• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    動物遺傳評估軟件研究進(jìn)展

    2024-09-19 00:00:00張元旭李竟王澤昭陳燕徐凌洋張路培高雪高會江李俊雅朱波郭鵬
    畜牧獸醫(yī)學(xué)報 2024年5期
    關(guān)鍵詞:機(jī)器學(xué)習(xí)研究進(jìn)展

    摘 要: 遺傳評估軟件在動物領(lǐng)域的應(yīng)用極大地提高了育種工作效率。隨著基因組測序技術(shù)不斷完善和人工智能技術(shù)的興起,動物遺傳評估軟件也得到了快速的發(fā)展。本文首先介紹了常規(guī)育種和基因組育種在動物育種領(lǐng)域的應(yīng)用,然后重點回顧了GBLUP方法、貝葉斯方法和機(jī)器學(xué)習(xí)以及深度學(xué)習(xí)方法的全基因組遺傳評估軟件的特點和發(fā)展歷史,最后展望了計算機(jī)軟件在動物遺傳評估育種中的未來發(fā)展趨勢,旨為動物育種領(lǐng)域的研究人員提供相關(guān)遺傳評估軟件的參考。

    關(guān)鍵詞: 動物遺傳評估軟件;研究進(jìn)展;常規(guī)育種;全基因組育種;貝葉斯方法;GBLUP;機(jī)器學(xué)習(xí)

    中圖分類號:S813.1

    文獻(xiàn)標(biāo)志碼:A

    文章編號:0366-6964(2024)05-1827-15

    收稿日期:2023-10-13

    基金項目:國家自然科學(xué)基金(32272843)

    作者簡介:張元旭(2000-),男,山東臨沂人,碩士生,主要從事機(jī)器學(xué)習(xí)全基因組選擇研究,E-mail:zyx1251865935@163.com

    *通信作者:朱 波,主要從事肉牛分子數(shù)量遺傳學(xué)研究,E-mail: zhubo@caas.cn;郭 鵬,主要從事并行全基因組選擇技術(shù)研究,E-mail: super_guopeng@163.com

    Advances in Animal Genetic Evaluation Software

    ZHANG" Yuanxu1,2, LI" Jing1,2, WANG" Zezhao2, CHEN" Yan2, XU" Lingyang2, ZHANG" Lupei2,

    GAO" Xue2, GAO" Huijiang2, LI" Junya2, ZHU" Bo2*, GUO" Peng1*

    (1.College of Computer and Information Engineering, Tianjin Agricultural University,

    Tianjin 300384," China;

    2.Institute of Animal Science, Chinese Academy of

    Agricultural Sciences, Beijing 100193, China)

    Abstract:" The application of genetic evaluation software in the animal field has greatly improved the efficiency of breeding work. With the continuous improvement of genome sequencing technology and the rising of artificial intelligence technology, animal genetic evaluation software also experienced rapid development. This paper firstly introduced the application of conventional breeding and genomic breeding in the field of animal breeding, then focused on reviewing the characteristics and development history of genome-wide genetic evaluation software of GBLUP method, Bayesian method, machine learning and deep learning method, and finally discussed the future development trend of computer software in animal genetic evaluation and breeding, which is intended to provide relevant genetic evaluation software references for researchers in the field of animal breeding.

    Key words: animal genetic evaluation software; research progress; conventional methods; genomic breeding; Bayesian method; GBLUP; machine learning

    *Corresponding authors:ZHU Bo, E-mail: zhubo@caas.cn; GUO Peng, E-mail: super_guopeng@163.com

    計算機(jī)軟件在動物遺傳育種領(lǐng)域中的應(yīng)用可追溯到20世紀(jì)70年代提出的最佳線性無偏估計(best linear unbiased prediction,BLUP)育種值估計算法[1],隨著計算機(jī)硬件設(shè)備的升級和Fortran、C、C++、R和Python等高效編程語言的推出,在育種領(lǐng)域涌現(xiàn)出了多種遺傳評估軟件,這些軟件在遺傳評估實踐中的表現(xiàn)有所不同,合適的軟件對育種分析結(jié)果和實踐工作效率產(chǎn)生較大的影響。

    當(dāng)前,應(yīng)用于動物遺傳育種值估計的兩種主流評估方法為:常規(guī)遺傳評估和全基因組遺傳評估。常規(guī)遺傳評估是利用群體中的系譜數(shù)據(jù)和表型數(shù)據(jù)估計遺傳參數(shù)和個體育種值,這種方法實現(xiàn)技術(shù)簡單,成本低,在畜禽育種中發(fā)揮了重要的作用。常規(guī)方法能夠估計個體育種值,但由于孟德爾抽樣誤差的存在,并不能真實地反映個體所接受的親本育種值。相比之下,基因組遺傳評估方法則是通過分析候選個體的基因型數(shù)據(jù)和表型數(shù)據(jù)來估計遺傳效應(yīng),估計結(jié)果準(zhǔn)確度更高,育種時代間隔更短,有效地提高了育種效率。目前,許多國家和地區(qū)已經(jīng)將基因組遺傳評估方法應(yīng)用到育種實踐[2-4]。在遺傳評估工作中,育種軟件是育種值估計模型的應(yīng)用實現(xiàn)。本文概述遺傳育種方法和育種軟件的應(yīng)用進(jìn)展,希望能為畜禽育種領(lǐng)域的工作人員在選擇育種軟件時提供借鑒和啟示。

    1 常規(guī)育種值估計方法和軟件

    常規(guī)育種值估計方法中較為流行的是Henderson[1]于1948年提出的最佳線性無偏估計方法(best linear unbiased estimator,BLUE),傳統(tǒng)BLUP方法通常是指利用系譜信息構(gòu)建親緣關(guān)系矩陣估計育種值的ABLUP。ABLUP方法分析連續(xù)型、二元型和計數(shù)型等不同類型的數(shù)據(jù)估計育種值,有效地提高了育種值估計的準(zhǔn)確性,并且軟件性能穩(wěn)定。為了消除固定效應(yīng)對估計育種值的影響,ABLUP通常和限制最大似然方法(restricted maximum likelihood,REML)結(jié)合使用,在處理大規(guī)模數(shù)據(jù)集時計算速度較快,ABLUP方法已經(jīng)在動、植物育種中得到了廣泛應(yīng)用[5-6]。

    REML是育種領(lǐng)域最具代表性的方差組分估計方法,多種遺傳評估軟件集成了REML方法,其中,MTDFREML(multi-Trait derivative free-restricted maximum likelihood)[7]和DFREML(derivative free-restricted maximum likelihood)采用的是無導(dǎo)數(shù)REML算法(DFREML)[8-9],BLUPF90[10]、GCTA[11]、DMU[12]、WOMBAT[13]、HIBLUP[14]采用了一階導(dǎo)數(shù)EMREML(expectation maximum restricted maximum likelihood)算法[15] 和二階導(dǎo)數(shù)AIREML(average information restricted maximum likelihood)算法[16],ASReml[17]則只采用了AIREML算法。DFREML使用搜索方式求解參數(shù)的最大似然對數(shù)估計值,與傳統(tǒng)的REML算法相比,該算法不對系數(shù)矩陣求逆,與EMREML和AIREML相比,DFREML算法實現(xiàn)簡單[18-20],運行速度快,缺點是處理復(fù)雜模型能力不足。EMREML使用EM算法估計參數(shù),在沒有數(shù)據(jù)特征缺失的情況下容易實現(xiàn),缺點是運行速度較慢。由于公式復(fù)雜性[19]的原因,EMREML算法處理數(shù)據(jù)缺失的能力不足。AIREML方法對于常見問題的計算速度較快,但在復(fù)雜模型下運行速度慢甚至算法不收斂。Misztal[21]建議AIREML是在可靠收斂情況下的首選方法,如果AIREML不能有效地收斂,EMREML是備選方案。除上述軟件之外,MTGSAM利用Gibbs抽樣估計方差分量的后驗概率值,進(jìn)而計算出樣本的后驗平均分布,也是一種較流行的育種值估計軟件[22]。

    2 基因組育種值估計

    自全基因組選擇[23]被提出以來,該方法已經(jīng)在奶牛[24-25]、水產(chǎn)[26]和其它家畜[27-30]等領(lǐng)域得到了廣泛應(yīng)用。全基因組選擇育種值估計方法分為直接估計法和間接估計法,間接估計法假設(shè)基因位點效應(yīng)符合假設(shè)概率函數(shù)分布,采用抽樣的方法估計假設(shè)分布的超參數(shù),然后利用抽樣的方法估計出位點效應(yīng)值,最后利用SNP編碼數(shù)據(jù)和位點效應(yīng)值計算個體育種值。直接估計法利用SNP標(biāo)記或系譜信息與SNP信息的綜合信息計算個體間的關(guān)系矩陣,進(jìn)而估計個體的育種值。此外,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)方法是全基因組育種值估計研究的新熱點,這類方法與前兩種方法存在差異,也有相應(yīng)的全基因組育種值估計軟件。

    2.1 SNP序列數(shù)據(jù)管理軟件

    用于基因組育種值計算的基因組數(shù)據(jù)的獲取通常委托商業(yè)公司完成。就牛而言,商業(yè)SNP芯片主要由三家公司(Illumina、Neogen-GeneSeek和Affymetrix)生產(chǎn),此類芯片使用兩種不同的基因分型技術(shù)(Illumina和Affymetrix)[31]。Nicolazzi等[31]統(tǒng)計了用于牲畜的6種商用SNP芯片,認(rèn)為在估計全基因組育種值之前,需要對SNP數(shù)據(jù)進(jìn)行預(yù)處理,目前有多款軟件可完成SNP數(shù)據(jù)預(yù)處理。

    PLINK[32-33]軟件最初用于全基因組關(guān)聯(lián)研究中的SNP陣列數(shù)據(jù)分析,具有速度快、穩(wěn)定性高等優(yōu)點。與PLINK不同,TheSNPpit[34]主要用于數(shù)據(jù)存儲和數(shù)據(jù)分析。Snat[35]和SNPchiMp[36]是2款用于?;蚪M研究的SNP序列管理軟件,其中Snat是一種基于Web界面的SNP注釋工具軟件。SNPchiMp是一種基于Web的SQL數(shù)據(jù)庫,支撐檢索SNP子集的信息。SNPchiMp通過支持的組合物理位置或SNP ID、rs或ss標(biāo)志符列表檢索SNP子集的信息。目前,SNPchiMp[37]已經(jīng)將SNP數(shù)據(jù)擴(kuò)展到了牛、豬、馬、綿羊、山羊和雞等6種動物。

    SNPQC[38]、BGData[39]和SambaR[40]等是支持SNP序列數(shù)據(jù)存儲和管理的R語言版的開源或免費軟件包。SNPQC是一組腳本,在使用時可以根據(jù)需要對腳本代碼進(jìn)行修改,具有較好的靈活性;SambaR在繪圖方面具有優(yōu)勢。但這兩款軟件也都存在一些缺陷[38];而BGData與前兩者不同,它可以處理較大的基因組數(shù)據(jù),并與PLINK的bed文件兼容。JMP GENOMICS、ZooEasy和Mosaic Vivarium等SNP序列管理商業(yè)軟件也可作為選擇軟件時的備選方案,SNP數(shù)據(jù)預(yù)處理軟件統(tǒng)計信息如表1所示。

    2.2 全基因組遺傳估計軟件

    自全基因組選擇被提出以來,該技術(shù)首先在奶牛育種領(lǐng)域得到應(yīng)用。Ding等[41]對中國荷斯坦奶牛群體進(jìn)行研究,證明了奶?;蚪M選擇是可行的。此外,豬、綿羊和肉牛也在育種實踐中應(yīng)用了基因組選擇技術(shù)[42-44]。隨著基因測序技術(shù)的成熟和測序芯片成本的降低,全基因組選擇的應(yīng)用范圍不斷擴(kuò)大,提高其準(zhǔn)確性成為全基因組選擇研究的重點。

    GBLUP在育種值估計過程中使用遺傳關(guān)系矩陣(G陣)替換親緣關(guān)系矩陣(A陣),與A陣相比,G陣能更準(zhǔn)確地反映個體間遺傳信息,可以有效地提高估計育種值的準(zhǔn)確度[5,45-46]。GBLUP假設(shè)所有的標(biāo)記都具有遺傳效應(yīng),并且符合相同的概率分布。在估計復(fù)雜性狀育種值方面存在不足,針對這一不足,多種方法被用于改進(jìn)GBLUP的性能。ssGBLUP[47]用系譜數(shù)據(jù)與SNP數(shù)據(jù)相結(jié)合的關(guān)系矩陣替代G陣,該方法兼顧了GBLUP方法和基于系譜的BLUP方法的優(yōu)點,進(jìn)一步提高了育種值估計的準(zhǔn)確性。GBLUPGA[48]則將復(fù)雜性狀的遺傳結(jié)構(gòu)擬合到預(yù)測模型以提高全基因組育種值估計的準(zhǔn)確度。

    為了反映基因位點效應(yīng)對估計育種值的影響,Bayes方法先計算每個位點的效應(yīng)值,利用效應(yīng)值和SNP標(biāo)記數(shù)據(jù)計算個體育種值。關(guān)于Bayes模型的發(fā)展可以參考Meher等[49]以及Ma和Zhou[50]的研究。目前,GCTB[51]、GS3[52]、BGLR[53]和BESSiE[54]等軟件或軟件包集成了常用的Bayes方法。其中,BGLR包含了BayesA/B/C、Bayesian LASSO、Bayesian ridge regression等Bayes方法;GS3集成了GBLUP、BayesCπ和BayesLasso等方法;GCTB則集成了BayesB/C/S/N/NS/R等Bayes方法;BESSiE軟件包集成了GBLUP、SNP-BLUP、BayesA/B/Cπ/R等方法。

    在基因組遺傳評估研究中,關(guān)于多性狀的研究也受到了極大的關(guān)注。MTGSAM、HIBLUP、BLUPF90和DMU等相關(guān)遺傳評估軟件可以進(jìn)行多性狀方面的研究。Guo等[55]使用DMU中的多性狀模型MTGS和單性狀模型STGM模型比較存在缺失數(shù)據(jù)的三種情況下,MTGS和STGM的基因組預(yù)測能力和可靠性,結(jié)果表明MTGS在遺傳力低的性狀和記錄數(shù)量有限的數(shù)據(jù)集中結(jié)果優(yōu)于STGM。Budhlakoti等[56]比較了單性狀GS(STGS)和多性狀GS的多種方法,結(jié)果表明,多性狀GS的預(yù)測結(jié)果更準(zhǔn)確。Ayalew等[57]使用DMU的單性狀和多性狀模型研究奶牛的生產(chǎn)性狀和生殖性狀的遺傳參數(shù)。結(jié)果表明,多性狀模型比單性狀模型的遺傳力估計結(jié)果更好。Srivastava等[58]通過BLUPF90構(gòu)建了單性狀和多性狀模型,研究Hanwoo牛的4個胴體性狀。結(jié)果表明,多性狀模型相較單性狀模型的遺傳力估計準(zhǔn)確值均有所提高。綜上所述,采用多性狀模型進(jìn)行研究可以提高基因組育種值估計的準(zhǔn)確性。

    目前,DMU、WOMBAT、ASREML等遺傳評估軟件集成了GBLUP模塊。ASREML沒有集成產(chǎn)生G陣的模塊,在使用ASREML中的GBLUP模塊前需要使用其他軟件生成G陣,然后將G陣輸入到ASREML中估計育種值[59]。GCTA軟件集成了生成G陣的模塊,在計算育種值上更加方便。在計算效率上,當(dāng)樣本量較大時,GCTA優(yōu)于ASREML。與GCTA類似,MTG2采用AIREML算法在SNP層次分析復(fù)雜性狀。Lee和Van der Werf[60]將MTG2與GEMMA、ASREML和基于MME的AIREML算法的WOMBAT進(jìn)行了比較,在小鼠和人類數(shù)據(jù)集的試驗結(jié)果中發(fā)現(xiàn),MTG2的計算效率比ASREML和WOMBAT提高了1 000倍。此外,MTG2可以處理隨機(jī)回歸模型而GEMMA則不能。在編程語言方面,GCTA采用C++和C語言混合編程,主要實現(xiàn)了全基因組關(guān)聯(lián)分析等方面的功能,GCTB[51]軟件在開發(fā)過程中參考了GCTA和GenSel[61]的部分代碼,與GCTA不同,GCTB的代碼則全部采用C++語言編寫。在實現(xiàn)的功能中,GCTB利用貝葉斯混合線性模型研究全基因組的復(fù)雜性狀,更側(cè)重于貝葉斯類方法的全基因組選擇功能。除上述之外,GS3[52]集成了GBLUP、BayesCπ和BayesLasso等模型和算法,在線性模型中引入了隨機(jī)加性效應(yīng)a,多基因無窮小效應(yīng)g以及隨機(jī)環(huán)境效應(yīng)p等因素,該模型得到的育種值估計準(zhǔn)確度更高。其不足在于需要使用自定義輸入輸出文件,GenSel也有類似的情況。因此GCTA和GCTB比GS3和GenSel更便捷。

    R語言語法簡單,擁有豐富的開源軟件包,在使用時可以從CRAN網(wǎng)站免費獲取。BGLR[53]、rrBLUP[62]和sommer[63] 等是基于R語言的遺傳評估軟件。BGLR(Bayesian Generalized Linear Regression)[53]集成了GBLUP、BayesA/B/C/Cπ/Lasso/Ridge Regression以及RKHS等育種值估計軟件。rrBLUP包[62]集成了嶺回歸軟件和GBLUP軟件。sommer[63]軟件包考慮了多個方差分量和指定協(xié)方差結(jié)構(gòu),可以計算加性、顯性和上位關(guān)系矩陣,具有處理缺失數(shù)據(jù)的能力,在速度和靈活性上性能更優(yōu)。常規(guī)遺傳評估和基因組遺傳評估軟件如表2所示。

    2.3 機(jī)器學(xué)習(xí)全基因組軟件

    與貝葉斯方法和GBLUP方法相比,機(jī)器學(xué)習(xí)全基因組選擇方法在動物育種方面的應(yīng)用相對較少[93]。隨著模型的不斷完善和應(yīng)用需求的擴(kuò)大,機(jī)器學(xué)習(xí)方法的研究在不斷深入。Nayeri等[94]介紹了機(jī)器學(xué)習(xí)在動物育種中的應(yīng)用,該方法比貝葉斯方法和GBLUP方法具有更強(qiáng)的自學(xué)習(xí)能力,在復(fù)雜性狀育種值估計中表現(xiàn)出了優(yōu)異的性能,成為了該領(lǐng)域研究的新熱點。

    learnMET[95]將基因組信息和環(huán)境因素相結(jié)合,實現(xiàn)了機(jī)器學(xué)習(xí)基因組選擇功能。該軟件實現(xiàn)了梯度增強(qiáng)決策樹、隨機(jī)森林、多層感知機(jī)等多種方法。easyPheno[96]基于Pytorch框架,集成了RRBLUP、BayesA/B/C、機(jī)器學(xué)習(xí)(如支持向量機(jī)、隨機(jī)森林、XGBoost)和深度學(xué)習(xí)(如多層感知機(jī)、卷積神經(jīng)網(wǎng)絡(luò)、局部卷積神經(jīng)網(wǎng)絡(luò))等多種模型和方法,可以利用基因型信息預(yù)測表型特征。BWGS[97]軟件包提供了包括參數(shù)和非參數(shù)方法(機(jī)器學(xué)習(xí)的4種半?yún)?shù)方法:RKHS、RF、SVM、BRNN)在內(nèi)的15種不同的方法供選擇使用。DeepGS[98] 利用深度卷積神經(jīng)網(wǎng)絡(luò)(CNN)從基因型預(yù)測表型特征,研究結(jié)果表明DeepGS的性能優(yōu)于RR-BLUP。G2Pdeep[99] 是一個開放訪問的服務(wù)平臺,它采用卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,通過交互式的Web界面創(chuàng)建深度學(xué)習(xí)模型,并使用后端高性能計算資源訓(xùn)練這些模型,以可視化的形式給出結(jié)果。除了上述軟件之外,還有許多R語言版機(jī)器學(xué)習(xí)育種值估計方法[100-102],如表3所示。

    針對不同的性狀,機(jī)器學(xué)習(xí)方法、貝葉斯方法和GBLUP類方法估計育種值的性能存在差異。Vu等[103]使用了機(jī)器學(xué)習(xí)(ML-KAML)和深度學(xué)習(xí)(DL-MLP和DL-CNN)以及4種傳統(tǒng)方法(PBLUP、GBLUP、ssGBLUP和BayesR)研究鲇魚對Edwardsiella ictaluri的抗病性能。結(jié)果表明機(jī)器學(xué)習(xí)方法優(yōu)于PBLUP、GBLUP和ssGBLUP,預(yù)測精度提高了9.1%~15.4%,但與BayesR估計的準(zhǔn)確性相當(dāng)。Srivastava等[104]評估了隨機(jī)森林(RF)、極限梯度提升(XGB)和支持向量機(jī)(SVM)3種機(jī)器學(xué)習(xí)方法和GLBUP方法在預(yù)測Hanwoo牛胴體性狀方面的能力,結(jié)果表明這3種機(jī)器學(xué)習(xí)方法沒有比GBLUP更有優(yōu)勢。Liang等[105]使用支持向量回歸(SVR)、核嶺回歸(KRR)、隨機(jī)森林(RF)和集成學(xué)習(xí)算法 Adaboost.RT四種機(jī)器學(xué)習(xí)算法來預(yù)測中國西門塔爾牛的3個經(jīng)濟(jì)性狀,并與GBLUP方法進(jìn)行比較。結(jié)果表明,4種機(jī)器學(xué)習(xí)方法預(yù)測能力均優(yōu)于GBLUP。Reinoso-Pelez等[106]總結(jié)了目前大多數(shù)機(jī)器學(xué)習(xí)算法在基因組預(yù)測方面的性能。綜上所述,大多數(shù)機(jī)器學(xué)習(xí)方法在遺傳關(guān)系相對簡單的研究中表現(xiàn)不如GBLUP。但是,當(dāng)數(shù)據(jù)集較小時,機(jī)器學(xué)習(xí)算法通過構(gòu)建融入基因非加性效應(yīng)的非線性模型要比只考慮加性效應(yīng)的線性模型GBLUP方法更有優(yōu)勢。機(jī)器學(xué)習(xí)全基因組軟件如表3所示。

    3 討 論

    在育種值估計研究中,傳統(tǒng)的BLUP和GBLUP方法[107]、貝葉斯方法[23]以及機(jī)器學(xué)習(xí)和深度學(xué)習(xí)類方法[60-61]在估計育種值時產(chǎn)生的結(jié)果存在差異。研究發(fā)現(xiàn),不同性狀的遺傳結(jié)構(gòu)存在著差異,同一種方法在同一物種不同性狀的數(shù)據(jù)上進(jìn)行基因組選擇的育種值估計準(zhǔn)確性也存在著差異[108]。此外,性狀的遺傳背景、遺傳力和表型方差等因素也會對估計準(zhǔn)確性產(chǎn)生影響。因此,在進(jìn)行育種值估計時,需要根據(jù)實際物種的特點選擇合適的遺傳評估方法,根據(jù)方法尋找合適的遺傳評估軟件。

    雖然ABLUP方法在常規(guī)育種中具有一定優(yōu)勢,但仍有不足之處,主要有以下幾點。第一,它假設(shè)所有遺傳效應(yīng)都是加性的、忽略非加性效應(yīng)的影響。第二,育種實踐工作中的數(shù)據(jù)記錄差錯或者記錄缺失都會損害分子親緣關(guān)系矩陣有效性,降低育種值結(jié)果的準(zhǔn)確性。在數(shù)據(jù)缺失情況下,ABLUP需要使用最大似然法(maximum likelihood,ML)[109]或者REML(restricted maximum likelihood)[110] 等方法估計方差組分,這增加了模型的復(fù)雜度和軟件計算的工作量。第三,大多數(shù)ABLUP類軟件使用的是上世紀(jì)90年代流行的Fortran語言開發(fā),但Fortran語言編寫的軟件缺乏友好的交互操作界面。

    常規(guī)育種值估計方法中,AIREML算法相較于EMREML和DFREML功能更完善,對復(fù)雜遺傳結(jié)構(gòu)性狀的育種值估計的準(zhǔn)確度最高。雖然AIREML在計算親緣關(guān)系矩陣的逆矩陣時需要更長的運行時間,但是在大部分情況下,AIREML仍是首選算法。為了減少計算負(fù)擔(dān),F(xiàn)SPAK軟件包優(yōu)化稀疏矩陣求逆運算過程,提高了常規(guī)育種值的計算效率[111],并已在DMU和BLUPF90中應(yīng)用。目前,DMU和BLUPF90的應(yīng)用已十分廣泛[55,57-58]。此外,隨著群體規(guī)模的擴(kuò)大,親緣關(guān)系矩陣的非零值也呈現(xiàn)逐漸增加的趨勢。DMU和BLUPF90中采用的算法需要對越來越稠密的MME系數(shù)矩陣進(jìn)行多輪求逆;傳統(tǒng)稀疏矩陣計算技術(shù)的效率較低,遇到瓶頸[14],而HIBLUP[14]通過構(gòu)建協(xié)方差矩陣V,基于V矩陣實現(xiàn)AI-REML,避免矩陣求逆,提高了運行效率。HIBLUP在樣本量大于5 000時比使用FSPAK的DMU和BLUPF90速度快,使用內(nèi)存空間?。?4]。

    與Wombat相比,ASREML在輸入和輸出文件的處理上更便捷,但軟件運行時間更長[112];Wombat計算時間較短,但編輯輸入和輸出文件更繁瑣。比較而言,付費軟件ASREML更高效和全面。與MTDFREML不同,MTGSAM通過Gibbs抽樣計算方差分量。兩種方法的估計值相關(guān)性達(dá)到了0.99,結(jié)果高度一致,可以相互驗證和支持[20]。在計算加性方差和遺傳力方面,MTGSAM的結(jié)果略高于MTDFREML[113]。同時,MTGSAM的功能也更加完善。

    基因組估計育種值方法的出現(xiàn)為遺傳評估的發(fā)展提供了新途徑?;蚪M育種值估計方法中,GBLUP和Bayes方法各有優(yōu)勢。GBLUP的運行時間短,而在較復(fù)雜的遺傳結(jié)構(gòu)情況下,Bayes方法的性能優(yōu)于GBLUP。在選擇算法時,需要考慮實際情況進(jìn)行選擇。就遺傳評估軟件選擇而言,需要綜合考慮軟件的運行環(huán)境、計算效率、用戶體驗和準(zhǔn)確性等多個方面。目前,基因組育種值軟件大致分為兩類,第一類是獨立安裝軟件,GCTA[11]和GCTB[51]具有較快的運行速度,但運行過程較為復(fù)雜,配置過程較繁瑣;第二類是集成環(huán)境軟件,這類軟件將基因組育種軟件做成一個軟件包,通過在線方式進(jìn)行安裝,過程相對簡單,缺點是計算速度較慢。

    理論方法的創(chuàng)新促使育種值估計軟件的不斷發(fā)展[24-25],構(gòu)建優(yōu)良模型、深化挖掘遺傳信息以提高準(zhǔn)確性是未來遺傳評估軟件的發(fā)展方向。除此之外,一些軟件包也在盡可能地整合更多的遺傳評估算法以提供更全面和準(zhǔn)確的育種值估計工具[11,54]。隨著對機(jī)器學(xué)習(xí)和深度學(xué)習(xí)方法深入的研究,使用機(jī)器學(xué)習(xí)和深度學(xué)習(xí)研究基因組選擇成為新的研究熱點。常規(guī)基因組選擇方法與機(jī)器學(xué)習(xí)基因組選擇方法表現(xiàn)的性能各有優(yōu)點[114]。當(dāng)性狀由具有復(fù)雜基因行為的基因位點控制時,機(jī)器學(xué)習(xí)算法的表現(xiàn)與傳統(tǒng)統(tǒng)計模型相似,甚至更好,對于由許多具有上位交互效應(yīng)的基因控制的復(fù)雜性狀,機(jī)器學(xué)習(xí)方法更有前途[115]。與貝葉斯方法相似,數(shù)據(jù)集的大小對機(jī)器學(xué)習(xí)和深度學(xué)習(xí)運行結(jié)果影響很大,這表明更大的參考群體有利于提高機(jī)器學(xué)習(xí)基因組選擇預(yù)測的準(zhǔn)確性。雖然目前機(jī)器學(xué)習(xí)基因組選擇方法受參數(shù)優(yōu)化、群體數(shù)據(jù)量以及模型完善程度的影響,機(jī)器學(xué)習(xí)基因組選擇方法在某些方面還不能讓人滿意[103],隨著數(shù)據(jù)集的積累和基因遺傳數(shù)據(jù)挖掘的深入,擁有解決復(fù)雜模型能力、優(yōu)異自我學(xué)習(xí)能力的機(jī)器學(xué)習(xí)方法具有比貝葉斯方法和GBLUP方法更大的優(yōu)勢,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)全基因組選擇研究最終將會表現(xiàn)出更能讓人信服的性能。利用機(jī)器學(xué)習(xí)、深度學(xué)習(xí)方法估計基因組育種值的軟件終將在動物遺傳評估軟件中發(fā)揮出更大的作用,全面促進(jìn)育種產(chǎn)業(yè)的發(fā)展。

    4 結(jié) 論

    本文從遺傳評估方法的歷史演變出發(fā),全面回顧了常規(guī)遺傳評估軟件和基因組遺傳評估軟件在畜牧領(lǐng)域的應(yīng)用,討論了傳統(tǒng)的BLUP育種值估計方法、基因組育種值估計GBLUP方法和Bayes方法以及機(jī)器學(xué)習(xí)方法和軟件在育種值評估中的應(yīng)用。隨著數(shù)據(jù)集的積累、模型的不斷優(yōu)化和數(shù)據(jù)挖掘技術(shù)的不斷發(fā)展,遺傳評估軟件的功能越來越完善,將極大地加快動物遺傳改良進(jìn)程,促進(jìn)畜牧業(yè)的發(fā)展。

    參考文獻(xiàn)(References):

    [1] HENDERSON C R.Best linear unbiased estimation and prediction under a selection model[J].Biometrics,1975, 31(2): 423-447.

    [2] GIANOLA D,ROSA G J M.One hundred years of statistical developments in animal breeding[J].Annu Rev Anim Biosci, 2015, 3:19-56.

    [3] WIGGANS G R,CARRILLO J A.Genomic selection in United States dairy cattle[J].Front Genet,2022,13:994466.

    [4] SARAVANAN K A,PANIGRAHI M,KUMAR H,et al.Progress and future perspectives of livestock genomics in India:a mini review[J].Anim Biotechnol,2023,34(6):1979-1987.

    [5] VANRADEN P M.Efficient methods to compute genomic predictions[J].J Dairy Sci,2008,91(11): 4414-4423.

    [6] YANG J,BENYAMIN B,MCEVOY B P,et al.Common SNPs explain a large proportion of the heritability for human height[J].Nat Genet,2010,42(7):565-569.

    [7] BOLDMAN K G,KRIESE L A,VAN VLECK L D,et al.A manual for use of MTDFREML:a set of programs to obtain estimates of variances and covariances[R].Washington:U.S. Department of Agriculture,Agricultural Research Service,1995.

    [8] MEYER K.Restricted maximum likelihood to estimate variance components for animal models with several random effects using a derivative-free algorithm[J].Genet Sel Evol,1989,21(3):317.

    [9] GRASER H U,SMITH S P,TIER B.A derivative-free approach for estimating variance components in animal models by restricted maximum likelihood[J].J Anim Sci,1987,64(5):1362-1370.

    [10] MISZTAL I,TSURUTA S,STRABEL T,et al.BLUPF90 and related programs (BGF90)[C]//Proceedings of the 7th World Congress on Genetics Applied to Livestock Production.Montpellier, 2002.

    [11] YANG J,LEE S H,GODDARD M E,et al.GCTA:a tool for genome-wide complex trait analysis[J]. Am J Hum Genet,2011, 88(1):76-82.

    [12] MADSEN P,JENSEN J.DMU:a user’s guide.A package for analysing multivariate mixed models[M]. Denmark:DJF,2008.

    [13] MEYER K.WOMBAT—A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML)[J].J Zhejiang Univ Sci B,2007,8(11):815-821.

    [14] YIN L L,ZHANG H H,TANG Z S,et al.HIBLUP:an integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data[J].Nucleic Acids Res,2023,51(8): 3501-3512.

    [15] DEMPSTER A P,LAIRD N M,RUBIN D B.Maximum likelihood from incomplete data via the EM algorithm[J].J Roy Stat Soc Ser B,1977,39(1):1-22.

    [16] GILMOUR A R,THOMPSON R,CULLIS B R.Average information REML:an efficient algorithm for variance parameter estimation in linear mixed models[J].Biometrics,1995,51(4):1440-1450.

    [17] GILMOUR A R,GOGEL B J,CULLIS B R,et al.ASReml user guide release 1.0[R].VSN International,Hemel Hempstead,2002.

    [18] MISZTAL I.Comparison of software packages in animal breeding[C]//Proceedings of the 5th World Congress on Genetics Applied to Livestock Production.Guelph,Canada,1994.

    [19] THOMPSON R,MNTYSAARI E A.Prospects for statistical methods in dairy cattle breeding[C]//Proceedings of the Computational Cattle Breeding’99 Workshop.Tuusula,F(xiàn)inland, 1999:71-78.

    [20] MNTYSAARI E,VAN VLECK L D.Restricted maximum likelihood estimates of variance components from multitrait sire models with large number of fixed effects[J].J Anim Breed Genet,1989,106(1-6):409-422.

    [21] MISZTAL I.Reliable computing in estimation of variance components[J].J Anim Breed Genet,2008, 125(6): 363-370.

    [22] VAN TASSELL C P,VAN VLECK L D.Multiple-trait Gibbs sampler for animal models:flexible programs for Bayesian and likelihood-based (co) variance component inference[J].J Anim Sci,1996, 74(11):2586-2597.

    [23] MEUWISSEN T H E,HAYES B J,GODDARD M E.Prediction of total genetic value using genome-wide dense marker maps[J].Genetics,2001,157(4):1819-1829.

    [24] GUINAN F L,WIGGANS G R,NORMAN H D,et al.Changes in genetic trends in US dairy cattle since the implementation of genomic selection[J].J Dairy Sci,2023,106(2):1110-1129.

    [25] BRITO L F,BEDERE N,DOUHARD F,et al.Review:genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world[J].Animal,2021,15 Suppl 1:100292.

    [26] YEZ J M,BARRA A,LPEZ M E,et al.Genome-wide association and genomic selection in aquaculture[J].Rev Aquac,2023,15(2):645-675.

    [27] TAN X D,LIU R R,LI W,et al.Assessment the effect of genomic selection and detection of selective signature in broilers[J].Poult Sci,2022,101(6):101856.

    [28] NEL C L,VAN DER WERF J H J,RAUW W M,et al.Challenges and strategies for genetic selection of sheep better adapted to harsh environments[J].Anim Front,2023,13(5):43-52.

    [29] SELL-KUBIAK E,KNOL E F,LOPES M.Evaluation of the phenotypic and genomic background of variability based on litter size of Large White pigs[J].Genet Sel Evol,2022,54(1):1.

    [30] MA H R,LI H W,GE F,et al.Improving genomic predictions in multi-breed cattle populations:a comparative analysis of BayesR and GBLUP models[J].Genes,2024,15(2):253.

    [31] NICOLAZZI E L,BIFFANI S,BISCARINI F,et al.Software solutions for the livestock genomics SNP array revolution[J].Anim Genet,2015,46(4):343-353.

    [32] PURCELL S,NEALE B,TODD-BROWN K,et al.PLINK:a tool set for whole-genome association and population-based linkage analyses[J].Am J Hum Genet,2007,81(3):559-575.

    [33] CHANG C C,CHOW C C,TELLIER L C A M,et al.Second-generation PLINK:rising to the challenge of larger and richer datasets[J].GigaScience,2015,4(1):7.

    [34] GROENEVELD E,LICHTENBERG H.TheSNPpit—a high performance database system for managing large scale SNP data[J].PLoS One,2016,11(10):e0164043.

    [35] JIANG J C,JIANG L,ZHOU B,et al.Snat:a SNP annotation tool for bovine by integrating various sources of genomic information[J].BMC Genet,2011,12(1):85.

    [36] NICOLAZZI E L,PICCIOLINI M,STROZZI F,et al.SNPchiMp:a database to disentangle the SNPchip jungle in bovine livestock[J].BMC Genomics,2014,15(1):123.

    [37] NICOLAZZI E L,CAPRERA A,NAZZICARI N,et al.SNPchiMp v.3:integrating and standardizing single nucleotide polymorphism data for livestock species[J].BMC Genomics,2015,16(1):283.

    [38] GONDRO C,PORTO-NETO L R,LEE S H.SNPQC-an R pipeline for quality control of illumina SNP genotyping array data[J].Anim Genet,2014,45(5):758-761.

    [39] GRUENEBERG A,DE LOS CAMPOS G.BGData-A suite of R packages for genomic analysis with big data[J].G3 GenesGenomesGenetics,2019,9(5):1377-1383.

    [40] DE JONG M J,DE JONG J F,HOELZEL A R,et al.SambaR:an R package for fast,easy and reproducible population-genetic analyses of biallelic SNP data sets[J].Mol Ecol Resour,2021,21(4): 1369-1379.

    [41] DING X,ZHANG Z,LI X,et al.Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows[J].J Dairy Sci,2013,96(8):5315-5323.

    [42] LIANG M,AN B X,DENG T Y,et al.Incorporating genome-wide and transcriptome-wide association studies to identify genetic elements of longissimus dorsi muscle in Huaxi cattle[J].Front Genet,2023,13:982433.

    [43] WANG X Y,RAN X Q,NIU X,et al.Whole-genome sequence analysis reveals selection signatures for important economic traits in Xiang pigs[J].Sci Rep,2022,12(1):11823.

    [44] MIAO M X,WU J R,CAI F J,et al.A modified memetic algorithm with an application to gene selection in a sheep body weight study[J].Animals,2022,12(2):201.

    [45] HABIER D,F(xiàn)ERNANDO R L,DEKKERS J C M.The impact of genetic relationship information on genome-assisted breeding values[J].Genetics,2007,177(4):2389-2397.

    [46] LEE H S,KIM Y,LEE D H,et al.Comparison of accuracy of breeding value for cow from three methods in Hanwoo (Korean cattle) population[J].J Anim Sci Technol,2023,65(4):720-734.

    [47] LEGARRA A,AGUILAR I,MISZTAL I.A relationship matrix including full pedigree and genomic information[J].J Dairy Sci,2009,92(9):4656-4663.

    [48] ZHANG Z,OBER U,ERBE M,et al.Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies[J].PLoS One,2014,9(3):e93017.

    [49] MEHER P K,KUMAR A,PRADHAN S K.Genomic selection using Bayesian methods:models, software,and application[M]//WANI S H,KUMAR A.Genomics of Cereal Crops.New York:Humana, 2022: 259-269.

    [50] MA Y,ZHOU X.Genetic prediction of complex traits with polygenic scores:a statistical review[J].Trends Genet,2021,37(11):995-1011.

    [51] ZENG J,DE VLAMING R,WU Y,et al.Signatures of negative selection in the genetic architecture of human complex traits[J].Nat Genet,2018,50(5):746-753.

    [52] LEGARRA A,RICARD A,F(xiàn)ILANGI O.GS3:genomic selection-Gibbs sampling-gauss Seidel (and BayesCπ and Bayesian lasso)[R].Paris,F(xiàn)rance:INRA,2010.

    [53] PREZ P,DE LOS CAMPOS G.Genome-wide regression and prediction with the BGLR statistical package[J].Genetics, 2014,198(2):483-495.

    [54] BOERNER V,TIER B.BESSiE:a software for linear model BLUP and Bayesian MCMC analysis of large-scale genomic data[J].Genet Sel Evol,2016,48:63.

    [55] GUO G,ZHAO F P,WANG Y C,et al.Comparison of single-trait and multiple-trait genomic prediction models[J].BMC Genet,2014,15:30.

    [56] BUDHLAKOTI N,MISHRA D C,RAI A,et al.A comparative study of single-trait and multi-trait genomic selection[J].J Comput Biol,2019,26(10):1100-1112.

    [57] AYALEW W,ALIY M,NEGUSSIE E.Estimation of genetic parameters of the productive and reproductive traits in Ethiopian Holstein using multi-trait models[J].Asian-Australas J Anim Sci,2017,30(11):1550-1556.

    [58] SRIVASTAVA S,LOPEZ B I,DE LAS HERAS-SALDANA S,et al.Estimation of genetic parameters by single-trait and multi-trait models for carcass traits in Hanwoo cattle[J].Animals,2019, 9(12):1061.

    [59] CLARK S A,VAN DER WERF J.Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values[M]//GONDRO C,VAN DER WERF J,HAYES B.Genome-Wide Association Studies and Genomic Prediction.Totowa:Humana Press,2013:321-330.

    [60] LEE S H,VAN DER WERF J H J.MTG2:an efficient algorithm for multivariate linear mixed model analysis based on genomic information[J].Bioinformatics,2016,32(9):1420-1422.

    [61] FERNANDO R L,GARRICK D J.GenSel—User manual for a portfolio of genomic selection related analyses[R].Ames: Animal Breeding and Genetics,2008.

    [62] ENDELMAN J B.Ridge regression and other kernels for genomic selection with R package rrBLUP[J].Plant Genome, 2011, 4(3):250-255.

    [63] COVARRUBIAS-PAZARAN G.Genome-assisted prediction of quantitative traits using the R package sommer[J].PLoS One,2016,11(6):e0156744.

    [64] HERRERA-OJEDA J B,PARRA-BRACAMONTE G M,LPEZ-VILLALOBOS N,et al.Bivariate analysis for the improvement of genetic evaluations with incomplete records in Charolais cattle[J].Rev MVZ Crdoba,2021,26(2):e2128.

    [65] SILALAHI P,CHEN Y C.Estimation of genetic parameters for litter traits in Taiwan Duroc,landrace,and yorkshire pigs[J].Trop Anim Sci J,2023,46(3):280-286.

    [66] LIU H H,ZHOU Z K,HU J,et al.Genetic variations for egg internal quality of ducks revealed by genome-wide association study[J].Anim Genet,2021,52(4):536-541.

    [67] NEL C,GURMAN P,SWAN A,et al.Including genomic information in the genetic evaluation of production and reproduction traits in South African Merino sheep[J].J Anim Breed Genet,2024,141(1): 65-82.

    [68] XU L,NIU Q H,CHEN Y,et al.Validation of the prediction accuracy for 13 traits in Chinese Simmental beef cattle using a preselected low-density SNP panel[J].Animals,2021,11(7):1890.

    [69] SHIRZEYLI F H,JOEZY-SHEKALGORABI S,AMINAFSHAR M,et al.The estimation of genetic parameters and genetic trends for growth traits in Markhoz goats[J].Small Rumin Res,2023,218: 106886.

    [70] YADAV N,MUKHERJEE S,MUKHERJEE A.Comparative genetic analysis of frequentist and Bayesian approach for reproduction,production and life time traits showing favourable association of age at first calving in Tharparkar cattle[J].Anim Biosci,2023,36(12):1806-1820.

    [71] YANG R F,XU Z Q,WANG Q,et al.Genome-wide association study and genomic prediction for growth traits in yellow-plumage chicken using genotyping-by-sequencing[J].Genet Sel Evol,2021, 53(1):82.

    [72] AYTEKIN ,DOGˇAN,ODACI ,et al.Estimation of variance components for birth and weaning weights in Holstein-Friesian calves by using WOMBAT software[J].Selcuk J Agric Food Sci,2019, 33(2):88-93.

    [73] YU H W,RAZA S H A,ALMOHAIMEED H M,et al.The body weight heritability and the effect of non-genetic factors on the body measurement traits in Qinchuan cattle[J].Anim Biotechnol,2023, 34(9):4387-4393.

    [74] GILMOUR A R.Echidna mixed model software[C]//Proceedings of the World Congress on Genetics Applied to Livestock Production.Auckland,2018:995.

    [75] ASHRAFIAN A,KASHAN N E J,ABBASI M A,et al.Study of persistency of lactation and survival of Iranian Holstein dairy cattle using random regression model[J].Can J Anim Sci,2023,103(4): 406-415.

    [76] VANDENPLAS J,VEERKAMP R F,CALUS M P L,et al.MiXBLUP 3.0-software for large genomic evaluations in animal breeding programs[M]//VEERKAMP R F,DE HAAS Y.Proceedings of 12th World Congress on Genetics Applied to Livestock Production.Wageningen Academic Publishers,2022: 1498-1501.

    [77] LIU Z T,ALKHODER H.Application of a single-step SNP BLUP model to conformation traits of German Holsteins[J]. Interbull Bull,2021(56):30-40.

    [78] LIU S Y,YAO T X,CHEN D,et al.Genomic prediction in pigs using data from a commercial crossbred population:insights from the Duroc x (Landrace x Yorkshire) three-way crossbreeding system[J].Genet Sel Evol,2023,55(1):21.

    [79] DAWOOD M,KRAMER L M,SHABBIR M I,et al.Genome-wide association study for fatty acid composition in American angus cattle[J].Animals,2021,11(8):2424.

    [80] KHALTABADI FARAHANI A H,MOHAMMADI H,MORADI M H,et al.Genomic-wide association study for egg weight-related traits in Rhode Island Red breed using Bayesian methods[J].Anim Prod Res,2022,11(3):41-53.

    [81] FERNNDEZ J,VILLANUEVA B,TORO M A.Optimum mating designs for exploiting dominance in genomic selection schemes for aquaculture species[J].Genet Sel Evol,2021,53(1):14.

    [82] RIOS A C H,NASNER S L C,LONDOO-GIL M,et al.Genome-wide association study for reproduction traits in Colombian Creole Blanco Orejinegro cattle[J].Trop Anim Health Prod,2023, 55(6):429.

    [83] SHAN X X,XU T F,MA Z Y,et al.Genome-wide association improves genomic selection for ammonia tolerance in the orange-spotted grouper (Epinephelus coioides)[J]. Aquaculture, 2021, 533:736214.

    [84] LI H,WU X L,TAIT R G Jr,et al.Genome-wide association study of milk production traits in a crossbred dairy sheep population using three statistical models[J].Anim Genet,2020,51(4):624-628.

    [85] MARTIN P,TAUSSAT S,VINET A,et al.Genetic parameters and genome-wide association study regarding feed efficiency and slaughter traits in Charolais cows[J].J Anim Sci,2019,97(9):3684-3698.

    [86] HONG J K,JEONG Y D,CHO E S,et al.A genome-wide association study of social genetic effects in Landrace pigs[J].Asian-Australas J Anim Sci,2018,31(6):784-790.

    [87] BITARAF SANI M,ZARE HAROFTE J,BANABAZI M H,et al.Genomic prediction for growth using a low-density SNP panel in dromedary camels[J].Sci Rep,2021,11(1):7675.

    [88] BRITO LOPES F,MAGNABOSCO C U,PASSAFARO T L,et al.Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks[J].J Anim Breed Genet,2020,137(5):438-448.

    [89] AL-MAMUN H A,KIM S,PARK B H,et al.Prediction of genomic breeding values of primal cut weights in Korean Hanwoo cattle from different growth and carcass traits[C]//Proceedings of the 22nd Association for the Advancement of Animal Breeding and Genetics.Townsville,2017:187-190.

    [90] SAMARAWEERA A M,BOERNER V,CYRIL H W,et al.Genetic parameters for milk yield in imported Jersey and Jersey-Friesian cows using daily milk records in Sri Lanka[J].Asian-Australas J Anim Sci,2020,33(11):1741-1754.

    [91] CAI W T,HU J,F(xiàn)AN W L,et al.Strategies to improve genomic predictions for 35 duck carcass traits in an F2 population[J].J Anim Sci Biotechnol,2023,14(1):74.

    [92] SMITH J L,WILSON M L,NILSON S M,et al.Genome-wide association and genotype by environment interactions for growth traits in U.S. Red Angus cattle[J].BMC Genomics,2022, 23(1):517.

    [93] PREZ-ENCISO M.Animal breeding learning from machine learning[EB/OL].2017.https://digital.csic.es/bitstream/10261/247945/1/animallearn.pdf.

    [94] NAYERI S,SARGOLZAEI M,TULPAN D.A review of traditional and machine learning methods applied to animal breeding[J].Anim Health Res Rev,2019,20(1):31-46.

    [95] WESTHUES C C,SIMIANER H,BEISSINGER T M.learnMET:an R package to apply machine learning methods for genomic prediction using multi-environment trial data[J].G3 GenesGenomesGenetics,2022,12(11):jkac226.

    [96] HASELBECK F,JOHN M,GRIMM D G.easyPheno:an easy-to-use and easy-to-extend Python framework for phenotype prediction using Bayesian optimization[J].Bioinform Adv,2023,3(1): vbad035.

    [97] CHARMET G,TRAN L G,AUZANNEAU J,et al.BWGS:A R package for genomic selection and its application to a wheat breeding programme[J].PLoS One,2020,15(4):e0222733.

    [98] MA W L,QIU Z X,SONG J,et al.A deep convolutional neural network approach for predicting phenotypes from genotypes[J].Planta,2018,248(5):1307-1318.

    [99] ZENG S,MAO Z T,REN Y J,et al.G2PDeep:a web-based deep-learning framework for quantitative phenotype prediction and discovery of genomic markers[J].Nucleic Acids Res,2021,49(W1): W228-W236.

    [100] SHARAF T,WILLIAMS T,CHEHADE A,et al.BLNN:an R package for training neural networks using Bayesian inference[J]. SoftwareX,2020,11:100432.

    [101] NEU D A,LAHANN J,F(xiàn)ETTKE P.A systematic literature review on state-of-the-art deep learning methods for process prediction[J].Artif Intell Rev,2022,55(2):801-827.

    [102] GREENWELL B,BOEHMKE B,CUNNINGHAM J,et al.Gbm:generalized boosted regression models[R].R Package Version 2.1.8,2020.

    [103] VU N T,PHUC T H,OANH K T P,et al.Accuracies of genomic predictions for disease resistance of striped catfish to Edwardsiella ictaluri using artificial intelligence algorithms[J].G3 GenesGenomesGenetics, 2022,12(1):jkab361.

    [104] SRIVASTAVA S,LOPEZ B I,KUMAR H,et al.Prediction of hanwoo cattle phenotypes from genotypes using machine learning methods[J].Animals,2021,11(7):2066.

    [105] LIANG M,MIAO J,WANG X Q,et al.Application of ensemble learning to genomic selection in Chinese simmental beef cattle[J].J Anim Breed Genet,2021,138(3):291-299.

    [106] REINOSO-PELEZ E L,GIANOLA D,GONZLEZ-RECIO O.Genome-enabled prediction methods based on machine learning[M]//AHMADI N,BARTHOLOM.Genomic Prediction of Complex Traits.New York:Humana,2022:189-218.

    [107] HABIER D,TETENS J,SEEFRIED F R,et al.The impact of genetic relationship information on genomic breeding values in German Holstein cattle[J].Genet Sel Evol,2010,42(1):5.

    [108] HABIER D,F(xiàn)ERNANDO R L,KIZILKAYA K,et al.Extension of the Bayesian alphabet for genomic selection[J].BMC Bioinformatics,2011,12:186.

    [109] CHAMBERS R L,STEEL D G,WANG S,et al.Maximum likelihood estimation for sample surveys[M]. Boca Raton:CRC Press,2012.

    [110] HARVILLE D A.Maximum likelihood approaches to variance component estimation and to related problems[J].J Am Stat Assoc,1977,72(358):320-338.

    [111] MISZTAL I,PEREZ-ENCISO M.Sparse matrix inversion for restricted maximum likelihood estimation of variance components by expectation-maximization[J].J Dairy Sci,1993,76(5): 1479-1483.

    [112] WAHEED A,KHAN M S.Computing genetic parameters and breeding values in Nili-Ravi buffaloes-experiencing wombat and ASREML software[J].Pak J Zool,2009(9):587-591.

    [113] CADENA-MENESES J A,CASTILLO-MORALES A.Comparacin de diferentes mtodos para la estimacin de componentes de varianza[J].Agrociencia,2002,36(6):713-723.

    [114] PREZ-ENCISO M,ZINGARETTI L M.A guide on deep learning for complex trait genomic prediction[J]. Genes (Basel),2019,10(7):553.

    [115] ABDOLLAHI-ARPANAHI R,GIANOLA D,PEAGARICANO F.Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes[J].Genet Sel Evol,2020,52(1): 12.

    (編輯 郭云雁)

    猜你喜歡
    機(jī)器學(xué)習(xí)研究進(jìn)展
    MiRNA-145在消化系統(tǒng)惡性腫瘤中的研究進(jìn)展
    離子束拋光研究進(jìn)展
    獨腳金的研究進(jìn)展
    中成藥(2017年9期)2017-12-19 13:34:44
    基于詞典與機(jī)器學(xué)習(xí)的中文微博情感分析
    基于機(jī)器學(xué)習(xí)的圖像特征提取技術(shù)在圖像版權(quán)保護(hù)中的應(yīng)用
    基于網(wǎng)絡(luò)搜索數(shù)據(jù)的平遙旅游客流量預(yù)測分析
    時代金融(2016年27期)2016-11-25 17:51:36
    前綴字母為特征在維吾爾語文本情感分類中的研究
    基于支持向量機(jī)的金融數(shù)據(jù)分析研究
    EVA的阻燃研究進(jìn)展
    中國塑料(2016年4期)2016-06-27 06:33:22
    機(jī)器學(xué)習(xí)理論在高中自主學(xué)習(xí)中的應(yīng)用
    乐亭县| 马关县| 营山县| 长垣县| 刚察县| 额敏县| 凤城市| 宣武区| 洱源县| 南昌县| 宁化县| 涪陵区| 页游| 青冈县| 筠连县| 礼泉县| 盐源县| 枝江市| 项城市| 武城县| 嵊州市| 安徽省| 阿鲁科尔沁旗| 城口县| 无棣县| 偏关县| 武山县| 六枝特区| 兴山县| 大理市| 黑水县| 青冈县| 鄄城县| 故城县| 宾阳县| 南漳县| 平塘县| 台南市| 台州市| 青川县| 肃南|