善于發(fā)現和提出數學問題,對初中數學的學習非常重要。好的數學問題,往往能引領我們的數學學習走向深入。
折紙與剪拼
如果給你一張長方形紙片,你能提出什么數學問題呢?
相信你會有很多想法,比如,通過裁剪,能剪出什么樣的幾何圖形?如何剪出正方形、平行四邊形等特殊四邊形?如何把長方形分成兩個面積相等的圖形?等等。最好的解決方法就是在嘗試中發(fā)現,在實踐中思考。快找一些長方形紙片試一試吧!
根據小學的學習經驗,我們知道,如教材第8頁圖1-2進行裁剪,可以得到正方形。你能說說剪出圖形是正方形的理由嗎?是不是不同的長方形,通過這樣的裁剪,都可以得到正方形呢?經過嘗試,我們發(fā)現,盡管長方形在變,裁剪的結果卻不變,依然是正方形。今后的數學學習,會幫你揭開其中的數學奧秘。
尋找不同圖形之間的聯(lián)系,可以提出有價值的數學問題。比如,三角形和四邊形、五邊形……n邊形(n≥4)之間分別有什么聯(lián)系?
通過思考,我們發(fā)現,四邊形、五邊形……n邊形(n≥4)都可以劃分成若干個三角形(如圖1)。那么,多邊形的問題就可以轉化為我們熟悉的三角形問題,從而利用三角形中不變的性質來解決。從陌生到熟悉,從變化到不變,轉化的力量讓我們在變化的數學世界中,發(fā)現不變的客觀性質,感悟數學魅力。
月歷中的數量關系
月歷是生活中常見的物品,從中可以提出很多有價值的數學問題,豐富我們的數學思考。
月歷中的日期排列有什么規(guī)律呢?這就是一個有價值的數學問題。我們可以先從簡單規(guī)律開始探究,比如月歷中方框內的4個數之間有什么樣的數量關系(如教材第9頁圖1-4)?具體來說,左右、上下、對角兩個數之間有什么數量關系?4個數的和與其中1個數有什么聯(lián)系?方框移動后,以上規(guī)律仍然成立嗎……
觀察一個方框內的4個數,得出的規(guī)律還不一定正確,還需要多框幾次,多次驗證;還可以用字母表示數字,如設其中1個日期為x,用x表示出其他日期,得到更加“靠譜”的規(guī)律。 因此,我們在解決問題的過程中,可以通過嘗試、猜想,發(fā)現結論,培養(yǎng)良好的數學直覺;也可以通過嚴密的思考推理求解,讓我們的思維變得更加嚴謹。
研究完4個數的規(guī)律,接下來就可以探究更加復雜的規(guī)律啦!如9個數、16個數……
我們還可以提出更加生活化的數學問題。如小明一家暑假外出旅游5天,這5天的日期之和是30,那么小明一家是幾號出發(fā)的呢?
仔細思考以后你會發(fā)現,這個問題的解法非常多??梢酝ㄟ^估算、驗證的方法發(fā)現,連續(xù)5個數的和為30,那么第一個數不會超過6,再經過嘗試,就可以得到第一個數是4;也可以設第一個數為x,可以得到這5個數的和為5x+10;還可以從特殊值——第3個數進行分析,發(fā)現中間數為6,繼而得到第一個數是4。一個問題可以有這么多解法,是不是讓你覺得很驚呀呢?有價值的數學問題,往往解法多樣,就像一顆顆種子,只要你愿意思考,就能不斷綻放思維的花朵,長出思維的果實。
通過上述探究,我們發(fā)現,盡管每個月的月歷都有變化,但是月歷中的規(guī)律是不變的。在變化的世界中,用數學的語言表達出不變的規(guī)律,是一件很酷的事呢!聽說某同學研究出月歷的規(guī)律后,用一張紙自制了月歷尺,從此只要動動數框,就可以得到每個月的月歷啦!感興趣的你快去試一試吧!
1.對于長方形紙片,你還能提出哪些數學問題呢?
2.將長方形紙片裁剪成正方形,你還有其他裁剪方式嗎?
3.自制一把月歷尺,向同學們展示和交流。
(作者單位:南京師范大學附屬中學新城初級中學黃山路分校)