摘要: 生物固氮是唯一能將空氣中“免費”的氮氣轉化為化合態(tài)氮的生物學過程。一般認為豆科作物具有共生固氮能力,間套種豆科作物已成為補充農(nóng)田氮素的重要方式。越來越多的證據(jù)證明禾本科作物也具有較高的聯(lián)合固氮潛力,大量聯(lián)合固氮菌不僅定殖在根際、根內,還可以定殖在植株地上部如莖維管束、葉際中,表明禾本科作物固氮微生物可能為避免復雜的土壤環(huán)境,開辟了一條“體內高效固氮”的新途徑。本文回顧了近年來玉米、小麥、水稻、甘蔗等禾本科作物在聯(lián)合固氮部位、調控途徑、菌群構建等方向取得的創(chuàng)新進展,重點介紹了固氮菌除了與宿主植物存在互作關系外,還與其他功能細菌、真菌和病毒之間存在潛在的相互作用?;谏锕痰喙δ芎铣删涸谥参餇I養(yǎng)和促生等領域表現(xiàn)出的巨大應用前景和潛力,提出了當前禾本科作物聯(lián)合固氮研究的前沿熱點和難點,即如何綜合利用“自上而下”和“自下而上”策略,篩選關鍵功能類群并結合基因組尺度代謝模型,構建群落穩(wěn)定、功能多樣、效果顯著的合成菌劑,為生物固氮在農(nóng)業(yè)生產(chǎn)中廣泛應用提供強有力的技術支撐。
關鍵詞: 禾本科作物; 生物固氮; 固氮菌; 秸稈分解; 合成菌群
氮是植物生長所需的大量營養(yǎng)元素之一。空氣中游離態(tài)的氮氣約占空氣成分的79%,然而絕大多數(shù)作物不能直接利用大氣中“免費”的氮氣。生物固氮(biological nitrogen fixation, BNF) 是指氮氣在固氮菌的參與下被轉化為氨的過程。根據(jù)固氮微生物與宿主植物的共生關系,可將生物固氮分為共生固氮、聯(lián)合固氮和自生固氮[1?3],其中聯(lián)合固氮與植物形成一種松散的互利共生關系,但不形成類似豆科植物共生固氮的根瘤結構。生物固氮在自然界中廣泛存在,既是作物產(chǎn)量與氮素供應的增強劑,又是化學氮肥減量和溫室氣體減排的有效途徑,其重要程度不亞于光合作用。
據(jù)估算,全球生物固氮量每年超過兩億t,其中海洋約占2/3,陸地約占1/3[4?5]。當前,農(nóng)田生態(tài)系統(tǒng)主要依靠化學氮肥的投入,以滿足糧食作物種植過程中的氮素需求。實際上,生物固氮同樣是農(nóng)作物?土壤系統(tǒng)中氮養(yǎng)分輸入的關鍵源頭之一,總量達到32 Tg,占氮素總輸入量的18.93%[6]。盡管豆科作物根瘤菌等共生固氮具有固氮效率高的特性,占59.17% 的農(nóng)田生物固氮總量[7],但大量研究表明禾本科作物同樣具有聯(lián)合固氮能力[3, 8?10],其單位固氮效率雖然低于豆科作物,但是禾本科作物種植面積遠高于豆科作物,所以固氮潛力同樣巨大。通過不同文獻估算全球玉米、水稻、小麥平均固氮效率約為N 26.51 kg/hm2,根據(jù)種植面積可得全球固氮量達到15.58 Tg,而大豆、花生等豆科作物固氮效率大約為每年N 109.00 kg/hm2,其全球固氮量為17.91 Tg[7, 11]。因此,從全球角度來看禾本科作物生物固氮量與豆科作物固氮量相當,但禾本科作物生物固氮的供應潛力被低估。
為了滿足全球人口日益增長帶來的糧食需求量增加,未來小麥、玉米、水稻等主要糧食作物的氮需求量可能會進一步增加?;瘜W氮肥的投入增加會進一步引起土壤鹽化酸化、溫室氣體增排等系列負面效應,禾本科作物生物固氮將成為未來最為綠色的替代氮源。因此,本文以禾本科作物為對象,從禾本科作物固氮微生物類群與功能及其關鍵部位、禾本科作物生物固氮調控途徑、禾本科作物秸稈分解與生物固氮互作關系、生物固氮多功能合成菌群構建與應用等角度進行了系統(tǒng)闡述,旨在提升禾本科作物生物固氮潛力,優(yōu)化禾本科作物?土壤系統(tǒng)氮素循環(huán)過程。
1 禾本科作物聯(lián)合固氮微生物類群與功能
1961 年,Dobereiner[12]在甘蔗根際分離獲得拜葉林克氏菌屬(Beijerinckia) 的固氮菌,證實了禾本科作物具備生物固氮潛力,之后在禾本科作物聯(lián)合固氮菌研究中陸續(xù)發(fā)現(xiàn)了假單胞菌屬(Psedomonas)、克雷伯氏菌屬(Klebsiella)、腸桿菌屬(Enterobacter)等菌株。禾本科作物聯(lián)合固氮菌既可直接固氮供作物吸收,也可通過多種代謝途徑調節(jié)、刺激外源氮素的轉化、代謝,提高作物對氮素的吸收利用能力。近年來禾本科作物聯(lián)合固氮菌的類群與功能見表1。
1.1 玉米聯(lián)合固氮
玉米與固氮菌之間存在顯著的互作關系。研究人員將一株假單胞固氮菌(Pseudomonas stutzeri A1501)接種玉米后發(fā)現(xiàn),植株生物量和氮含量分別增加25.4% 和7.8%,且A1501 同時具備生物固氮和產(chǎn)生植物激素功能,接種固氮菌A1501 顯著促進了玉米生長[13]。從玉米根系分離獲得的固氮菌(Kosakoniasacchari PBC6.1) 可在低氮條件下通過谷氨酰胺傳感蛋白(GlnD) 修飾PII 蛋白,從而達到固氮途徑上調目的[14]。Monta?ez 等[15]從玉米根莖葉中分離出大量泛菌屬(Pantoea)、假單胞菌屬(Pseudomonas)、草螺菌屬(Herbaspirillum) 等固氮菌,它們?yōu)橛衩滋峁┝?2%~33% 的氮源。最近研究表明,玉米莖木質部存在一個以γ-變形菌門(Gamma-proteobacteria) 為主的固氮微生物組,并且莖木質部微生物組攜帶的nifH 基因豐度明顯高于根、葉等其他部位,這些固氮菌為玉米提供了重要的氮源[3]。
1.2 小麥聯(lián)合固氮
接種固氮菌是提高小麥產(chǎn)量的有效途徑之一。固氮螺菌屬(Azospirillum)、類芽孢桿菌屬(Paenibacillus)、假單胞菌屬(Pseudomonas)、腸桿菌屬(Enterobacter)是與小麥密切相關的聯(lián)合固氮類群,對小麥氮獲取有很大貢獻[16?19]。例如,小麥內生類芽孢桿菌在低氮肥條件下能顯著增加86.1% 植株地上部干重,氮攝取和代謝基因在接種類芽孢桿菌后表達量上調1.5~91.9 倍,進而提高了小麥養(yǎng)分吸收能力[20]。巴西固氮螺菌可以有效地在小麥根系定殖,并上調小麥根系硝酸鹽轉運蛋白(NAXT, PTR) 基因表達,小麥根系轉錄譜的改變促進了幼苗根系伸長和養(yǎng)分獲取能力[21]。
1.3 水稻聯(lián)合固氮
固氮微生物對水稻生長十分重要[22]。巴西固氮螺菌(Azospirillum brasilense) 是水稻根系促生菌,該菌定殖水稻根系過程中可引起根系轉錄因子、蛋白激酶和轉運蛋白相關基因的差異表達,從而通過調控根系類黃酮合成、激素信號轉導等過程促進水稻生長[23]。在水稻上的田間試驗結果表明,3 株慢生根瘤菌屬(Bradyrhizobium) 固氮菌均不同程度地增加了水稻干重、產(chǎn)量和千粒重,尤其是埃氏慢生根瘤菌(Bradyrhizobium elkanii SEMIA 587) 使得水稻增產(chǎn)1000 kg/hm2,擴增子分析表明這些埃氏慢生根瘤菌主要集中在水稻地上部,在提升葉片葉綠素含量和增強光合作用方面發(fā)揮了重要作用[24]。一組包含假單胞菌屬(Pseudomonas) 和紅酵母屬(Rhodotorula) 固氮菌群定殖水稻后,明顯改善水稻氮含量和氮利用效率,固氮菌定殖24 h 內水稻根系氮代謝、氮轉運和誘導根系結節(jié)啟動表達基因上調[25]。研究表明,固氮菌一方面通過促進根系生長調節(jié)水稻養(yǎng)分吸收;另一方面通過調節(jié)水稻氮吸收相關基因的表達增強對氮的獲取[25?26]。
1.4 甘蔗聯(lián)合固氮
甘蔗是高效的聯(lián)合固氮作物。在低氮肥輸入條件下,接種具有固氮能力的內生菌,不僅可以直接為甘蔗提供氮素[27],還能改善甘蔗氮代謝、激素信號轉導、生長素合成等功能[28?29],提升對其他來源氮素的轉化利用。例如,甘蔗接種內生固氮菌(Klebsiellavariícola) 共同培養(yǎng)后,甘蔗胺氧化酶、抗氧化酶、植物激素均顯著增加,固氮菌通過刺激多胺代謝途徑和植物激素產(chǎn)生途徑促進甘蔗生長[29]。在低氮條件下,甘蔗內生固氮菌(Enterobacter roggenkampii ED5)增加了葉片中谷氨酰胺合成酶(GS) 和NADH-谷氨酸脫氫酶(NADH-GDH) 基因表達量,將固氮酶產(chǎn)生的銨通過GS 催化途徑或NADH-GDH 途徑轉化為谷氨酰胺,將固氮菌產(chǎn)生的氮不斷用于自身光合產(chǎn)物的同化積累[30?31]。對甘蔗內生固氮菌(Pseudomonasaeruginosa DJ06) 的全基因組分析表明,該固氮菌存在固氮、氨同化、鐵載體、生長素、磷酸鹽代謝、生物膜等多個重要的植物促生基因,接種DJ06 后甘蔗生長素含量比未接種處理提高37.38%,有效促進了植物發(fā)育[32]。
2 禾本科作物聯(lián)合固氮關鍵部位
禾本科作物的聯(lián)合固氮菌廣泛存在于根際、根內和地上部,在這些關鍵部位,固氮微生物可從大氣中捕捉氮氣并轉化為植物可利用的形式,通過與根際、根內和地上部微生物的復雜相互作用,提升禾本科作物的氮吸收利用效率。
2.1 根際生物固氮
根際固氮菌對根系分泌物的趨化作用是禾本科作物根際生物固氮的關鍵機制(圖1)。研究證實,在氮脅迫條件下植物通過根系分泌物誘導調控參與氮循環(huán)微生物的活性,從而增強作物對氮素的獲取[64]。例如,類黃酮柚皮素(flavonoid naringenin) 可顯著促進巴西固氮螺菌(Azospirillum brasilense) 在小麥根際定殖[65]。在墨西哥土壤貧瘠的Sierra Mixe 地區(qū),當?shù)赜衩灼贩N可通過氣生根分泌大量黏液招募固氮細菌,為植物提供29%~82% 的氮源[66],這些含有豐富海藻糖、半乳糖、阿拉伯糖等多糖的黏液為固氮菌營造了最佳生態(tài)條件,不僅滿足其能量需求,還支持固氮酶的微氧新陳代謝和必要的定殖機制。這種氣生根粘液與固氮菌的關系也在蔓性野牡丹(Heterotisrotundifolia) 中被發(fā)現(xiàn)[67]。在小麥、大麥和高粱等作物根系同樣發(fā)現(xiàn)了類似的黏液物質[68?71]。Bennett 等[72]推測,玉米根系黏液與固氮微生物之間的互作機制可能在其他作物中也普遍存在,這可能是植物根系生物固氮的共同特征。
根際“生物被膜形成”也是固氮菌適應外界復雜生態(tài)環(huán)境的一種策略[73]。生物被膜是由蛋白質、胞外DNA、多糖等細菌分泌物組成的胞外聚合物,對于固氮菌在根部定殖至關重要。研究表明,在缺氮條件下水稻根際固氮菌(Pseudomonas stutzeri A1501)利用胞外多糖形成細胞囊結構(cyst-like cells),作為氧氣擴散屏障,實現(xiàn)在自然有氧環(huán)境中生物固氮[74]。Yan 等[8]更是利用CRISPR 基因編輯調控水稻中黃酮生物合成途徑,通過增加芹菜素等化合物分泌來刺激固氮菌生物被膜形成,促進細菌在水稻根部定殖,這一策略在土壤氮素脅迫條件下,增強了水稻的氮素獲取能力。
2.2 根內生物固氮
內生固氮菌的發(fā)現(xiàn)可能為非豆科作物開辟了一條“體內高效固氮”的新途徑。與根際相比,宿主內生環(huán)境不僅可滿足固氮所需的能量和低氧分壓,還能夠有效避免激烈的土壤微生物競爭和礦質氮對生物固氮的抑制作用[75?77]。植物內生菌的侵入主要是從根毛或側根的發(fā)生部位開始,根內細胞、葉肉、葉薄壁組織和木質部導管是內生固氮菌侵入后定殖最多的部位。James 等[78]利用GUS (β-glucoronidase)標記方法研究固氮菌(Herbaspirillum seropedicaeZ67) 的內生定殖過程,發(fā)現(xiàn)在初始階段GUS 染色在胚芽鞘、側根以及主根和側根的交界處最為強烈,該菌從側根出芽處的裂縫進入根內,然后在根內細胞間隙定殖。Cocking 等[76]研究表明內生固氮菌(Gluconacetobacter diazotrophicus) 可在根內細胞質定殖,且根內細胞條件適合固氮酶基因的表達。
另有研究發(fā)現(xiàn),可以進入植物組織內并存活的細菌已經(jīng)進化出獨特的性狀。例如,內生固氮菌(Klebsiella pneumoniae 342) 能夠在玉米、小麥等作物內部大量定殖,全基因組分析發(fā)現(xiàn),該菌不僅含有參與趨化作用、鞭毛和纖毛形成的基因,還包括識別和降解植物源多糖的基因,表明該菌有極強的植物共生偏好性[79]。內生固氮菌(Azoarcus sp. BH72) 也被證明存在編碼纖維素酶和多聚半乳糖酶等細胞壁降解酶基因(cell-wall degrading enzymes, CWDEs)[80]。此外,在內生菌定殖初級階段,植物防御反應被激活性,細胞內釋放的活性氧(reactive oxygen species,ROS) 導致內生菌受到滲透脅迫。Alquéres 等[81]的研究指出,在固氮菌(G. diazotrophicus PAL5) 的內生定殖過程中,超氧化物歧化酶和谷胱甘肽還原酶等ROS 解毒基因轉錄水平顯著上調,表明菌株PAL5 的ROS 清除酶系統(tǒng)在其水稻內生定殖中發(fā)揮重要作用。
2.3 地上部生物固氮
禾本科作物莖維管束為內生固氮菌提供了潛在的生存空間。研究報道,木質部導管的腔內定殖是內生細菌傳播到其他植物營養(yǎng)器官的重要途徑[82]。木質部單元間穿孔板的孔隙大小可以確保細菌的順利通過[83]。研究表明,固氮菌(H. seropedicae Z67) 定殖根系細胞間隙后,部分細菌可穿透中柱鞘,進入到根系木質部導管,最后定殖于莖和葉片的表皮細胞間隙和植物氣孔下腔[78]。Zhang 等[3]通過比較玉米各部位微生物群落進一步發(fā)現(xiàn),莖木質部傷流液中參與氮循環(huán)的微生物數(shù)量明顯高于其他部位,在長期不施肥條件下莖木質部固氮酶基因(nifH) 占16S rRNA總拷貝數(shù)的比例是根內的2 倍和葉內的4 倍,表明低氮脅迫下莖木質部富集了更高比例的固氮菌。
植物葉際包括附生層( e p i s p h e r e ) 和內生層(endosphere),同樣為固氮菌發(fā)揮固氮功能提供了重要場所[84]。對玉米和水稻葉際固氮微生物群落的研究發(fā)現(xiàn),腸桿菌屬(Enterobacter) 在玉米葉際中高度富集[33],不動桿菌屬(Acinetobacter) 在水稻葉際中占主導地位[85]。此外,葉際附生層固氮微生物群落α 多樣性顯著高于內生層。變形菌門(Proteobacteria) 在葉際附生層和內生層皆為最主要的優(yōu)勢類群(gt;90%),而厚壁菌門(Firmicutes) 在附生層中更為豐富[84]。盡管葉際環(huán)境相對苛刻,營養(yǎng)物質相對貧乏,但某些決定微生物在根際或內層定殖的關鍵因素,如胞外多糖、鞭毛、生物表面活性、自由基解毒蛋白、多功能代謝和群體感應信號分子等,在葉際定殖中也發(fā)揮重要作用[86]。
3 禾本科作物生物固氮調控途徑
3.1 宿主作物對固氮微生物的調控作用
作物?微生物共生關系的建立是一個復雜的過程(圖2)。與豆科作物共生固氮相比,聯(lián)合固氮菌與宿主之間的關系更加松散,但它仍然對植物基因型存在偏好性。宿主植物通過調控相應基因表達,并釋放氨基酸、香豆素、有機酸和類黃酮等代謝產(chǎn)物,與固氮微生物建立聯(lián)系[ 8 7 ? 8 9 ]。Yin 等[ 9 0 ]研究發(fā)現(xiàn),與栽培水稻相比,野生稻根際環(huán)境顯著富集了甲基桿菌屬(Methylobacterium)、鞘氨醇單胞菌屬(Sphingomonas) 等特定細菌,其中甲基桿菌屬固氮菌是野生稻最主要的富集類群,表明不同基因型水稻對根際固氮菌具有主動選擇作用。研究表明,在養(yǎng)分脅迫條件下,宿主基因型對微生物群落結構的影響更為直接[91],植物通過遺傳因子整合脅迫信號[92],傾向于基于功能需求為原則招募更多有益于自身氮素獲取的相關功能微生物[93]。例如,在小麥中,黃酮類柚皮素和大豆苷可以促進內生固氮菌(Azorhizobiumcaulinodans ORS571) 定殖,通過向宿主植物提供固定氮源以緩解宿主氮脅迫[94]。目前,豆科植物與根瘤菌之間的共生互作調控途徑、關鍵基因、信號物質已被大量報道[95]。然而,關于禾本科作物與固氮微生物之間的信號通路與調控機制尚不清楚。為深入理解這種聯(lián)合固氮關系,有必要開展全基因組關聯(lián)分析(genome-wide association study, GWAS) 以厘清植物基因型、宿主表型和固氮微生物組三者之間的互作關系。
3.2 微生物之間的協(xié)同調控作用
微生物之間的相互作用在調控固氮微生物功能潛力方面發(fā)揮至關重要的作用,主要包括固氮菌與其它細菌互作、固氮菌與真菌互作和固氮菌與病毒互作。Zhang 等[3]從不同氣候種植區(qū)玉米莖木質部傷流液中分離得到一組穩(wěn)定存在的核心微生物,其中包括2 株固氮細菌和12 株非固氮細菌,研究發(fā)現(xiàn)這些非固氮菌均不同程度上促進了兩株固氮菌的固氮酶活性,全基因組分析表明這些非固氮菌可能通過調控木質部微環(huán)境中氮和氧濃度來協(xié)助固氮菌進行固氮。最新的研究表明植物氣生根粘液中固氮菌和真菌之間存在互作關系。Pang 等[67]研究發(fā)現(xiàn),蔓性野牡丹(Heterotis rotundifolia) 氣生根粘液招募大量固氮菌的同時也招募了部分真菌,這些真菌具有廣泛的抗菌活性,能夠抑制超過100 種病原微生物,但選擇性地促進固氮微生物生長,確保了固氮功能的持續(xù)發(fā)揮。多項基于微生物網(wǎng)絡分析的研究表明,叢枝菌根真菌和固氮菌之間的合作提高了固氮效率[96?97]。在豆科作物中,叢枝菌根真菌通過分泌脂殼寡糖(LCOs) 和低殼寡糖(COs) 等信號分子來激活叢枝菌根真菌和豆科作物之間的互作;同時,這些信號分子驅動豆科作物與固氮細菌之間相互作用并促進根瘤形成[98?99]。最近的研究表明,低養(yǎng)分條件下水稻和大麥等禾本科作物對LCOs 和COs 同樣存在感知反應[100];然而,真菌及其分泌的信號分子影響禾本科作物聯(lián)合固氮的機制還需深入探索。病毒群落能夠調控微生物群落并攜帶大量的輔助代謝基因,是碳氮循環(huán)的重要參與者[101?102]。例如,Kolan等[103]探究了固氮藍細菌(Cyanobacteria) 與其噬菌體之間的互作,與野生型藍細菌相比,17 株具有噬菌體耐受性的藍細菌在缺氮條件下存在明顯的營養(yǎng)缺陷,表明噬菌體抗性限制了藍細菌固定氮的能力。目前,關于病毒與固氮菌互作及其影響禾本科作物聯(lián)合固氮的研究還相對匱乏。
3.3 非生物因子對固氮微生物的調控作用
氧氣和氮素對固氮酶的抑制作用以及高能耗是限制聯(lián)合固氮效率的3 個關鍵因素。固氮酶對氧氣高度敏感,微氧環(huán)境下才能保持正?;钚訹104]。Li 等[105]在中國東部10 塊旱地和水田開展15N 標記試驗后發(fā)現(xiàn),水田土壤固氮效率顯著高于旱地,間歇性灌溉和長期淹水引起的氧氣濃度變化可能是這種差異的重要誘因。生物固氮是一個高耗能過程,同化一分子氮氣,需要消耗8 個高能電子和16 個ATP,而禾本科作物與固氮菌之間松散的共生關系并不能像豆科作物根瘤那樣持續(xù)為固氮菌提供能量供應。因此,聯(lián)合固氮菌更愿意直接從土壤中吸收氮養(yǎng)分,這也是禾本科作物固氮效率不高的重要原因。一般而言,農(nóng)田生態(tài)系統(tǒng)長期施加無機氮肥將抑制固氮菌的固氮功能[106],降低微生物群落固氮基因豐度和多樣性[107?109]。在小麥?大豆輪作農(nóng)田土壤中施加35年無機氮肥后,F(xiàn)an 等[107]發(fā)現(xiàn)土壤生物固氮效率降低50%,這種功能損失與地桿菌屬(Geobacter) 為主的固氮菌豐度下降有關。5 年連續(xù)施加氮肥也導致玉米地土壤nifH 基因豐度降低53.7%~79.7%[108]。相反,多項研究表明施加糞肥、生物炭和秸稈等有機肥通常能夠增加生物固氮效率,這可能與施加有機肥改變土壤有機碳含量、土壤鐵礦物含量、土壤pH和微生物群落結構等有關[ 1 0 9 ? 1 1 0 ]。全球薈萃分析表明,氮素對生物固氮的抑制作用隨著土壤有機碳含量增加而減弱[111]。Yu 等[110]發(fā)現(xiàn)長期施用有機肥顯著增加了土壤短程有序(short-range-ordered, SRO) 鐵礦物含量,導致土壤中總鉬含量提高近30%,鉬有效性的增加進一步導致土壤nifH 基因豐度和固氮酶活性分別增加14% 和60%。此外,添加有機肥還可以緩解低土壤pH 值對固氮酶活性的抑制作用[109]。最新研究表明,晝夜更替和溫度對生物固氮也有顯著影響。Tang 等[112]構建的大腸桿菌(Escherichia coli) 和克雷伯氏菌(Klebsiella oxytoca) 等固氮突變菌株在夜晚23℃ 時,將聯(lián)合固定的氮素分泌到體外供植物吸收,在白天30℃ 時不向胞外分泌氮素,而是將固定的氮素用于自身生長和增殖,這種晝夜溫差變化下的間歇供氮為禾本科玉米提供了更多氮素。
4 禾本科作物秸稈分解與生物固氮
4.1 秸稈分解與生物固氮的潛在互補關系
據(jù)估算,全球每年玉米、小麥、水稻、甘蔗4 大類作物秸稈產(chǎn)量達到30 億t,占主要農(nóng)作物秸稈量的70%,截止2021 年我國秸稈量已超過9 億t[113]。一半以上的禾本科作物秸稈以直接還田方式實現(xiàn)循環(huán)再利用[114]。然而,禾本科作物成熟后主要將氮素運送至籽粒,導致其秸稈碳氮比較高。一般而言,禾本科作物秸稈碳氮比為60~80,遠高于土壤微生物生長最適碳氮比20~30,導致秸稈還田后氮營養(yǎng)缺乏,秸稈分解緩慢[115]。相反,固氮微生物十分偏好這種低氮環(huán)境,如果通過生物固氮的方式輸入氮源,可有效緩解秸稈還田后的氮素限制。此外,氮素供應不足還會造成秸稈還田后微生物分解者呼吸作用增強[116],所形成的土壤局部微氧環(huán)境為高效固氮創(chuàng)造了條件。與此同時,秸稈分解產(chǎn)生的大量碳水化合物為生物固氮所需的高強度能量供應提供了保障。當前秸稈還田配施氮肥是主要農(nóng)藝措施。因此,挖掘生物固氮在禾本科作物秸稈分解過程的氮素供應潛力,可有效減少農(nóng)業(yè)化學氮肥的投入(圖3)。
4.2 秸稈分解相關固氮微生物類群與分布
已經(jīng)證實自然界存在大量的纖維素分解與生物固氮協(xié)同微生物。在凋落物分解過程中的土壤微生物基因組研究中發(fā)現(xiàn),約3/4 含有固氮基因的菌株也同時含有編碼纖維素酶基因[117],這也表明自然界微生物之間碳氮代謝物的交叉取食機率非常高[118?119]。1983 年Waterbury 等[120]第一次從腐木船蟲的腺體中分離出具有纖維素分解和生物固氮的多功能菌株。此后在切葉蟻巢的碎葉分解菌圃中發(fā)現(xiàn)豐富的泛菌、克雷伯氏菌等固氮菌,為真菌分解樹葉提供氮源[121]。我國江蘇水稻土中也分離出1 株克雷伯菌(Klebsiellasp. C-3),同時具有秸稈分解和固氮功能[122]。目前在土壤和海洋中,已發(fā)現(xiàn)屬于不同菌屬的細菌能同時產(chǎn)生纖維素酶和固氮酶,如芽孢桿菌屬(Bacillus)、梭菌屬(Clostridium)、固氮菌屬(Azotobacter)、熱酸菌屬(Acidothermus) 等[123?127],并將其命名為纖維素分解固氮菌(cellulolytic nitrogen-fixing bacteria,CNFB)[128?129],成為當前探索土壤微生物多功能的前沿熱點。目前研究發(fā)現(xiàn),對添加秸稈敏感的固氮菌主要集中于慢生根瘤菌屬(Bradyrhizobium)、固氮螺菌屬(Azospirillum)、厭氧粘細菌屬(Anaeromyxobacter)、伯克氏菌屬(Burkholderia)、克雷伯氏菌屬(Klebsiella)和伯克霍爾德菌屬(Paraburkholderia)[130?131],其中,施用秸稈使慢生根瘤菌屬和固氮螺菌屬等豐度顯著升高,并強化了它們之間的互作關系[132?133]。
4.3 影響秸稈分解中生物固氮的關鍵因素
秸稈還田引起的土壤C/N 升高是影響秸稈分解過程中固氮功能的關鍵因素[134?137]。在氮限制下固氮菌活性普遍較高[ 1 3 8 ? 1 3 9 ];相反,大量施用氮肥土壤nifH 基因豐度和固氮能力下降[140?141]。研究表明,土壤速效鉀含量也與秸稈分解過程中固氮菌的組成有關[133]。鉬元素是固氮酶的重要組分,由于秸稈中鉬含量較低,施用一定量鉬肥可提高秸稈分解中生物固氮能力[142]。秸稈分解中固氮菌對環(huán)境因子變化敏感,其功能主要由氧氣濃度、土壤溫度和光照等環(huán)境因素共同調控。例如,隨著溫度的升高,秸稈分解相關酶和固氮酶活性均顯著增加,進而促進秸稈分解[133, 143]。研究發(fā)現(xiàn),高溫地區(qū)作物秸稈分解率和固氮量均顯著高于寒冷地區(qū)[130, 144]。此外,在水田環(huán)境中,藍藻是重要的光能自養(yǎng)型固氮菌,但秸稈還田影響光照條件,進而對固氮效率產(chǎn)生影響[145]。
5 生物固氮多功能合成菌群構建與應用
固氮菌劑的研發(fā)和應用是替代化學氮肥、促進農(nóng)業(yè)高質量發(fā)展的有效策略。近年來,人們越來越關注利用合成菌群(synthetic community) 來促進植物生長[146?147]。與單一微生物菌劑相比,合成菌群能夠減輕單個菌株的代謝負擔,提高生態(tài)功能的整體執(zhí)行效率[148],增強抵御環(huán)境波動的能力[149]。
目前,包括生物固氮功能在內的多功能合成菌群已經(jīng)被構建并應用于多種禾本科作物的促生[3, 150?151]和生物防治[150]等方面。例如,Zhang 等[3]通過自上而下策略和交叉對比,從玉米莖木質部傷流液中獲得14個核心細菌分類群,并建立了由兩個核心固氮菌和兩個協(xié)助菌組成的高效固氮合成菌群,利用綠色熒光蛋白(green fluorescent protein, GFP) 標記菌株和1 5N 同位素稀釋方法證實該高效固氮合成菌群能夠為玉米莖提供11.8% 的總氮。Jiang 等[151]利用純培養(yǎng)技術和生物信息學交叉驗證,獲得21 株在3 種土壤類型下均存在的玉米根際細菌類群,含有固氮、解磷、產(chǎn)植物生長素(IAA) 等促進植物生長的微生物,由此構建的合成菌群使玉米低養(yǎng)分條件下根莖鮮重比增加78%~121%。類似地,Liu 等[150]從小麥根際土壤中分離出40 株細菌,選取8 株具有固氮、解磷、產(chǎn)IAA、抗病等4 種功能菌株構建的合成菌群,使得小麥植株根系生物量、地上部生物量和成活率均顯著高于未接種合成菌群處理。除了植物促生功能,固氮微生物也被納入有機質或有機污染物降解相關的合成菌群。例如,Zhao 等[152]利用自下而上的方法構建了包含微桿菌(Microbacterium sp. H2)、鏈霉菌(Streptomyces werraensis F3) 和芽孢桿菌(Bacillus amyloliquefaciens JF-1) 的合成菌群HY-1,進一步將合成菌群HY-1 應用于秸稈還田土壤中發(fā)現(xiàn),與單菌相比,合成菌群增加了固氮酶和纖維素降解酶的活性,使得玉米秸稈腐解速率提高37.91%,并顯著促進了玉米幼苗的生長。Wang 等[153]構建了包含1 種固氮菌(Azotobacter chroococcum HN) 和1 種芘降解菌(Paracoccus aminovorans HPD-2) 的合成菌群,在缺氮環(huán)境中固氮菌向芘降解菌提供了氮養(yǎng)分,促進了污染物芘降解。
6 禾本科作物生物固氮展望
小麥、玉米、水稻、甘蔗等禾本科作物是全球最主要的農(nóng)作物,種植面積廣泛,盡管單位固氮效率低于豆科作物,但是聯(lián)合固氮過程普遍存在,所以禾本科作物固氮潛力同樣巨大。近年來,在禾本科作物根、莖、葉中均發(fā)現(xiàn)大量不同類型固氮菌,但宿主作物與聯(lián)合固氮菌之間是一種較為松散的互作關系,使得禾本科作物生物固氮田間應用未能達到理想效果。增強并優(yōu)化這種聯(lián)合固氮關系對于充分發(fā)揮禾本科作物的固氮潛力至關重要。當前,禾本科作物生物固氮研究仍面臨諸多挑戰(zhàn),包括固氮菌類群和功能尚未充分挖掘,基因層面認識不足;固氮與其他功能細菌、真菌和病毒之間的作用關系理解有限,協(xié)同增效機理不清;固氮菌在作物根際、根內和地上部植物器官的定殖過程尚不清楚,宿主基因型以及非生物因素影響下的菌?植互作機制尚不明確。因此,針對上述問題,未來禾本科作物生物固氮研究應聚焦于以下幾個方面:
1) 高效固氮微生物類群和功能挖掘。重點利用高通量培養(yǎng)組學、宏基因組學以及單細胞拉曼光譜等新的技術方法篩選和表征復雜環(huán)境中的關鍵固氮類群,尤其是深入挖掘地上部內生固氮菌功能潛力,結合基因組尺度代謝模型解析固氮微生物的遺傳和代謝特征,為固氮菌種資源的利用和生物工程改造提供基礎。
2) 固氮菌與其他微生物互作關系及協(xié)同增效機制解析。重點闡明固氮菌與秸稈分解菌等互補功能的細菌、真菌和病毒之間的協(xié)同增效機制,綜合利用“自上而下”和“自下而上”策略,構建群落穩(wěn)定、功能多樣、效果顯著的合成微生物群落,為禾本科作物聯(lián)合固氮在農(nóng)業(yè)生產(chǎn)中高效應用提供強有力的技術支撐。
3) 環(huán)境?作物?固氮微生物互作與優(yōu)化調控。重點解析不同氣候條件、土壤類型以及田間管理措施等條件下作物?微生物信號感知、微生物定殖以及與作物互作增效的分子機制,利用基因編輯(如CRISPR) 等現(xiàn)代分子生物技術手段,靶向調控生物固氮過程,定制并優(yōu)化禾本科作物的微生物共生環(huán)境,旨在提升禾本科作物的生物固氮能力,為推動農(nóng)業(yè)高質量發(fā)展提供重要支持。
參 考 文 獻:
[ 1 ]Guo K Y, Yang J, Yu N, et al. Biological nitrogen fixation in cerealcrops: Progress, strategies, and perspectives[J]. Plant Communications,2023, 4(2): 100499.
[ 2 ]Qiao M J, Sun R B, Wang Z X, et al. Legume rhizodepositionpromotes nitrogen fixation by soil microbiota under crop diversification[J]. Nature Communications, 2024, 15(1): 2924.
[ 3 ]Zhang L Y, Zhang M L, Huang S Y, et al. A highly conserved corebacterial microbiota with nitrogen-fixation capacity inhabits thexylem sap in maize plants[J]. Nature Communications, 2022, 13(1):3361.
[ 4 ]Herridge D F, Peoples M B, Boddey R M. Global inputs of biologicalnitrogen fixation in agricultural systems[J]. Plant and Soil, 2008,311(1): 1?18.
[ 5 ]Fowler D, Pyle J A, Raven J A, Sutton M A. The global nitrogencycle in the twenty-first century: Introduction[J]. PhilosophicalTransactions of the Royal Society B: Biological Sciences, 2013,368: 20130165.
[ 6 ]Zhang X, Zou T, Lassaletta L, et al. Quantification of global andnational nitrogen budgets for crop production[J]. Nature Food, 2021,2(7): 529?540.
[ 7 ]Ladha J K, Peoples M B, Reddy P M, et al. Biological nitrogenfixation and prospects for ecological intensification in cereal-basedcropping systems[J]. Field Crops Research, 2022, 283: 108541.
[ 8 ]Yan D W, Tajima H, Cline L C, et al. Genetic modification offlavone biosynthesis in rice enhances biofilm formation of soildiazotrophic bacteria and biological nitrogen fixation[J]. PlantBiotechnology Journal, 2022, 20(11): 2135?2148.
[ 9 ]Luo T, Li C N, Yan R, et al. Physiological and molecular insightsinto the resilience of biological nitrogen fixation to applied nitrogenin Saccharum spontaneum, wild progenitor of sugarcane[J].Frontiers in Plant Science, 2023, 13: 1099701.
[ 10 ]Aasfar A, Meftah Kadmiri I, Azaroual S E, et al. Agronomicadvantage of bacterial biological nitrogen fixation on wheat plantgrowth under contrasting nitrogen and phosphorus regimes[J].Frontiers in Plant Science, 2024, 15: 1388775.
[ 11 ]Ladha J K, Tirol-Padre A, Reddy C K, et al. Global nitrogenbudgets in cereals: A 50-year assessment for maize, rice and wheatproduction systems[J]. Scientific Reports, 2016, 6(1): 19355.
[ 12 ]Dobereiner J. Nitrogen-fixing bacteria of the genus BeijerinckiaDerx in the rhizosphere of sugar cane[J]. Plant and Soil, 1961,15(3): 211?216.
[ 13 ]Ke X B, Feng S, Wang J, et al. Effect of inoculation with nitrogenfixingbacterium Pseudomonas stutzeri A1501 on maize plantgrowth and the microbiome indigenous to the rhizosphere[J].Systematic and Applied Microbiology, 2019, 42(2): 248?260.
[ 14 ]Bloch S E, Clark R, Gottlieb S S, et al. Biological nitrogen fixationin maize: Optimizing nitrogenase expression in a root-associateddiazotroph[J]. Journal of Experimental Botany, 2020, 71(15):4591?4603.
[ 15 ]Monta?ez A, Abreu C, Gill P R, et al. Biological nitrogen fixationin maize (Zea mays L.) by 15N isotope-dilution and identification ofassociated culturable diazotrophs[J]. Biology and Fertility of Soils,2009, 45: 253?263.
[ 16 ]Venieraki A, Dimou M, Pergalis P, et al. The genetic diversity ofculturable nitrogen-fixing bacteria in the rhizosphere of wheat[J].Microbial Ecology, 2011, 61: 277?285.
[ 17 ]Ripa F A, Tong S, Cao W D, et al. Paenibacillus rhizophilus sp.nov., a nitrogen-fixing bacterium isolated from the rhizosphere ofwheat (Triticum aestivum L.)[J]. International Journal of Systematicand Evolutionary Microbiology, 2019, 69(12): 3689?3695.
[ 18 ]Ji C, Liu Z Y, Hao L P, et al. Effects of Enterobacter cloacae HG-1on the nitrogen-fixing community structure of wheat rhizospheresoil and on salt tolerance[J]. Frontiers in Plant Science, 2020, 11:1094.
[ 19 ]Ebrahimi M, Safari Sinegani A A, Sarikhani M R, Aliasgharzad N.Inoculation effects of isolated plant growth promoting bacteria onwheat yield and grain N content[J]. Journal of Plant Nutrition, 2023,46(7): 1407?1420.
[ 20 ]Li Y B, Li Y L, Zhang H W, et al. Diazotrophic Paenibacillusbeijingensis BJ-18 provides nitrogen for plant and promotes plantgrowth, nitrogen uptake and metabolism[J]. Frontiers in Microbiology,2019, 10: 449497.
[ 21 ]Camilios-Neto D, Bonato P, Wassem R, et al. Dual RNA-seqtranscriptional analysis of wheat roots colonized by Azospirillumbrasilense reveals up-regulation of nutrient acquisition and cellcycle genes[J]. BMC Genomics, 2014, 15: 378.
[ 22 ]Perera T A, Tirimanne S. Contribution of nitrogen-fixing bacteria inrice cultivation: Past, present, and future[A]. Maheshwari D K,Dobhal R, Dheeman S. Nitrogen fixing bacteria: Sustainable growthof non-legumes[M]. Singapore: Springer Nature Singapore Pte Ltd.,2022.
[ 23 ]Thomas J, Kim H R, Rahmatallah Y, et al. RNA-seq revealsdifferentially expressed genes in rice (Oryza sativa) roots duringinteractions with plant-growth promoting bacteria, Azospirillumbrasilense[J]. PLoS ONE, 2019, 14(5): e0217309.
[ 24 ]Padukkage D, Geekiyanage S, Reparaz J M, et al. Bradyrhizobiumjaponicum, B. elkanii and B. diazoefficiens interact with rice (Oryzasativa), promote growth and increase yield[J]. Current Microbiology,2021, 78: 417-428.
[ 25 ]Paul K, Saha C, Nag M, et al. A tripartite interaction among thebasidiomycete Rhodotorula mucilaginosa, N2-fixing endobacteria,and rice improves plant nitrogen nutrition[J]. The Plant Cell, 2020,32(2): 486?507.
[ 26 ]Shinjo R, Tanaka A, Sugiura D, et al. Comprehensive analysis ofthe mechanisms underlying enhanced growth and root N acquisitionin rice by the endophytic diazotroph, Burkholderia vietnamiensisRS1[J]. Plant and Soil, 2020, 450: 537?555.
[ 27 ]Leite M F, Dimitrov M R, Freitas-Iório R P, et al. Rearranging thesugarcane holobiont via plant growth-promoting bacteria andnitrogen input[J]. Science of the Total Environment, 2021, 800:149493.
[ 28 ]Guo D J, Li D P, Singh R K, et al. Comparative transcriptomeanalysis of two sugarcane varieties in response to diazotrophic plantgrowth promoting endophyte Enterobacter roggenkampii ED5[J].Journal of Plant Interactions, 2022, 17(1): 75?84.
[ 29 ]Qin Y, Khan Q, Yan J W, et al. Molecular mechanism of endophyticbacteria DX120E regulating polyamine metabolism and promoting plant growth in sugarcane[J]. Frontiers in Plant Science, 2024, 15:1334907.
[ 30 ]Song J, Yang J, Jeong B R. Root GS and NADH-GDH playimportant roles in enhancing the ammonium tolerance in threebedding plants[J]. International Journal of Molecular Sciences,2022, 23(3): 1061.
[ 31 ]Guo D J, Li D P, Yang B, et al. Effect of endophytic diazotrophEnterobacter roggenkampii ED5 on nitrogen-metabolism-relatedmicroecology in the sugarcane rhizosphere at different nitrogenlevels[J]. Frontiers in Microbiology, 2023, 14: 1132016.
[ 32 ]Guo D J, Singh P, Yang B, et al. Complete genome analysis ofsugarcane root associated endophytic diazotroph Pseudomonasaeruginosa DJ06 revealing versatile molecular mechanism involvedin sugarcane development[J]. Frontiers in Microbiology, 2023, 14:1096754.
[ 33 ]Abadi V, Sepehri M, Rahmani H A, et al. Diversity and abundanceof culturable nitrogen-fixing bacteria in the phyllosphere of maize[J]. Journal of Applied Microbiology, 2021, 131(2): 898?912.
[ 34 ]Maulina N M I, Suprapta D N, Temaja I G R M, et al. Rhizobacteriaof Bali with obvious growth-promoting properties on corn (Zeamays L.)[J]. Frontiers in Sustainable Food Systems, 2022, 6:899736.
[ 35 ]Gao J L, Sun P, Sun X H, et al. Caulobacter zeae sp. nov. andCaulobacter radicis sp. nov., novel endophytic bacteria isolated frommaize root (Zea mays L.)[J]. Systematic and Applied Microbiology,2018, 41(6): 604?610.
[ 36 ]Da Fonseca Breda F A, Da Silva T F R, Dos Santos S G, et al.Modulation of nitrogen metabolism of maize plants inoculated withAzospirillum brasilense and Herbaspirillum seropedicae[J]. Archivesof Microbiology, 2019, 201(4): 547?558.
[ 37 ]Pankievicz V C, Irving T B, Maia L G, Ané J M. Are we there yet?The long walk towards the development of efficient symbioticassociations between nitrogen-fixing bacteria and non-leguminouscrops[J]. BMC Biology, 2019, 17(1): 99.
[ 38 ]Sheoran S, Kumar S, Kumar P, et al. Nitrogen fixation in maize:breeding opportunities[J]. Theoretical and Applied Genetics, 2021,134(5): 1263?1280.
[ 39 ]Waller S, Wilder S L, Schueller M J, et al. Examining the effects ofthe nitrogen environment on growth and N2-fixation of endophyticHerbaspirillum seropedicae in maize seedlings by applying 11Cradiotracing[J]. Microorganisms, 2021, 9(8): 1582.
[ 40 ]Pal G, Kumar K, Verma A, Verma S K. Seed inhabiting bacterialendophytes of maize promote seedling establishment and provideprotection against fungal disease[J]. Microbiological Research,2022, 255: 126926.
[ 41 ]Kelvin-Asogwa L, Ogbo F C. Characterization and plant growthpromoting properties of a Bacillus sp. isolated from maize roots[J].Journal of Advances in Microbiology, 2021, 21(9): 12?24.
[ 42 ]Harahap R T, Azizah I R, Setiawati M R, et al. Enhancing uplandrice growth and yield with indigenous plant growth-promotingrhizobacteria (PGPR) isolate at N-fertilizers dosage[J]. Agriculture,2023, 13(10): 1987.
[ 43 ]Li Y B, Li Q, Chen S F. Diazotroph Paenibacillus triticisoli BJ-18drives the variation in bacterial, diazotrophic and fungal communities in the rhizosphere and root/shoot endosphere of maize[J]. InternationalJournal of Molecular Sciences, 2021, 22(3): 1460.
[ 44 ]Deng C, Zhang N, Liang X L, et al. Bacillus aryabhattai LADimpacts rhizosphere bacterial community structure and promotesmaize plant growth[J]. Journal of the Science of Food and Agriculture,2022, 102(14): 6650-6657.
[ 45 ]Dumigan C R, Muileboom J, Gregory J, et al. Ancient relativesof modern maize from the center of maize domestication anddiversification host endophytic bacteria that confer tolerance tonitrogen starvation[J]. Frontiers in Plant Science, 2021, 12: 660673.
[ 46 ]Rios-Galicia B, Villagómez-Garfias C, De La Vega-Camarillo E, etal. The Mexican giant maize of Jala landrace harbour plant-growthpromotingrhizospheric and endophytic bacteria[J]. 3 Biotech, 2021,11(10): 447.
[ 47 ]Díaz M, Bach T, González Anta G, et al. Agronomic efficiency andgenome mining analysis of the wheat-biostimulant rhizosphericbacterium Pseudomonas pergaminensis sp. nov. strain 1008T[J].Frontiers in Plant Science, 2022, 13: 894985.
[ 48 ]Okamoto T, Shinjo R, Nishihara A, et al. Genotypic variation ofendophytic nitrogen-fixing activity and bacterial flora in rice stembased on sugar content[J]. Frontiers in Plant Science, 2021, 12:719259.
[ 49 ]Wang H, Jin H Y, Chen Z, et al. Azospirillum isscasi sp. nov., abacterium isolated from rhizosphere soil of rice[J]. InternationalJournal of Systematic and Evolutionary Microbiology, 2024, 74(1):006218.
[ 50 ]Xie C J, Tang R, Yang S, et al. A novel nitrogen-fixing bacterium,Propionivibrio soli sp. nov. isolated from paddy soil[J]. Archives ofMicrobiology, 2023, 205(2): 68.
[ 51 ]álvarez C, Navarro J A, Molina-Heredia F P, Mariscal V. Endophyticcolonization of rice (Oryza sativa L.) by the symbiotic strain Nostocpunctiforme PCC 73102[J]. Molecular Plant-Microbe Interactions,2020, 33(8): 1040?1045.
[ 52 ]Yang S, Tang R, Han S, et al. Fundidesulfovibrio agrisoli sp. nov.,a nitrogen-fixing bacterium isolated from rice field[J]. CurrentMicrobiology, 2023, 80(2): 68.
[ 53 ]Wickramasinghe W, Girija D, Gopal K S, Kesevan S. Multi-phasicnitrogen fixing plant growth promoting rhizobacteria as biofertilizerfor rice cultivation[J]. Research Journal of Agricultural Sciences,2021, 12(2): 399?404.
[ 54 ]Bandeppa S, Phule A S, Barbadikar K M, et al. Draft genomesequence of Paenibacillus sonchi Iirrbnf1, a nitrogen-fixing andplant growth-promoting bacterium isolated from rice rhizosphere[J]. Microbiology Resource Announcements, 2022, 11(5): e00126?22.
[ 55 ]Bianco C, Andreozzi A, Romano S, et al. Endophytes from Africanrice (Oryza glaberrima L.) efficiently colonize Asian rice (Oryzasativa L.) stimulating the activity of its antioxidant enzymes andincreasing the content of nitrogen, carbon, and chlorophyll[J].Microorganisms, 2021, 9(8): 1714.
[ 56 ]Schwab S, Terra L A, Baldani J I. Genomic characterization ofNitrospirillum amazonense strain CBAmC, a nitrogen-fixingbacterium isolated from surface-sterilized sugarcane stems[J].Molecular Genetics and Genomics, 2018, 293(4): 997?1016.
[ 57 ]Adik S R, Kuchekar M T, Pawar B T. Acetobacter diazotrophicus asnitrogen fixing endophytic bacteria in sugarcane collected fromRahuri, Ahemednagar[A]. Shinde L V. Life Science Research andSustainable development[M], Jalna, India: RUT Printer andPublication, 2023.
[ 58 ]Singh R K, Singh P, Li H B, et al. Diversity of nitrogen-fixingrhizobacteria associated with sugarcane: A comprehensive study ofplant-microbe interactions for growth enhancement in Saccharumspp.[J]. BMC Plant Biology, 2020, 20: 220.
[ 59 ]Nong Q, Lin L, Xie J L, et al. Regulation of an endophytic nitrogenfixingbacteria GXS16 promoting drought tolerance in sugarcane[J].BMC Plant Biology, 2023, 23(1): 573.
[ 60 ]Singh R K, Singh P, Li H B, et al. Plant-PGPR interaction study ofplant growth-promoting diazotrophs Kosakonia radicincitans BA1and Stenotrophomonas maltophilia COA2 to enhance growth andstress-related gene expression in Saccharum spp.[J]. Journal of PlantInteractions, 2020, 15(1): 427?445.
[ 61 ]Singh P, Singh R K, Li H B, et al. Diazotrophic bacteria Pantoeadispersa and Enterobacter asburiae promote sugarcane growth byinducing nitrogen uptake and defense-related gene expression[J].Frontiers in Microbiology, 2021, 11: 600417.
[ 62 ]Singh P, Singh R K, Li H B, et al. Nitrogen fixation and phytohormonestimulation of sugarcane plant through plant growth promotingdiazotrophic Pseudomonas[J]. Biotechnology and Genetic EngineeringReviews, 2023: 1?21[2024-04-14]. https://doi.org/10.1080/02648725.2023.2177814.
[ 63 ]Medina-Cordoba L K, Chande A T, Rishishwar L, et al. Genomiccharacterization and computational phenotyping of nitrogen-fixingbacteria isolated from Colombian sugarcane fields[J]. ScientificReports, 2021, 11(1): 9187.
[ 64 ]Chai Y N, Schachtman D P. Root exudates impact plant performanceunder abiotic stress[J]. Trends in Plant Science, 2022, 27(1): 80?91.
[ 65 ]Webster G, Jain V, Davey M R, et al. The flavonoid naringeninstimulates the intercellular colonization of wheat roots by Azorhizobiumcaulinodans[J]. Plant, Cell amp; Environment, 1998, 21(4): 373-383.
[ 66 ]Van Deynze A, Zamora P, Delaux P M, et al. Nitrogen fixation in alandrace of maize is supported by a mucilage-associated diazotrophicmicrobiota[J]. PLoS Biology, 2018, 16(8): e2006352.
[ 67 ]Pang Z Q, Mao X Y, Zhou S Q, et al. Microbiota-mediated nitrogenfixation and microhabitat homeostasis in aerial root-mucilage[J].Microbiome, 2023, 11(1): 85.
[ 68 ]Werker E, Kislev M. Mucilage on the root surface and root hairs ofsorghum: Heterogeneity in structure, manner of production and siteof accumulation[J]. Annals of Botany, 1978, 42(4): 809?816.
[ 69 ]Sinha Roy S, Mittra B, Sharma S, et al. Detection of root mucilageusing an anti-fucose antibody[J]. Annals of Botany, 2002, 89(3):293?299.
[ 70 ]Carter A Y, Ottman M J, Curlango-Rivera G, et al. Drought-tolerantbarley: II. Root tip characteristics in emerging roots[J]. Agronomy,2019, 9(5): 220.
[ 71 ]Venado R E, Wilker J, Pankievicz V, et al. Mucilage produced bysorghum (Sorghum bicolor) aerial roots supports a nitrogen-fixingcommunity[EB/OL]. bioRxiv: 1?35. (2023-08-06)[2024-04-14].https://www.biorxiv.org/content/10.1101/2023.08.05.552127v1.
[ 72 ]Bennett A B, Pankievicz V C S, Ané J-M. A model for nitrogenfixation in cereal crops[J]. Trends in Plant Science, 2020, 25(3):226?235.
[ 73 ]Nag P, Shriti S, Das S. Microbiological strategies for enhancingbiological nitrogen fixation in nonlegumes[J]. Journal of AppliedMicrobiology, 2020, 129(2): 186?198.
[ 74 ]Wang D, Xu A M, Elmerich C, Ma L Z. Biofilm formation enablesfree-living nitrogen-fixing rhizobacteria to fix nitrogen underaerobic conditions[J]. The ISME Journal, 2017, 11(7): 1602?1613.
[ 75 ]Hurek T, Reinhold-Hurek B. Azoarcus sp. strain BH72 as a modelfor nitrogen-fixing grass endophytes[J]. Journal of Biotechnology,2003, 106(2/3): 169?178.
[ 76 ]Cocking E C, Stone P J, Davey M R. Intracellular colonizationof roots of Arabidopsis and crop plants by Gluconacetobacterdiazotrophicus[J]. In Vitro Cellular amp; Developmental Biology -Plant, 2006, 42(1): 74?82.
[ 77 ]Afzal I, Shinwari Z K, Sikandar S, Shahzad S. Plant beneficialendophytic bacteria: Mechanisms, diversity, host range and geneticdeterminants[J]. Microbiological Research, 2019, 221: 36?49.
[ 78 ]James E K, Gyaneshwar P, Mathan N, et al. Infection andcolonization of rice seedlings by the plant growth-promotingbacterium Herbaspirillum seropedicae Z67[J]. Molecular Plant-Microbe Interactions?, 2002, 15(9): 894?906.
[ 79 ]Fouts D E, Tyler H L, DeBoy R T, et al. Complete genomesequence of the N2-fixing broad host range endophyte Klebsiellapneumoniae 342 and virulence predictions verified in mice[J]. PLoSGenetics, 2008, 4(7): e1000141.
[ 80 ]Krause A, Ramakumar A, Bartels D, et al. Complete genome of themutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72[J].Nature Biotechnology, 2006, 24(11): 1384?1390.
[ 81 ]Alquéres S, Meneses C, Rouws L, et al. The bacterial superoxidedismutase and glutathione reductase are crucial for endophyticcolonization of rice roots by Gluconacetobacter diazotrophicusPAL5[J]. Molecular Plant-Microbe Interactions, 2013, 26(8):937?945.
[ 82 ]Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteriain the rhizo- and endosphere of plants: Their role, colonization,mechanisms involved and prospects for utilization[J]. Soil Biologyand Biochemistry, 2010, 42(5): 669?678.
[ 83 ]Bove J M, Garnier M. Phloem-and xylem-restricted plant pathogenicbacteria[J]. Plant Science, 2002, 163(6): 1083?1098.
[ 84 ]Zhu Y G, Peng J J, Chen C, et al. Harnessing biological nitrogenfixation in plant leaves[J]. Trends in Plant Science, 2023, 28(12):1391?1405.
[ 85 ]Knief C, Delmotte N, Chaffron S, et al. Metaproteogenomicanalysis of microbial communities in the phyllosphere andrhizosphere of rice[J]. The ISME Journal, 2012, 6(7): 1378?1390.
[ 86 ]Santoyo G. How plants recruit their microbiome? New insights intobeneficial interactions[J]. Journal of Advanced Research, 2022, 40:45?58.
[ 87 ]Zhalnina K, Louie K B, Hao Z, et al. Dynamic root exudatechemistry and microbial substrate preferences drive patterns inrhizosphere microbial community assembly[J]. Nature Microbiology,2018, 3(4): 470?480.
[ 88 ]Jacoby R P, Chen L, Schwier M, et al. Recent advances in the roleof plant metabolites in shaping the root microbiome[J]. F1000Research, 2020, 9: 151.
[ 89 ]Asadullah, Bano A. Role of bacterial secondary metabolites inmodulating nitrogen-fixation in non-legume plants[A]. MaheshwariD K, Dobhal R, Dheeman S. Nitrogen fixing bacteria: Sustainablegrowth of non-legumes[M]. Singapore: Springer Nature SingaporePte Ltd., 2022.
[ 90 ]Yin Y, Wang Y F, Cui H L, et al. Distinctive structure and assemblyof phyllosphere microbial communities between wild and cultivatedrice[J]. ASM Journals (Microbiology Spectrum), 2023, 11(1): e04371?22.
[ 91 ]Meier M A, Xu G, Lopez-Guerrero M G, et al. Association analysesof host genetics, root-colonizing microbes, and plant phenotypesunder different nitrogen conditions in maize[J]. eLife, 2022, 11:e75790.
[ 92 ]Yu P, He X M, Baer M, et al. Plant flavones enrich rhizosphereOxalobacteraceae to improve maize performance under nitrogendeprivation[J]. Nature Plants, 2021, 7(4): 481?499.
[ 93 ]Zhang L Y, Yuan L, Wen Y C, et al. Maize functional requirementsdrive the selection of rhizobacteria under long-term fertilizationpractices[J]. New Phytologist, 2024, 242(3): 1275?1288.
[ 94 ]Gough C, Galera C, Vasse J, et al. Specific flavonoids promoteintercellular root colonization of Arabidopsis thaliana byAzorhizobium caulinodans ORS571[J]. Molecular Plant-MicrobeInteractions, 1997, 10(5): 560?570.
[ 95 ]Gao J P, Xu P, Wang M X, et al. Nod factor receptor complexphosphorylates GmGEF2 to stimulate ROP signaling duringnodulation[J]. Current Biology, 2021, 31(16): 3538?3550.
[ 96 ]Yu H, Liu X Y, Yang C, et al. Co-symbiosis of arbuscularmycorrhizal fungi (AMF) and diazotrophs promote biologicalnitrogen fixation in mangrove ecosystems[J]. Soil Biology andBiochemistry, 2021, 161: 108382.
[ 97 ]Xiao D, He X Y, Xu Z H, et al. Strong cooperations amongdiazotroph and arbuscular mycorrhizal fungi taxa promote freelivingnitrogen fixation at soil-rock mixing layer[J]. Geoderma,2023, 437: 116600.
[ 98 ]Maillet F, Poinsot V, André O, et al. Fungal lipochitooligosaccharidesymbiotic signals in arbuscular mycorrhiza[J]. Nature, 2011, 469:58?63.
[ 99 ]Sun J H, Miller J B, Granqvist E, et al. Activation of symbiosissignaling by arbuscular mycorrhizal fungi in legumes and rice[J].The Plant Cell, 2015, 27(3): 823?838.
[100]Li X R, Sun J, Albinsky D, et al. Nutrient regulation oflipochitooligosaccharide recognition in plants via NSP1 andNSP2[J]. Nature Communications, 2022, 13(1): 6421.
[101]Lopez-Simon J, Vila-Nistal M, Rosenova A, et al. Viruses under theantarctic ice shelf are active and potentially involved in globalnutrient cycles[J]. Nature Communications, 2023, 14(1): 8295.
[102]Tong D, Wang Y J, Yu H D, et al. Viral lysing can alleviate microbialnutrient limitations and accumulate recalcitrant dissolved organicmatter components in soil[J]. The ISME Journal, 2023, 17(8):1247?1256.
[103] Kolan D, Cattan-Tsaushu E, Enav H, et al. Tradeoffs between phage resistance and nitrogen fixation drive the evolution of genes essentialfor cyanobacterial heterocyst functionality[J]. The ISME Journal,2024, 18(1): wrad008.
[104]Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogencyclingnetwork[J]. Nature Reviews Microbiology, 2018, 16(5):263?276.
[105]Li X, Luo X S, Wang A C, et al. Control factors of soil diazotrophiccommunity assembly and nitrogen fixation rate across easternChina[J]. Geoderma, 2023, 432: 116410.
[106]Norman J S, Friesen M L. Complex N acquisition by soil diazotrophs:How the ability to release exoenzymes affects N fixation by terrestrialfree-living diazotrophs[J]. The ISME Journal, 2017, 11(2): 315?326.
[106]Fan K K, Delgado-Baquerizo M, Guo X S, et al. Suppressed Nfixation and diazotrophs after four decades of fertilization[J].Microbiome, 2019, 7(1): 143.
[107]Chen L, Li K K, Shi W J, et al. Negative impacts of excessivenitrogen fertilization on the abundance and diversity of diazotrophsin black soil under maize monocropping[J]. Geoderma, 2021, 393:114999.
[108]Shi W, Zhao H Y, Chen Y, et al. Organic manure rather thanphosphorus fertilization primarily determined asymbiotic nitrogenfixation rate and the stability of diazotrophic community in anupland red soil[J]. Agriculture, Ecosystems amp; Environment, 2021,319: 107535.
[109]Yu G H, Kuzyakov Y, Luo Y, et al. Molybdenum bioavailabilityand asymbiotic nitrogen fixation in soils are raised by iron(oxyhydr)oxide-mediated free radical production[J]. EnvironmentalScience amp; Technology, 2021, 55(21): 14979?14989.
[110]Zheng M H, Xu M C, Li D J, et al. Negative responses of terrestrialnitrogen fixation to nitrogen addition weaken across increased soilorganic carbon levels[J]. Science of the Total Environment, 2023,877: 162965.
[111]Tang Y Q, Qin D B, Tian Z X, et al. Diurnal switches indiazotrophic lifestyle increase nitrogen contribution to cereals[J].Nature Communications, 2023, 14(1): 7516.
[112]Sun H, Wang E Z, Li X, et al. Potential biomethane production fromcrop residues in China: Contributions to carbon neutrality[J].Renewable and Sustainable Energy Reviews, 2021, 148: 111360.
[113]Zhao X, Li R C, Liu W X, et al. Estimation of crop residueproduction and its contribution to carbon neutrality in China[J].Resources, Conservation and Recycling, 2024, 203: 107450.
[114]Liu J, Qiu T Y, Pe?uelas J, et al. Crop residue return sustains globalsoil ecological stoichiometry balance[J]. Global Change Biology,2023, 29(8): 2203?2226.
[115]Qin J J, Chen N, Scriber II K E, et al. Carbon emissions and primingeffects derived from crop residues and their responses to nitrogeninputs[J]. Global Change Biology, 2024, 30(1): e17115.
[116]Tláskal V, Baldrian P. Deadwood-inhabiting bacteria showadaptations to changing carbon and nitrogen availability duringdecomposition[J]. Frontiers in Microbiology, 2021, 12: 685303.
[117]D′Souza G, Shitut S, Preussger D, et al. Ecology and evolution ofmetabolic cross-feeding interactions in bacteria[J]. Natural ProductReports, 2018, 35(5): 455?488.
[119] Culp E J, Goodman A L. Cross-feeding in the gut microbiome: Ecology and mechanisms[J]. Cell Host amp; Microbe, 2023, 31(4):485?499.
[120]Waterbury J B, Calloway C B, Turner R D. A cellulolytic nitrogenfixingbacterium cultured from the gland of deshayes in shipworms(Bivalvia: Teredinidae)[J]. Science, 1983, 221(4618): 1401?1403.
[121]Pinto-Tomás A A, Anderson M A, Suen G, et al. Symbiotic nitrogenfixation in the fungus gardens of leaf-cutter ants[J]. Science, 2009,326: 1120?1123.
[122]Harindintwali J D, Zhou J L, Habimana I, et al. Biotechnologicalpotential of cellulolytic nitrogen-fixing Klebsiella sp. C-3 isolatedfrom paddy soil[J]. Bioresource Technology Reports, 2021, 13:100624.
[123]Abdel-Rahman M A, Nour El-Din M, Refaat B M, et al.Biotechnological application of thermotolerant cellulosedecomposingbacteria in composting of rice straw[J]. Annals ofAgricultural Sciences, 2016, 61(1): 135?143.
[124]Leschine S B, Canale-Parola E. Carbon cycling by cellulosefermentingnitrogen-fixing bacteria[J]. Advances in Space Research,1989, 9(8): 149?152.
[125]Poehlein A, Funkner K, Schüler M A, Daniel R. First insights intothe genome sequence of the cellulolytic bacterium Clostridiumhungatei DSM 14427[J]. Genome Announcements, 2017, 5(20):00363?17.
[126]Latt Z K, Yu S S, Kyaw E P, et al. Using cellulolytic nitrogen fixingbacterium, Azomonas agilis for effective degradation of agriculturalresidues[J]. The Open Microbiology Journal, 2018, 12: 154?162.
[127]Chou H L, Dai Z, Hsieh C W, Ku M SB. High level expression ofAcidothermus cellulolyticus β-1, 4-endoglucanase in transgenic riceenhances the hydrolysis of its straw by cultured cow gastric fluid[J].Biotechnology for Biofuels, 2011, 4(1): 58.
[128]Harindintwali J D, Zhou J L, Yu X B. Lignocellulosic crop residuecomposting by cellulolytic nitrogen-fixing bacteria: A novel tool forenvironmental sustainability[J]. Science of the Total Environment,2020, 715: 136912.
[129]Harindintwali J D, Wang F, Yang W H, et al. Harnessing the powerof cellulolytic nitrogen-fixing bacteria for biovalorization oflignocellulosic biomass[J]. Industrial Crops and Products, 2022,186: 115235.
[130]Guo L, Wang C, Zheng M M, et al. Fertilization practices affectbiological nitrogen fixation by modulating diazotrophic communitiesin an acidic soil in southern China[J]. Pedosphere, 2023, 33(2): 301?311.
[131]Yang L, Bai J S, Zeng N H, et al. Diazotroph abundance andcommunity structure are reshaped by straw return and mineralfertilizer in rice-rice-green manure rotation[J]. Applied SoilEcology, 2019, 136: 11?20.
[132]Yang H J, Ma J X, Rong Z Y, et al. Wheat straw return influencesnitrogen-cycling and pathogen associated soil microbiota in awheat-soybean rotation system[J]. Frontiers in Microbiology, 2019,10: 1811.
[133]Chen S H, Xiang X L, Ma H, et al. Straw mulching and nitrogenfertilization affect diazotroph communities in wheat rhizosphere[J].Frontiers in Microbiology, 2021, 12: 658668.
[134][134] Dar S A, Bhat R A, Dervash M A, et al. Azotobacter as biofertilizer for sustainable soil and plant health under saline environmentalconditions[A]. Hakeem K R , Dar G H, Mehmood M A, Bhat R A.
[135]Microbiota and biofertilizers: A sustainable continuum for plant andsoil health[M]. Cham: Springer International Publishing, 2021.Guan Y P, Wu M K, Che S H, et al. Effects of continuous strawreturning on soil functional microorganisms and microbialcommunities[J]. Journal of Microbiology, 2023, 61(1): 49?62.
[136]Tang H M, Li C, Shi L H, et al. Effect of different long-termfertilizer managements on soil nitrogen fixing bacteria communityin a double-cropping rice paddy field of southern China[J]. PLoSONE, 2021, 16(9): e0256754.
[137]Yu L H, Zhang Y F, Wang Y F, et al. Effects of slow-releasenitrogen and urea combined application on soil physicochemicalproperties and fungal community under total straw returningcondition[J]. Environmental Research, 2024, 252: 118758.
[138]Fan H S, Jia S Q, Yu M, et al. Long-term straw return increasesbiological nitrogen fixation by increasing soil organic carbon anddecreasing available nitrogen in rice-rape rotation[J]. Plant and Soil,2022, 479(1/2): 267?279.
[139]He C, Li K K, Li J K, et al. Rice straw increases microbial nitrogenfixation, bacterial and nifH genes abundance with the change of landuse types[J]. Frontiers in Microbiology, 2024, 14: 1283675.
[140]Li P F, Zhang A F, Huang S W, et al. Optimizing managementpractices under straw regimes for global sustainable agriculturalproduction[J]. Agronomy, 2023, 13(3): 710.
[141]Liao H L, Li Y Y, Yao H Y. Fertilization with inorganic and organicnutrients changes diazotroph community composition and Nfixationrates[J]. Journal of Soils and Sediments, 2018, 18(3):1076?1086.
[142]Ma J, Bei Q C, Wang X J, et al. Impacts of Mo application onbiological nitrogen fixation and diazotrophic communities in aflooded rice-soil system[J]. Science of the Total Environment, 2019,649: 686?694.
[143]Liu J, Zhong Y Q W, Jia X Y, et al. Wheat straw decompositionpatterns and control factors under nitrogen fertilization[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(4): 3110?3121.
[144]Liu J, Fang L C, Qiu T Y, et al. Crop residue return achievesenvironmental mitigation and enhances grain yield: A global metaanalysis[J]. Agronomy for Sustainable Development, 2023, 43(6):78.
[145]Zhang Y H, Hu T L, Wang H, et al. Nitrogen content and C/N ratioin straw are the key to affect biological nitrogen fixation in a paddyfield[J]. Plant and Soil, 2022, 481(1/2): 535?546.
[146]Chen Q L, Hu H W, He Z Y, et al. Potential of indigenous cropmicrobiomes for sustainable agriculture[J]. Nature Food, 2021, 2(4):233?240.
[147]Jansson J K, McClure R, Egbert R G. Soil microbiome engineeringfor sustainability in a changing environment[J]. Nature Biotechnology,2023, 41(12): 1716?1728.
[148]Shahab R L, Brethauer S, Davey M P, et al. A heterogeneousmicrobial consortium producing short-chain fatty acids fromlignocellulose[J]. Science, 2020, 369: eabb1214.
[149]Kaminsky L M, Trexler R V, Malik R J, et al. The inherent conflictsin developing soil microbial inoculants[J]. Trends in Biotechnology,2019, 37(2): 140?151.
[150]Liu H W, Qiu Z G, Ye J, et al. Effective colonisation by a bacterialsynthetic community promotes plant growth and alters soilmicrobial community[J]. Journal of Sustainable Agriculture andEnvironment, 2022, 1: 30?42.
[151]Jiang M T, Delgado-Baquerizo M, Yuan M M, et al. Home-basedmicrobial solution to boost crop growth in low-fertility soil[J]. NewPhytologist, 2023, 239(2): 752?765.
[152]Zhao S C, Wang H R, Wang J H. Synthesis and application of acompound microbial inoculant for effective soil remediation[J].Environmental Science and Pollution Research, 2023, 30(57):120915?120929.
[153]Wang X, Teng Y, Wang X M, et al. Nitrogen transfer and crossfeedingbetween Azotobacter chroococcum and Paracoccusaminovorans promotes pyrene degradation[J]. The ISME Journal,2023, 17(12): 2169?2181.
作者簡介:
艾 超,博士,博士生導師,研究員。中國農(nóng)業(yè)科學院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所植物營養(yǎng)研究室主任,國家優(yōu)秀青年科學基金獲得者。農(nóng)業(yè)農(nóng)村部植物營養(yǎng)與肥料重點實驗室副主任,中國植物營養(yǎng)與肥料學會養(yǎng)分循環(huán)專業(yè)委員會主任。入選國家神農(nóng)青年英才、農(nóng)業(yè)科研杰出人才、中國農(nóng)業(yè)科學院創(chuàng)新型領軍人才。主要從事土壤養(yǎng)分循環(huán)與培肥研究,主持國家重點研發(fā)計劃青年科學家項目、國家農(nóng)業(yè)重大科技項目課題、國家自然科學基金等10 余項,在Nature Communications、New Phytologist、Soil Biology amp; Biochemistry 等期刊發(fā)表論文20 余篇,以主要完成人獲省部級獎2 項、國家科技進步二等獎1 項(排名第3)。
基金項目:國家自然科學基金優(yōu)秀青年科學基金項目(32322076);國家自然科學基金面上項目(32272817);國家重點研發(fā)計劃青年科學家項目(2022YFD1900900);農(nóng)田智慧施肥項目(20221805);中國農(nóng)業(yè)科學院科技創(chuàng)新工程(CAAS-CSAL202401,CAASZDRW202308)。