáng)應(yīng)答。綜上所述,和約克夏豬相比,藏豬在血液生理指標(biāo)、免疫組織器官中促炎因子表達(dá)以及基因多態(tài)性方面表現(xiàn)出更強(qiáng)的抗病能力。其中IL-6基因的A-72G位點(diǎn)可能與免疫性和抗病能力密切相關(guān)。在藏豬外周血淋巴細(xì)胞培養(yǎng)試驗(yàn)中,IL-1β和IL-6基因?qū)PS的顯著應(yīng)答突顯了它們?cè)诿庖哒{(diào)控中的關(guān)鍵作用。
關(guān)鍵詞: 藏豬;LPS;促炎因子;血液生理指標(biāo);SNP
中圖分類號(hào):S828.2
文獻(xiàn)標(biāo)志碼:A""" 文章編號(hào):0366-6964(2024)05-1958-12
收稿日期:2023-10-23
基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)項(xiàng)目(2022YFD1600903);國(guó)家自然基金地區(qū)基金項(xiàng)目(32160773);西藏自治區(qū)科技計(jì)劃項(xiàng)目(XZ202202JD0002N);西藏自治區(qū)重大科技專項(xiàng)項(xiàng)目(XZ202101ZD0005N)
作者簡(jiǎn)介:孫雯莉(1998-),女,河南人,碩士生,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:2097699942@qq.com
*通信作者:商 鵬,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail: nemoshpmh@126.com
Polymorphism of Pro-Inflammatory Factors (IL-1β, IL-6, TNF-
α) in Tibetan Pigs and Its Association Analysis with Immune Traits
SUN Wenli1,2,3, WANG" Haoqi1,2,3, ZE" Licuo1,2,3, GAO" Yufan1,2,3, ZHANG" Feifan1,2,3,
ZHANG" Jian1,2,3, DUAN Mengqi1,2,3, SHANG" Peng1,2,3*, QIANG" Bayangzong1,2,3
(1.College of Animal Science, Xizang Agricultural and Animal Husbandry College,
Linzhi 860000," China;
2.Key Laboratory of Tibetan Pig Genetic Improvement and
Reproduction, Linzhi 860000," China;
3.Tibet Collaborative Innovation Center for the
Research and Development of Unique Agricultural
and Animal Resources, Linzhi 860000," China)
Abstract:" This study, using Yorkshire pigs as controls, aimed to explore the differences in blood physiological indicators and the expression profiles of immune-related organ tissues between Tibetan pigs and Yorkshire pigs. Additionally, the expression levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in Tibetan pig peripheral blood lymphocytes stimulated with LPS was investigated, to understand their impact on the immune characteristics of Tibetan pigs. Forty Tibetan pigs and forty Yorkshire pigs aged 180 days were divided into two experimental groups based on breed. Fresh blood samples were collected for detecting blood physiological indicators, and peripheral blood lymphocytes were cultured for further analysis. Moreover, 8 Tibetan pigs and 8 Yorkshire pigs from each breed were randomly selected and divided into two experimental groups. Fresh blood was collected from the anterior vena cava, and liver, spleen, and submandibular lymph node tissues were collected post-slaughter for RNA extraction using the Trizol method. Each individual sample was subjected to 3 replicates for RT-qPCR and next-generation sequencing analysis to assess the expression levels and genetic polymorphisms of IL-1β, IL-6, and TNF-α genes. Peripheral blood lymphocytes were stimulated with 4 concentrations of LPS (0, 1, 10, 100 μg·mL-1), with 3 replicates per group. Cells were collected at 0, 24, 36, 48, and 72 h, and RT-qPCR was performed to assess the expression of pro-inflammatory cytokine mRNA. Results indicate that: 1) Tibetan pigs exhibited significantly higher levels of WBC, RBC, HGB, HCT, and PLT compared to Yorkshire pigs (Plt;0.01). Additionally, the average MCV and PCT were significantly higher in Tibetan pigs than those in Yorkshire pigs (Plt;0.05). 2) RT-qPCR results revealed significantly higher mRNA expression levels of IL-1β, IL-6, and TNF-α genes in the blood, spleen, and liver tissues of Tibetan pigs compared to Yorkshire pigs (Plt;0.01). In the submandibular lymph nodes of Tibetan pigs, the expression levels of IL-1β and TNF-α genes were significantly higher (Plt;0.05), while the mRNA expression level of the IL-6 gene was extremely significantly higher (Plt;0.01). 3) SNP site screening identified 5 mutation sites in the 3′ flanking region of the IL-1β gene. Among them, G690T, C1383G, C1480T, and A1497G sites showed extremely significant differences between Tibetan pigs and Yorkshire pigs (Plt;0.01), and the C1454T site exhibited significant differences (Plt;0.05).
The IL-6 gene’s 3′ flanking region contained a non-synonymous mutation site C265T, which showed significant differences (Plt;0.05), and a non-synonymous mutation site A-72G in the 5′ flanking region exhibited highly significant differences (Plt;0.01). The TNF-α gene had a non-synonymous mutation site in the 5′ flanking region, but the difference between the two breeds was not significant (Pgt;0.05). 4) Different LPS concentrations stimulated Tibetan peripheral blood lymphocytes, with 10 μg·mL-1 LPS showing the most significant proliferative effect. At concentrations of 1 and 10 μg·mL-1 LPS stimulation, the IL-1β gene responded significantly, and at a concentration of 100 μg·mL-1 LPS, the IL-6 gene exhibited a strong response. In summary, compared to Yorkshire pigs, Tibetan pigs demonstrated stronger resistance in blood physiological indicators, immune organ cytokine expression, and genetic polymorphism. The A-72G site in the IL-6 gene may be closely related to immunological and disease resistance capabilities. The significant responses of IL-1β and IL-6 genes to LPS in Tibetan pig peripheral blood lymphocyte culture experiments highlight their critical role in immune regulation.
Key words: Tibetan pigs; LPS; pro-inflammatory factors; blood physiological parameters; SNP
*Corresponding author:SHANG Peng, E-mail: nemoshpmh@126.com
西藏自治區(qū)是中國(guó)典型的高原低氧地區(qū),在這種極端環(huán)境下長(zhǎng)期居住的生物體,經(jīng)歷了遺傳上的適應(yīng)性變化,包括免疫器官、組織和細(xì)胞等方面的發(fā)展。特別是在高海拔高寒地區(qū)生活的動(dòng)物種群如藏豬,形成了獨(dú)特的生存特性[1]。藏豬主要分布在海拔約3 000 m的青藏高原農(nóng)牧區(qū)。由于長(zhǎng)期適應(yīng)高寒高海拔環(huán)境,藏豬具有強(qiáng)大的免疫功能、耐低氧、耐低溫、適應(yīng)粗飼料和抗紫外線等特性[2]。然而,盡管已經(jīng)了解到藏豬具有這些獨(dú)特的特性,目前仍存在一個(gè)關(guān)鍵問(wèn)題,即為什么藏豬在如此惡劣的高原環(huán)境下能夠表現(xiàn)出如此卓越的抗逆性和抗病能力。這個(gè)問(wèn)題的答案對(duì)于理解高原動(dòng)物的適應(yīng)性演化以及免疫系統(tǒng)的功能至關(guān)重要。
促炎因子IL-1β、IL-6和TNF-α基因在免疫反應(yīng)中扮演著關(guān)鍵的角色,它們可能是解釋藏豬抗病能力和適應(yīng)高原環(huán)境的關(guān)鍵因素之一[3-4]。IL-1β基因是一種自然的促炎細(xì)胞因子,其在炎癥反應(yīng)中發(fā)揮主導(dǎo)作用,同時(shí)也參與了機(jī)體適應(yīng)性免疫應(yīng)答的調(diào)控。有研究指出,異常的IL-1β基因信號(hào)傳導(dǎo)可能與遺傳性自身炎癥性疾病有關(guān)[5]。TNF-α基因主要由Th1型細(xì)胞分泌,在細(xì)胞免疫應(yīng)答中扮演著重要的角色[6-8]。IL-6基因則由Th2型細(xì)胞產(chǎn)生,在調(diào)節(jié)體液免疫反應(yīng)方面發(fā)揮重要作用[9]。這些細(xì)胞因子在機(jī)體內(nèi)緊密協(xié)作,以維持免疫平衡和應(yīng)對(duì)各種感染和疾病。
脂多糖(LPS),是革蘭氏陰性菌細(xì)胞壁的主要組成成分,革蘭陰性菌在環(huán)境中普遍存在,生產(chǎn)活動(dòng)使用抗生素等藥物對(duì)其消殺后,其釋放出大量的LPS,而LPS對(duì)豬可產(chǎn)生廣泛的損害,包括發(fā)熱、炎癥反應(yīng)、組織損傷及生產(chǎn)性能下降等[10-11]。當(dāng)動(dòng)物感染LPS時(shí),會(huì)觸發(fā)全身性的免疫反應(yīng),導(dǎo)致體內(nèi)促炎性細(xì)胞因子如TNF-α、干擾素-γ、IL-6和IL-1的表達(dá)量升高[12-14],繼而引發(fā)一系列免疫反應(yīng),這些促炎因子的表達(dá)情況也反映了動(dòng)物的抗病能力[15-17]。
本試驗(yàn)以長(zhǎng)期生活在林芝地區(qū)的藏豬為主要研究對(duì)象,以同在此地長(zhǎng)期飼養(yǎng)的約克夏豬作為對(duì)照參考,通過(guò)血液生理指標(biāo)測(cè)定、RT-qPCR技術(shù)、一代測(cè)序技術(shù)及藏豬外周血淋巴細(xì)胞的培養(yǎng)、設(shè)置不同濃度LPS對(duì)照組刺激該原代細(xì)胞并檢測(cè)促炎因子mRNA表達(dá)情況等方法,查明藏豬與約克夏豬在血液生理方面的表現(xiàn)差異,進(jìn)一步探究?jī)烧唛g抗逆性、低氧適應(yīng)性的具體差異表現(xiàn),為深入開(kāi)展藏豬低氧適應(yīng)性、抗逆性等方面的具體調(diào)控機(jī)制提供參考。通過(guò)比較它們與約克夏豬的差異,有望獲得有益的信息,不僅可以為養(yǎng)殖業(yè)提供重要的參考,還能對(duì)動(dòng)物的健康管理和免疫調(diào)節(jié)方面提供有價(jià)值的數(shù)據(jù)。
1 材料與方法
1.1 樣品采集
試驗(yàn)動(dòng)物為長(zhǎng)期生活在西藏自治區(qū)林芝市(海拔2 900 m)的180日齡藏豬(TP,Tibetan pig)和約克夏豬(YY,Yorkshire pig)。隨機(jī)選取閹割公藏豬(TP)和閹割公約克夏豬(YY)各40頭按品種分為兩個(gè)試驗(yàn)組,分別采集豬外周淋巴血以及新鮮血液快速放入準(zhǔn)備好的肝素鈉采血管中用于血液生理指標(biāo)測(cè)定及外周血淋巴細(xì)胞的培養(yǎng),并采集耳組織樣品,放入含有75%酒精的離心管中,置于-20 ℃冰箱用于SNP的篩選。隨機(jī)選取藏豬和約克夏豬各8頭進(jìn)行屠宰,使用5 mL的一次性采血針由前腔靜脈采集新鮮血液,提取血液RNA,屠宰后采集黃豆樣大小的肝臟、脾臟、下頜淋巴結(jié)組織放入含有RNA保存液的樣品管中,快速放入液氮中速凍,隨即-80℃保存用于RNA的提取。
1.2 血液生理指標(biāo)測(cè)定
使用獸用全自動(dòng)血液細(xì)胞分析儀(mindary,BC-2 006Vet)對(duì)待測(cè)血樣進(jìn)行測(cè)定,所有步驟及注意事項(xiàng)按照該設(shè)備說(shuō)明書(shū)規(guī)范操作。
1.3 檢測(cè)不同組織中IL-1β、IL-6、TNF-α基因mRNA的表達(dá)
Trizol法(Thermo,USA)提取血液及組織樣本總RNA,瓊脂糖凝膠電泳及微量核酸檢測(cè)儀(Thermo,NanoDrop 2000C)檢測(cè)RNA樣品的質(zhì)量??焖俜崔D(zhuǎn)錄cDNA試劑盒(北京天根生化科技有限公司,KR180123)合成cDNA。從NCBI(http://www.ncbi.nlm.nih.gov/)分別下載目的基因IL-1β(登錄號(hào):NM_214055.1)、IL-6(登錄號(hào):NM_214399.1)、TNF-α(登錄號(hào):NM_214022.1)及內(nèi)參基因β-actin(登錄號(hào):AY550069)的mRNA序列,用Primer Premier 5.0軟件進(jìn)行定量引物設(shè)計(jì),并送至生工生物工程(上海)股份有限公司進(jìn)行合成,引物信息見(jiàn)表1。利用RT-qPCR技術(shù)對(duì)藏豬和大約克豬各8頭的脾臟、肝臟、下頜淋巴結(jié)和血液組織進(jìn)行IL-1β、IL-6、TNF-α基因的mRNA的表達(dá)情況檢測(cè)。每個(gè)個(gè)體樣品設(shè)置3個(gè)重復(fù),檢測(cè)結(jié)果使用2-ΔΔCt法統(tǒng)計(jì)。
1.4 SNP位點(diǎn)篩選
登錄GenBank(http://www.ncbi.nlm.nih.gov/genbank),分別下載豬IL-1β、IL-6、TNF-α基因5′端起始密碼子(ATG)上游2 000 bp的DNA序列以及3′端終止密碼子(TGA)下游2 000 bp的DNA序列(登錄號(hào):NC_010 445.4、 NC_010 451.4、NC_010 449.5)。使用Primer Premier 5.0軟件設(shè)計(jì)用于多態(tài)性分析的引物,并送至生工生物工程(上海)股份有限公司合成。引物序列和擴(kuò)增區(qū)域見(jiàn)表2、表3。
使用Sanger測(cè)序法對(duì)IL-1β、IL-6、TNF-α基因各個(gè)區(qū)域混池產(chǎn)物進(jìn)行測(cè)序,使用SnapGene和Excel軟件分別對(duì)IL-1β、IL-6、TNF-α基因各個(gè)區(qū)域測(cè)序結(jié)果進(jìn)行分析,篩選SNPs位點(diǎn)。針對(duì)所篩選出的SNPs位點(diǎn)進(jìn)行單個(gè)個(gè)體擴(kuò)增測(cè)序和基因分型,統(tǒng)計(jì)基因型頻率與等位基因頻率。從NCBI(https://www.ncbi.nlm.nih.gov/)下載IL-1β、IL-6、TNF-α基因序列,進(jìn)行轉(zhuǎn)錄因子預(yù)測(cè),查看SNPs位點(diǎn)突變前后轉(zhuǎn)錄因子結(jié)合位點(diǎn)的變化。
1.5 藏豬外周血淋巴細(xì)胞的分離
將采集的新鮮血液放入肝素鈉抗凝管內(nèi),快速常溫運(yùn)回實(shí)驗(yàn)室。加入等量的PBS稀釋血液,隨后緩慢加入到提前已加入外周血淋巴細(xì)胞分離液的離心管中,使血液處于分離液上層,1 000 g離心25~30 min,直至出現(xiàn)明顯的四分層現(xiàn)象(從上至下分別為:稀釋液+血漿層、淋巴細(xì)胞層、分離液層、紅細(xì)胞+粒細(xì)胞層),收集淋巴細(xì)胞,PBS/D-Hanks緩沖液清洗2次,最后加入完全培養(yǎng)基(RPMI 1640+5% FBS+1% PS)重懸細(xì)胞。
1.6 RT-qPCR法檢測(cè)不同濃度LPS刺激下藏豬外周血淋巴細(xì)胞促炎因子表達(dá)情況
以每孔1×106個(gè)·cm-2細(xì)胞接種至96孔細(xì)胞培養(yǎng)板內(nèi)。設(shè)置0、1、10、100 μg·mL-1四個(gè)不同濃度LPS的組別,置37℃孵育箱培養(yǎng)0、24、36、48、72 h,每個(gè)濃度的LPS重復(fù)3份,并在0、24、36、48、72 h收集細(xì)胞,進(jìn)行細(xì)胞RNA的提取,反轉(zhuǎn)為cDNA,RT-qPCR技術(shù)檢測(cè)促炎因子IL-1β、IL-6、TNF-α基因mRNA水平表達(dá)情況。
1.7 統(tǒng)計(jì)分析
使用IBM SPSS Statisties 26.0軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析,使用Sigma Plot 10.0軟件繪圖。數(shù)據(jù)結(jié)果用“平均值±標(biāo)準(zhǔn)誤差”表示,*表示差異顯著(P<0.05),**表示差異極顯著(P<0.01),無(wú)標(biāo)注表示差異不顯著(P>0.05)。
2 結(jié) 果
2.1 血液生理指標(biāo)檢測(cè)結(jié)果
血液生理指標(biāo)測(cè)定結(jié)果如表4所示,藏豬白細(xì)胞數(shù)量(WBC)、紅細(xì)胞數(shù)量(RBC)、血紅蛋白數(shù)量(HGB)、紅細(xì)胞比容(HCT)、平均紅細(xì)胞體積(MCV)、血小板數(shù)量(PLT)和降鈣素原(PCT)的數(shù)值都相對(duì)較高,其中藏豬的平均MCV和PCT顯著高于約克夏豬(P<0.05),WBC、RBC、HGB、HCT和PLT水平極顯著高于約克夏豬(P<0.01)。
2.2 藏豬和約克夏豬IL-1β、IL-6、TNF-α基因在免疫組織中的表達(dá)差異分析
RT-qPCR結(jié)果顯示(圖1),IL-1β、IL-6和TNF-α基因在藏豬血液中的相對(duì)表達(dá)量最高,且均極顯著高于約克夏豬(P<0.01)。在脾臟和肝臟組織中,藏豬的IL-1β、IL-6和TNF-α基因mRNA水平表達(dá)量也均極顯著高于約克夏豬(P<0.01)。在下頜淋巴結(jié)組織中,藏豬的IL-6基因mRNA水平表達(dá)量極顯著高于約克夏豬(P<0.01),IL-1β和TNF-α基因的表達(dá)量顯著高于約克夏豬(P<0.05)。
2.3 藏豬與約克夏豬促炎因子SNPs位點(diǎn)篩選及分析
2.3.1 IL-1β、IL-6、TNF-α基因突變位點(diǎn)的基因型頻率和等位基因頻率
由表5可知,IL-1β基因3′側(cè)翼區(qū)共存在5個(gè)突變位點(diǎn),分別為:G690T、C1383G、C1454T、C1480T、A1497G。品種內(nèi),上述位點(diǎn)均符合Hardy-Weinberg平衡(P>0.05)。品種間,G690T、C1383G、C1480T、A1497G位點(diǎn)在藏豬和約克夏豬群體存在極顯著差異(P<0.01),C1454T位點(diǎn)在藏豬和約克夏豬群體存在顯著差異(P<0.05)。由表6可知,IL-6基因5′側(cè)翼區(qū)和3′側(cè)翼區(qū)各發(fā)現(xiàn)一個(gè)突變位點(diǎn),分別為:A-72G、C265T。品種內(nèi),上述位點(diǎn)均符合Hardy-Weinberg平衡(P>0.05)。品種間,A-72G位點(diǎn)在藏豬和約克夏豬群體存在極顯著差異(P<0.01);C265T位點(diǎn)在藏豬和約克夏豬群體差異不顯著(Pgt;0.05)。由表7可知,TNF-α基因3′側(cè)翼區(qū)未發(fā)現(xiàn)突變位點(diǎn),5′側(cè)翼區(qū)發(fā)現(xiàn)一個(gè)突變位點(diǎn),為:G-1017A。品種內(nèi),該位點(diǎn)符合Hardy-Weinberg平衡(P>0.05)。品種間,該位點(diǎn)在藏豬和約克夏豬群體差異不顯著(P>0.05)。
2.3.2 IL-1β、IL-6、TNF-α基因轉(zhuǎn)錄因子預(yù)測(cè)結(jié)果
為進(jìn)一步探究IL-1β、IL-6、TNF-α基因突變位點(diǎn)前后的轉(zhuǎn)錄因子變化情況,將突變位點(diǎn)前后堿基進(jìn)行轉(zhuǎn)錄因子預(yù)測(cè)(網(wǎng)站:http://jaspar.binf.ku.dk/)。結(jié)果顯示,IL-1β基因的5個(gè)位點(diǎn)、TNF-α基因G-1017A位點(diǎn)突變前后未發(fā)生轉(zhuǎn)錄因子的變化;IL-6基因A-72G位點(diǎn)突變后,新增了一個(gè)轉(zhuǎn)錄因子結(jié)合位點(diǎn),為ETS1,同時(shí),在A突變?yōu)镚之后,造成了轉(zhuǎn)錄因子RUNX1和NR2F1的缺失。
2.4 不同濃度LPS對(duì)藏豬外周血淋巴細(xì)胞及其促炎因子表達(dá)情況的影響
2.4.1 不同濃度LPS對(duì)藏豬外周血淋巴細(xì)胞增殖的影響
結(jié)果如圖2所示,在0、1 μg·mL-1濃度的LPS刺激下,藏豬外周血淋巴細(xì)胞數(shù)量呈逐漸上升的趨勢(shì)。這種上升趨勢(shì)始于36 h前,并在一段時(shí)間后達(dá)到了增殖的高峰,隨后開(kāi)始下降;在10 μg·mL-1濃度的LPS刺激下,與前兩種情況不同的是,上升趨勢(shì)在24 h時(shí)達(dá)到了增殖的高峰,之后開(kāi)始下降,保持下降趨勢(shì);在100 μg·mL-1濃度的LPS刺激下,對(duì)淋巴細(xì)胞也有一定的增殖效果,在24h時(shí)達(dá)到最高峰,隨后迅速開(kāi)始下降。綜上,10 μg·mL-1濃度的LPS對(duì)藏豬外周血淋巴細(xì)胞的增殖效應(yīng)最為顯著。
2.4.2 不同濃度LPS對(duì)藏豬外周血淋巴IL-1β、IL-6、TNF-α基因mRNA表達(dá)量的影響
結(jié)果如圖2、圖3所示,在未添加LPS的情況下,IL-1β基因mRNA的表達(dá)量在24h時(shí)達(dá)到最高點(diǎn),然后逐漸下降,每個(gè)時(shí)間段都呈現(xiàn)極顯著的變化(P<0.01)。IL-6和TNF-α基因mRNA的表達(dá)量在24~48h內(nèi)逐漸上升,并在48h達(dá)到峰值,然后逐漸減少。1 μg·mL-1對(duì)比0 μg·mL-1濃度LPS刺激下,濃度的LPS刺激下,IL-1β基因mRNA的表達(dá)量總體上呈上升趨勢(shì),而IL-6和TNF-α基因mRNA的表達(dá)量則在一定程度上減少。在10 μg·mL-1濃度的LPS刺激下,IL-1β基因mRNA的表達(dá)量總體上也呈上升趨勢(shì),與1 μg·mL-1L濃度LPS刺激時(shí)的表達(dá)量沒(méi)有明顯差異。然而,隨著時(shí)間的推移,這些基因的表達(dá)量逐漸下降,在48~72h階段出現(xiàn)急劇下降的情況。在100 μg·mL-1L濃度的LPS刺激下,IL-1β、IL-6和TNF-α基因mRNA的表達(dá)量在24h時(shí)達(dá)到最高點(diǎn),顯著或極顯著高于其他時(shí)間點(diǎn)(P<0.05或P<0.01)。
3 討 論
血液生理指標(biāo)能夠在一定程度上反映動(dòng)物機(jī)體應(yīng)對(duì)外界惡劣環(huán)境的能力[12],其中WBC和PCT通常被視為常規(guī)炎癥標(biāo)志物[18-19],Minasyan[20]在研究中也強(qiáng)調(diào)了血液中的紅細(xì)胞在機(jī)體細(xì)胞免疫中的重要作用。Poscablo和Forsberg[21]的研究結(jié)果表明,血小板含量高有助于釋放更多的炎癥介質(zhì),進(jìn)一步招募白細(xì)胞。本研究對(duì)比了藏豬和約克夏豬兩個(gè)品種,發(fā)現(xiàn)藏豬的WBC、RBC、HGB、HCT和PLT水平極顯著高于約克夏豬(P<0.01),同時(shí),平均MCV和PCT也在藏豬中顯著高于約克夏豬(P<0.05)。這些生理指標(biāo)結(jié)果為藏豬表現(xiàn)出更強(qiáng)的抗病能力提供了重要的表型依據(jù)。由于血液中存在大量的免疫細(xì)胞和免疫因子,并通過(guò)血液迅速響應(yīng)外部病原體,與機(jī)體免疫穩(wěn)態(tài)密切相關(guān)[22]。另外,有研究表明紅細(xì)胞和血小板的表達(dá)以及凝血潛能都受到促炎因子IL-6和IL-1β的調(diào)控[23]。因此本研究進(jìn)一步關(guān)注了血液和免疫器官中的促炎因子。RT-qPCR結(jié)果表明,IL-1β、IL-6和TNF-α基因在藏豬血液中的相對(duì)表達(dá)量最高,且均極顯著高于約克夏豬(P<0.01)。這與張敬梅等[11]的研究中提到的抗病力強(qiáng)的地方豬種的關(guān)鍵細(xì)胞因子表達(dá)量更高的結(jié)論相符。其表明藏豬的免疫器官不僅在細(xì)胞免疫方面還是在體液免疫方面都具有更強(qiáng)的優(yōu)勢(shì)??偟膩?lái)說(shuō),在同一環(huán)境中,藏豬表現(xiàn)出更強(qiáng)的炎癥控制反應(yīng),這可能是其更強(qiáng)抗病能力的原因之一。
有研究結(jié)果顯示[24-25],基因多態(tài)性差異在個(gè)體和品種間導(dǎo)致多樣性、基因組進(jìn)化、藥物反應(yīng)、抗病能力等重要變化。因此,篩選藏豬和約克夏豬IL-1β、IL-6、TNF-α基因的SNPs位點(diǎn)發(fā)現(xiàn),在IL-1β基因3′側(cè)翼區(qū)存在5個(gè)顯著差異突變位點(diǎn)(P<0.05);在IL-6基因3′側(cè)翼區(qū)的C265T位點(diǎn)(P<0.05)和5′側(cè)翼區(qū)的A-72G位點(diǎn)(P<0.01)也表現(xiàn)出顯著差異。IL-6基因A-72G位點(diǎn)突變新增了ETS1轉(zhuǎn)錄因子結(jié)合位點(diǎn),并導(dǎo)致了轉(zhuǎn)錄因子RUNX1和NR2F1的缺失。ETS1通常與免疫細(xì)胞功能有關(guān)[26-28],RUNX1與白血病和腫瘤相關(guān)[29-30],NR2F1則參與腫瘤特異性[31]。這表明IL-6基因的A-72G位點(diǎn)可能與免疫性和抗病能力密切相關(guān),具有重要的應(yīng)用潛力。因此,探究藏豬IL-1β、IL-6、TNF-α基因的SNP位點(diǎn)變異為解釋其卓越的抗病能力提供了分子基礎(chǔ)。
在養(yǎng)豬業(yè)實(shí)踐中,LPS是一種普遍存在于空氣、飼料和水中的生物分子,具有炎癥性質(zhì)[32-33]。當(dāng)單核細(xì)胞和巨噬細(xì)胞受到LPS刺激后,會(huì)刺激淋巴細(xì)胞的增殖[34-35],并釋放一系列促炎因子包括IL-1β、IL-6、TNF-α等,這些因子在機(jī)體的先天免疫反應(yīng)中扮演著關(guān)鍵角色[5,36-37]。因此本研究在細(xì)胞水平,通過(guò)不同濃度的LPS刺激,考察了這些基因在藏豬外周血淋巴細(xì)胞中的表達(dá)情況。研究發(fā)現(xiàn),當(dāng)LPS濃度為10 μg·mL-1時(shí),對(duì)藏豬外周血淋巴細(xì)胞的增殖效應(yīng)最為顯著。當(dāng)LPS濃度為1、10 μg·mL-1時(shí),IL-1β基因作出較明顯的應(yīng)答,而當(dāng)LPS濃度為100 μg·mL-1時(shí)IL-6基因表現(xiàn)出更為強(qiáng)烈的應(yīng)答。有研究表明[27,38-40],在免疫細(xì)胞功能中,IL-1β扮演者關(guān)鍵角色,作為促炎反應(yīng)的核心中介者,它引發(fā)了后續(xù)的炎癥介質(zhì)如IL-6和TNF-α的激活。因此,在受到LPS刺激后,IL-1β基因的表達(dá)量顯著高于IL-6、TNF-α??傊?,研究結(jié)果強(qiáng)調(diào)了IL-1β、IL-6在應(yīng)對(duì)LPS干擾方面的顯著作用,為進(jìn)一步探究藏豬的免疫特性提供了重要的理論基礎(chǔ),但還需要進(jìn)一步研究來(lái)闡明具體的影響機(jī)制。
4 結(jié) 論
綜上所述,血液生理指標(biāo)結(jié)果為藏豬具有更強(qiáng)的抗病能力提供了強(qiáng)有力的表型依據(jù)。免疫組織器官中促炎因子(IL-1β、IL-6、TNF-α)的表達(dá)情況強(qiáng)調(diào)了藏豬在免疫調(diào)節(jié)方面的優(yōu)勢(shì)。此外,在基因多態(tài)性的研究結(jié)果中,尤其是IL-6基因的A-72G位點(diǎn),其突變可能與免疫性和抗病能力密切相關(guān)。最后,在藏豬外周血原代淋巴細(xì)胞培養(yǎng)試驗(yàn)中,發(fā)現(xiàn)IL-1β和IL-6在應(yīng)對(duì)LPS干擾時(shí)表現(xiàn)出顯著的應(yīng)答,突出了它們?cè)诿庖哒{(diào)控中的關(guān)鍵作用。這一系列研究結(jié)果共同揭示了藏豬在免疫特性和抗病能力方面的卓越表現(xiàn),為深入研究提供了有力的理論支持。
參考文獻(xiàn)(References):
[1] LI F,QIAO Z L,DUAN Q J,et al.Adaptation of mammals to hypoxia[J].Animal Model Exp Med,2021,4(4):311-318.
[2] 楊天良,楊雅楠,王 彪,等.藏豬適應(yīng)高原低氧環(huán)境的肺臟血管鑄型特征[J].中國(guó)獸醫(yī)學(xué)報(bào),2021,41(3):526-531.
YANG T L,YANG Y N,WANG B,et al.Characteristics of pulmonary vascular casting in Tibetan pigs adapted to the hypoxic environment at high altitude[J].Chinese Journal of Veterinary Science,2021,41(3):526-531.(in Chinese)
[3] BARICHELLO T,GENEROSO J S,SINGER M,et al.Biomarkers for sepsis:more than just fever and leukocytosis—a narrative review[J].Crit Care,2022,26(1):14.
[4] PFEILER S,WINKELS H,KELM M,et al.IL-1 family cytokines in cardiovascular disease[J].Cytokine,2019,122:154215.
[5] 懷 千,王 華.白細(xì)胞介素-1家族細(xì)胞因子在肝臟疾病中的研究進(jìn)展[J].中國(guó)藥理學(xué)通報(bào),2023,39(5):828-832.
HUAI Q,WANG H.Advance in study of interleukin-1 family cytokines in liver diseases[J].Chinese Pharmacological Bulletin, 2023,39(5):828-832.(in Chinese)
[6] 徐葉青,劉菲焱,黃海華,等.腫瘤壞死因子小分子抑制劑的作用機(jī)理[J].現(xiàn)代鹽化工,2021,48(3):39-40.
XU Y Q,LIU F Y,HUANG H H,et al.Mechanism of action of tumor necrosis factor small molecule inhibitors[J].Modern Salt and Chemical Industry,2021,48(3):39-40.(in Chinese)
[7] WANG Y J,CHE M X,XIN J G,et al.The role of IL-1β and TNF-α in intervertebral disc degeneration[J].Biomed Pharmacother, 2020,131:110660.
[8] DUTKIEWICZ J,POMORSKI Z J H,SITKOWSKA J,et al.Airborne microorganisms and endotoxin in animal houses[J].Grana, 2014, 33(2):85-90.
[9] 王宏艷,嚴(yán)晗光,徐玉花.豬內(nèi)毒素的綜合防治方案研究[J].畜禽業(yè),2015(5):31-32.
WANG H Y,YAN H G,XU Y H.Research on comprehensive prevention and control scheme for pig endotoxin[J].Livestock and Poultry Industry,2015(5):31-32.(in Chinese)
[10] 張祺琪,王俊梅,岳子奇,等.LPS對(duì)牦牛瘤胃上皮細(xì)胞補(bǔ)體C3激活和ATP生成代謝的影響[J].畜牧獸醫(yī)學(xué)報(bào),2023,54(11): 4664-4675.
ZHANG Q Q,WANG J M,YUE Z Q,et al.Effect of LPS on the complement C3 activation and ATP production in the rumen epithelial cells of yak[J].Acta Veterinaria et Zootechnica Sinica,2023,54(11):4664-4675.(in Chinese)
[11] 張敬梅,顧亦韌,李江淩,等.烏金豬、青峪豬和成華豬免疫器官多種免疫調(diào)節(jié)基因表達(dá)的比較[J].畜牧與獸醫(yī),2018, 50(10):43-48.
ZHANG J M,GU Y R,LI J L,et al.Comparison of multiple immunoregulatory gene expressions in the immune organs of Wujin,Qingyu and Chenghua pigs[J].Animal Husbandry amp; Veterinary Medicine,2018,50(10):43-48.(in Chinese)
[12] KAYAGAKI N,WONG M T,STOWE I B,et al.Noncanonical inflammasome activation by intracellular LPS independent of TLR4[J].Science,2013,341(6151):1246-1249.
[13] GINDRI P,DE VILA CASTRO N,MION B,et al.Intrafollicular lipopolysaccharide injection delays ovulation in cows[J].Anim Reprod Sci,2019,211:106226.
[14] 郭詠梅,石惠宇,閆素梅,等.白細(xì)胞介素-1受體拮抗劑對(duì)脂多糖誘導(dǎo)的奶牛乳腺上皮細(xì)胞氧化損傷的保護(hù)作用[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2023,35(7):4596-4603.
GUO Y M,SHI H Y,YAN S M,et al.Protective effect of interleukin-1 receptor antagonist on lipopolysaccharide-induced oxidative damage in bovine mammary epithelial cells[J].Chinese Journal of Animal Nutrition,2023,35(7):4596-4603.(in Chinese)
[15] EDAMITSU S,MATSUKAWA A,OHKAWARA S,et al.Role of TNFα,IL-1,and IL-1ra in the mediation of leukocyte infiltration and increased vascular permeability in rabbits with LPS-induced pleurisy[J].Clin Immunol Immunopathol,1995,75(1):68-74.
[16] 張吉鹍.內(nèi)毒素的生物活性及其對(duì)豬的危害[J].豬業(yè)科學(xué),2020,37(11):134-137.
ZHANG J K.The bioactivity of Endotoxin and its harm to the pigs[J].Swine Industry Science,2020,37(11):134-137.(in Chinese)
[17] 強(qiáng)巴央宗,張 浩,白瑪央宗,等.高原環(huán)境中藏豬血液生理指標(biāo)測(cè)定與比較[J].西南農(nóng)業(yè)學(xué)報(bào),2011,24(6):2382-2384.
CHAMBA Y Z,ZHANG H,BAINA Y Z,et al.Determination of blood physiological parameters in Tibet pig at high altitude[J]. Southwest China Journal of Agricultural Sciences,2011,24(6):2382-2384.(in Chinese)
[18] 李平會(huì),蒲 廣,王中宇,等.日糧纖維水平對(duì)梅山豬血液和腸道免疫指標(biāo)的影響及其機(jī)理初步解析[J].畜牧獸醫(yī)學(xué)報(bào),2023,54(10):4260-4277.
LI P H,PU G,WANG Z Y,et al.Effect of dietary fiber level on blood and intestinal immune indexes of Meishan pigs and preliminary analysis of its mechanism[J].Acta Veterinaria et Zootechnica Sinica,2023,54(10):4260-4277.(in Chinese)
[19] 欒 皓,邢 爽,余祖胤.血小板生成素調(diào)控機(jī)體造血免疫的研究進(jìn)展[J].安徽醫(yī)科大學(xué)學(xué)報(bào),2023,58(3):519-522.
LUAN H,XING S,YU Z Y.Research progress on thrombopoietin regulating hematopoietic immunity in the body[J].Acta Universitatis Medicinalis Anhui,2023,58(3):519-522.(in Chinese)
[20] MINASYAN H.Erythrocyte and blood antibacterial defense[J].Eur J Microbiol Immunol,2014,4(2):138-143.
[21] POSCABLO D M,F(xiàn)ORSBERG E C.The clot thickens:recent clues on hematopoietic stem cell contribution to age-related platelet biology open new questions[J].Adv Geriatr Med Res,2021,3(4):e210019.
[22] 崔 君,郭文晉,付守鵬,等.熱應(yīng)激對(duì)高產(chǎn)和低產(chǎn)奶牛血液生理指標(biāo)、炎性因子和生產(chǎn)性能的影響[J].中國(guó)獸醫(yī)學(xué)報(bào),2020, 40(5): 973-977,987.
CUI J,GUO W J,F(xiàn)U S P,et al.Effects of heat stress on blood physiological indexes,inflammatory factors and performance of high and low yield dairy cows[J].Chinese Journal of Veterinary Science,2020,40(5):973-977,987.(in Chinese)
[23] COVINGTON E W,ROBERTS M Z,DONG J.Procalcitonin monitoring as a guide for antimicrobial therapy:a review of current literature[J].Pharmacotherapy,2018,38(5):569-581.
[24] HUANG Y,XU W,ZHOU R B.NLRP3 inflammasome activation and cell death[J].Cell Mol Immunol,2021,18(9):2114-2127.
[25] 李 妍,藍(lán)婷英,龐 博,等.NLRP3炎癥小體及其下游炎癥因子在犬乳腺腫瘤組織中的表達(dá)[J].畜牧獸醫(yī)學(xué)報(bào),2022, 53(4):1252-1258.
LI Y,LAN T Y,PANG B,et al.Expression of NLRP3 inflammasome signal associated genes in canine mammary tumors and clinical significance[J].Acta Veterinaria et Zootechnica Sinica,2022,53(4):1252-1258.(in Chinese)
[26] GARRETT-SINHA L A.Review of Ets1 structure,function,and roles in immunity[J].Cell Mol Life Sci,2013,70(18):3375-3390.
[27] 王 權(quán),孫文逵.轉(zhuǎn)錄因子PU.1與機(jī)體免疫功能的相關(guān)性及其研究進(jìn)展[J].醫(yī)學(xué)研究生學(xué)報(bào),2013,26(10):1096-1100.
WANG Q,SUN W K.Advances and association of transcription factor PU.1 and immune system[J].Journal of Medical Research amp; Combat Trauma Care,2013,26(10):1096-1100.(in Chinese)
[28] VASUDEVAN S O,RUSSO A J,KUMARI P,et al.A TLR4-independent critical role for CD14 in intracellular LPS sensing[J].Cell Rep,2022,39(5):110755.
[29] LIN T C.RUNX1 and cancer[J].Biochim Biophys Acta Rev Cancer,2022,1877(3):188715.
[30] SOOD R,KAMIKUBO Y,LIU P.Role of RUNX1 in hematological malignancies[J].Blood,2017,129(15):2070-2082.
[31] RODRIGUEZ-TIRADO C,KALE N,CARLINI M J,et al.NR2F1 is a barrier to dissemination of early-stage breast cancer cells[J].Cancer Res,2022,82(12):2313-2326.
[32] PEDERSEN S,NONNENMANN M,RAUTIAINEN R,et al.Dust in pig buildings[J].J Agric Saf Health,2000,6(4):261-274.
[33] CLEAVE J,WILLSON P J,TOWN J,et al.Fractionation of swine barn dust and assessment of its impact on the respiratory tract following repeated airway exposure[J].J Toxicol Environ Health A,2010,73(16):1090-1101.
[34] 翟中金,曹廷兵.內(nèi)毒素在體外對(duì)人外周血淋巴細(xì)胞的刺激作用[J].第三軍醫(yī)大學(xué)學(xué)報(bào),1994,16(6):458-460.
ZHAI Z J,CAO T B.Stimulation of human normal peripheral lymphocytes with endotoxin in vitro[J].Journal of Army Medical University,1994,16(6):458-460.(in Chinese)
[35] 郜康康,扆妍妍,趙一騰,等.內(nèi)質(zhì)網(wǎng)應(yīng)激預(yù)適應(yīng)對(duì)LPS誘導(dǎo)的山羊子宮內(nèi)膜上皮細(xì)胞炎性反應(yīng)的保護(hù)作用[J].畜牧獸醫(yī)學(xué)報(bào),2023,54(8):3546-3556.
GAO K K,YI Y Y,ZHAO Y T,et al.Protective effect of endoplasmic reticulum stress preadaptation on LPS-induced inflammatory response in goat endometrial epithelial cells[J].Acta Veterinaria et Zootechnica Sinica,2023,54(8):3546-3556.(in Chinese)
[36] COLMAN R W.The contact system:a proinflammatory pathway with antithrombotic activity[J].Nat Med,1998,4(3):277-278.
[37] DEL GIUDICE M,GANGESTAD S W.Rethinking IL-6 and CRP:why they are more than inflammatory biomarkers,and why it matters[J].Brain Behav Immun,2018,70:61-75.
[38] XIAO Z L,SINGH S,SINGH M.Improving cancer immunotherapy by targeting IL-1[J].Oncoimmunology,2021,10(1):2008111.
[39] 彭孝坤,趙 天,黃曉瑜,等.急性熱應(yīng)激對(duì)山羊血液生化指標(biāo)及血淋巴細(xì)胞熱休克蛋白70家族基因表達(dá)的影響[J].畜牧獸醫(yī)學(xué)報(bào),2019,50(6):1219-1229.
PENG X K,ZHAO T,HUANG X Y,et al.Effects of acute heat stress on blood biochemistry indices and expression of HSP70 family genes in blood lymphocytes in goats[J].Acta Veterinaria et Zootechnica Sinica,2019,50(6):1219-1229.(in Chinese)
[40] WESTERMANN J,RONNEBERG S,F(xiàn)RITZ F J,et al.Proliferation of lymphocyte subsets in the adult rat:a comparison of different lymphoid organs[J].Eur J Immunol,1989,19(6):1087-1093.
(編輯 郭云雁)