• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一類具有季節(jié)交替的n維Gilpin-Ayala競(jìng)爭(zhēng)模型的動(dòng)力學(xué)

      2024-05-29 20:24:43陳梅香謝溪莊

      陳梅香 謝溪莊

      摘要:研究一類具有季節(jié)交替的n維Gilpin-Ayala競(jìng)爭(zhēng)模型。利用單調(diào)動(dòng)力系統(tǒng)的理論,當(dāng)n=1時(shí),系統(tǒng)存在著閾值動(dòng)力學(xué)。根據(jù)離散競(jìng)爭(zhēng)映射的負(fù)載單形理論,證得n維系統(tǒng)存在一個(gè)(n-1)維的負(fù)載單形。結(jié)果表明:(n-1)維的負(fù)載單形吸引了系統(tǒng)在Rn+中的所有非平凡軌道。

      關(guān)鍵詞:季節(jié)交替;Gilpin-Ayala競(jìng)爭(zhēng)模型;周期解;龐加萊映射;負(fù)載單形

      中圖分類號(hào):O 175.13文獻(xiàn)標(biāo)志碼:A

      文章編號(hào):1000-5013(2024)03-0417-06

      Dynamics of A n-Dimensional Gilpin-Ayala Competition Model With Seasonal Succession

      CHEN Meixiang,XIE Xizhuang

      (School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)

      Abstract:A type of n dimensional Gilpin-Ayala competition models with seasonal succession are studied. Using the theory of monotonic dynamical systems,when n=1,the system has threshold dynamics. Using the theory of carrying simplex of discrete competitive mappings,the existence of a (n-1) dimensional carrying simplex in the n dimensional system is proved. The result shows that (n-1) dimensional carrying simplex attracts all nontrivial orbits in Rn+of the system.

      Keywords:seasonal succession;Gilpin-Ayala competition model;periodic solution;Poincaré mapping;carrying simplex

      1 預(yù)備知識(shí)

      季節(jié)性更替是自然界的普遍現(xiàn)象,深深影響著種群的生存與增長(zhǎng),群落的結(jié)構(gòu)和組成[1]。當(dāng)氣溫、降水量、氣壓、濕度和季風(fēng)隨著季節(jié)的更替而變化時(shí),種群和群落處于一個(gè)周期性波動(dòng)的外部環(huán)境中[2-3]。Sommer等[4]利用季節(jié)交替模型研究種群動(dòng)力學(xué)[5-7]。在經(jīng)典的n種群Gilpin-Ayala競(jìng)爭(zhēng)模型[8-9]的基礎(chǔ)上,利用文獻(xiàn)[2,5]中的建模方法,構(gòu)造具有季節(jié)交替的n種群Gilpin-Ayala競(jìng)爭(zhēng)模型,即

      2 基本定義和引理

      3 負(fù)載單形的存在性及其證明

      4 結(jié)論

      1)當(dāng)n=1時(shí),系統(tǒng)(1)存在閾值動(dòng)力學(xué),即當(dāng)rφ-λ(1-φ)≤0時(shí),不管種群的初始數(shù)量處于什么水平,種群都將走向滅絕;當(dāng)rφ-λ(1-φ)>0時(shí),系統(tǒng)(1)存在唯一的正周期解,使種群的初始數(shù)量為非零值時(shí),最終都將收斂到這個(gè)正周期解。

      2)當(dāng)n≥2時(shí),系統(tǒng)(1)必將存在一個(gè)(n-1)維的有界不變閉曲面(負(fù)載單形),其吸引了系統(tǒng)(1)的所有非平凡軌道。

      參考文獻(xiàn):

      [1]WHITE E R,HASTINGS A.Seasonality in ecology: Progress and prospects in theory [J].Ecological Complexity,2020,44:100867.DOI:10.1016/j.ecocom.2020.100867.

      [2]KLAUSMEIER C A.Successional state dynamics: A novel approach to modeling nonequilibrium foodweb dynamics[J].Journal of Theoretical Biology,2010,262:584-595.DOI:10.1016/j.jtbi.2009.10.018.

      [3]KREMER C T,KLAUSMEIER C A.Coexistence in a variable environment: Eco-evolutionary perspectives[J].Journal of Theoretical Biology,2013,339:14-25.DOI:10.1016/j.jtbi.2013.05.005.

      [4]SOMMER U,GLIWICZ Z M,LAMPERT W,et al.The PEG-model of seasonal succession of planktonic events in fresh waters[J].Archiv für Hydrobiologie,1986,106:433-471.

      [5]HSU S B,ZHAO Xiaoqiang.A Lotka-Volterra competition model with seasonal succession[J].Journal of Mathematical Biology,2012,64:109-130.DOI:10.1007/s00285-011-0408-6.

      [6]FENG Xiaomei,LIU Yunfeng,RUAN Shigui,et al.Periodic dynamics of a single species model with seasonal Michaelis-Menten type harvesting[J].Journal of Differential Equations,2023,354:237-263.DOI:10.1016/j.jde.2023.01.014.

      [7]PU Liqiong,LIN Zhigui,LOU Yuan.A west nile virus nonlocal model with free boundaries and seasonal succession[J].Journal of Mathematical Biology,2023,86:25.DOI:10.1007/s00285-022-01860-x.

      [8]GILPIN M,AYALA F.Global models of growth and competition[J].Proceeding of the National Academy of Sciences of the United States of America,1973,70:3590-3593.DOI:10.1073/pnas.70.12.3590.

      [9]GILPIN M,AYALA F.Schoener′s model and drosophila competition[J].Theoretical Population Biology,1976,9(1):12-14.DOI:10.1016/0040-5809(76)90031-9.

      [10]GOH B S,AGNEW T T.Stability in Gilpin and Ayala′s models of competition[J].Journal of Mathematical Biology,1977,4:275-279.DOI:10.1007/BF00280977.

      [11]WANG Yi,JIANG Jifa.Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems[J].Journal of Differential Equations,2002,186:611-632.DOI:10.1016/S0022-0396(02)00025-6.

      [12]ZHAO Xiaoqiang.Dynamical systems in population biology[M].2nd.New York:Springer,2017.DOI:10.1007/978-3-319-56433-3.

      [13]DIEKMANN O,WANG Yi,YAN Ping.Carrying simplices in discrete competitive systems and age-structured semelparous populations[J].Discrete and Continuous Dynamical Systems,2008,20:37-52.DOI:10.3934/dcds.2008.20.37.

      [14]NIU Lin,WANG Yi,XIE Xizhuang.Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications[J].Discrete and Continuous Dynamical Systems-Series B,2021,26(4):2161-2172.DOI:10.3934/dcdsb.2021014.

      [15]SMITH H L.Periodic solutions of periodic competitive and cooperative systems[J].SIAM Journal on Mathematical Analysis,1986,17:1289-1318.DOI:10.1137/0517091.

      [16]JIANG Jifa,MIERCZYSKI J,WANG Yi.Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding[J].Journal of Differential Equations,2009,246:1623-1672.DOI:10.1016/j.jde.2008.10.008.

      (責(zé)任編輯:陳志賢 ?英文審校:黃心中)

      普安县| 枣庄市| 安吉县| 崇左市| 宜阳县| 鄄城县| 通河县| 肇东市| 诸城市| 许昌县| 文登市| 阿坝| 定州市| 吉隆县| 万宁市| 施甸县| 峨眉山市| 内江市| 周至县| 北宁市| 迁西县| 兴义市| 天津市| 石台县| 东丰县| 从江县| 监利县| 和政县| 平陆县| 凤庆县| 藁城市| 天全县| 饶阳县| 宿州市| 惠来县| 浙江省| 旌德县| 内乡县| 庆安县| 嘉善县| 沙洋县|