路澤群 劉寧 張紅蓮 王苑 黃火清
摘要:工業(yè)、農(nóng)業(yè)和醫(yī)藥等領(lǐng)域常用的活性蛋白和工業(yè)酶大多數(shù)通過異源表達(dá)系統(tǒng)獲得。畢赤酵母(Pichiapastoris)是優(yōu)秀的外源蛋白表達(dá)宿主之一,以畢赤酵母為宿主的表達(dá)系統(tǒng)具有遺傳穩(wěn)定性好、翻譯后修飾、蛋白表達(dá)和分泌水平高及生產(chǎn)成本低等優(yōu)點(diǎn),但在高效表達(dá)過程中外源蛋白過量聚集會(huì)導(dǎo)致目標(biāo)蛋白不能正確折疊和有效分泌,從而影響蛋白表達(dá)水平。概述了通過信號(hào)肽優(yōu)化、分子伴侶優(yōu)化以及融合蛋白表達(dá)等分泌及折疊途徑的改良,從而促進(jìn)外源蛋白高效表達(dá)的研究進(jìn)展。
關(guān)鍵詞:畢赤酵母;分泌折疊途徑;分泌信號(hào)肽;分子伴侶;融合表達(dá)
doi:10.13304/j.nykjdb.2023.0160
中圖分類號(hào):S182;TQ920.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):10080864(2024)01001810
目前,在工業(yè)、農(nóng)業(yè)和醫(yī)學(xué)等領(lǐng)域所需要的活性蛋白大多通過外源蛋白表達(dá)系統(tǒng)獲得。常用的外源蛋白表達(dá)系統(tǒng)包括微生物表達(dá)系統(tǒng)、植物細(xì)胞表達(dá)系統(tǒng)、昆蟲細(xì)胞表達(dá)系統(tǒng)及哺乳動(dòng)物細(xì)胞表達(dá)系統(tǒng)。微生物表達(dá)系統(tǒng)主要包括大腸桿菌表達(dá)系統(tǒng)、芽孢桿菌表達(dá)系統(tǒng)、酵母表達(dá)系統(tǒng)以及絲狀真菌表達(dá)系統(tǒng)。相較于其他表達(dá)系統(tǒng),微生物表達(dá)系統(tǒng)具有遺傳操作便捷、生產(chǎn)周期短、培養(yǎng)基營養(yǎng)需求簡(jiǎn)單、蛋白表達(dá)水平高等優(yōu)點(diǎn)[1]。其中,畢赤酵母(Pichia pastoris)表達(dá)系統(tǒng)還具有蛋白質(zhì)分泌表達(dá)和蛋白翻譯后修飾等優(yōu)點(diǎn)[2],使其在外源蛋白的表達(dá)中備受青睞。
影響外源蛋白在畢赤酵母中高效表達(dá)的因素較多,常見的包括外源基因的轉(zhuǎn)錄水平、分泌信號(hào)肽(signal peptide,SP)的選擇、外源蛋白的折疊和外源蛋白的穩(wěn)定性。目前,針對(duì)外源基因轉(zhuǎn)錄水平的優(yōu)化研究較多,可以通過優(yōu)化外源基因密碼子[3]、增加基因拷貝數(shù)和選擇啟動(dòng)子來改善[4];而針對(duì)外源蛋白分泌及折疊途徑的改良相對(duì)較少。畢赤酵母細(xì)胞外源蛋白分泌是被廣泛報(bào)道的“內(nèi)質(zhì)網(wǎng)-高爾基體”蛋白分泌途徑,此途徑中新生肽鏈構(gòu)象的維持和轉(zhuǎn)運(yùn)、蛋白的正確折疊和修飾是蛋白合成分泌的關(guān)鍵[56],可以優(yōu)化改良表達(dá)載體及宿主來提高外源蛋白的表達(dá)。哺乳動(dòng)物真核表達(dá)系統(tǒng)成本過高,原核表達(dá)系統(tǒng)沒有翻譯后修飾,近年來畢赤酵母表達(dá)系統(tǒng)因具有遺傳穩(wěn)定性好、翻譯后修飾、蛋白表達(dá)和分泌水平高及生產(chǎn)成本低等優(yōu)點(diǎn),受到越來越多的關(guān)注。但該系統(tǒng)仍面臨很多蛋白難以在其中高效表達(dá)的困境,其主要原因是在高效表達(dá)過程中外源蛋白過量聚集導(dǎo)致目標(biāo)蛋白不能正確折疊和有效分泌,從而影響蛋白表達(dá)水平。研究者在改良蛋白質(zhì)分泌和折疊途徑方面已做了很多嘗試,已經(jīng)通過改良實(shí)現(xiàn)了大量難以表達(dá)的外源蛋白的高效表達(dá)。本文綜述了近年來畢赤酵母外源蛋白分泌及折疊途徑的改良進(jìn)展,概述了包括分泌信號(hào)肽、分子伴侶以及融合表達(dá)在內(nèi)的分泌和折疊途徑優(yōu)化以提高畢赤酵母外源蛋白表達(dá)的研究進(jìn)展,為在畢赤酵母表達(dá)系統(tǒng)中實(shí)現(xiàn)更多外源蛋白的高效表達(dá)提供新的思路。
1 分泌信號(hào)肽優(yōu)化
畢赤酵母自身分泌蛋白較少,外源蛋白分泌表達(dá)后易于純化,其中分泌信號(hào)肽的選擇和優(yōu)化對(duì)于外源蛋白高效分泌到胞外至關(guān)重要(后續(xù)介紹的信號(hào)肽均為分泌信號(hào)肽)。在信號(hào)肽的選擇中,首先需要關(guān)注外源蛋白的特性,部分蛋白可以在自身信號(hào)肽的引導(dǎo)下完成分泌表達(dá),這些蛋白可以選擇用自身的信號(hào)肽,而大部分蛋白需要外源分泌信號(hào)肽實(shí)現(xiàn)分泌表達(dá)。在畢赤酵母中表達(dá)時(shí),外源蛋白可以利用信號(hào)肽分析軟件分析其自身信號(hào)肽序列,大多數(shù)蛋白需要去除其自身分泌信號(hào)肽,使用畢赤酵母系統(tǒng)中常用的高效分泌信號(hào)肽[7-9]。畢赤酵母系統(tǒng)中使用的大多數(shù)信號(hào)肽是由18~30個(gè)氨基酸殘基組成的肽段,一般將序列加在外源蛋白的N端。如果存在前導(dǎo)肽,會(huì)在其后帶上畢赤酵母內(nèi)源蛋白酶酶切位點(diǎn),以便在外源蛋白成熟并被引導(dǎo)到囊泡的過程中被切除分離,而外源蛋白通過胞吐分泌至胞外[1011]。目前,畢赤酵母表達(dá)系統(tǒng)中常用的信號(hào)肽有釀酒酵母來源的α交配因子(α-mating factor,α-MF)信號(hào)肽、糖化酶信號(hào)肽STA1和蔗糖酶(sucrase 2,SUC2)信號(hào)肽,畢赤酵母本身的酸性磷酸酶(phosphatase1,PHO1;phosphatase5,PHO5)信號(hào)肽和絮凝因子(flocculation protein 10,F(xiàn)LO10)信號(hào)肽等[12]。近年來,越來越多的研究者嘗試對(duì)現(xiàn)有信號(hào)肽進(jìn)行改良和優(yōu)化[13],或發(fā)掘新的信號(hào)肽[14]。Ito 等[15] 對(duì)α-MF信號(hào)肽的20個(gè)單氨基酸進(jìn)行替換以探究其對(duì)外源蛋白分泌的影響,結(jié)果表明,α-MF信號(hào)肽中的8 個(gè)單氨基酸突變(V50A、V38A、G40D、L42S、L63S、L64S、F65S和I66T)與野生型α-MF信號(hào)肽相比,抗溶菌酶單鏈抗體的分泌水平顯著增加(超過5倍)。Duan等[16]根據(jù)已報(bào)道的畢赤酵母的分泌組和基因組預(yù)測(cè)了4個(gè)畢赤酵母內(nèi)源性信號(hào)肽(Dan4、Gas1、Msb2和Fre2),通過對(duì)3個(gè)蛋白的表達(dá)驗(yàn)證發(fā)現(xiàn),4個(gè)內(nèi)源信號(hào)肽序列的活性均高于釀酒酵母α-MF信號(hào)肽,其中Msb2信號(hào)肽提高了所有蛋白分泌表達(dá)水平(1.5~8.0倍),而Dan4對(duì)測(cè)試蛋白分泌表達(dá)水平的提升不如Msb2,但有效地增加了所有測(cè)試蛋白的總產(chǎn)量(胞內(nèi)加胞外)。信號(hào)肽的選擇和優(yōu)化對(duì)外源蛋白在畢赤酵母中表達(dá)的影響見表1。
2 分子伴侶選擇和優(yōu)化
新生成的蛋白質(zhì)肽鏈主要在內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)進(jìn)行加工和折疊,如果外源蛋白生成過快過多,遠(yuǎn)超過ER本身輔助折疊的能力,會(huì)導(dǎo)致大量蛋白錯(cuò)誤折疊或未折疊,這些錯(cuò)誤折疊或未折疊的蛋白大量聚集,會(huì)對(duì)細(xì)胞造成壓力并觸發(fā)未折疊蛋白反應(yīng)(unfoldedprotein response,UPR)[23]。分子伴侶是一類能協(xié)助細(xì)胞內(nèi)分子組裝及蛋白質(zhì)折疊的蛋白質(zhì),但其本身不成為最后功能結(jié)構(gòu)中的組分。上調(diào)表達(dá)分子伴侶中的促折疊酶可以促進(jìn)蛋白質(zhì)正確折疊,降低ER中錯(cuò)誤折疊蛋白質(zhì)的水平,從而消除UPR 壓力[24]。不能正確折疊的蛋白質(zhì)最終會(huì)通過ER相關(guān)降解(endoplasmic reticulum-associated degradation,ERAD)途徑降解。另外,當(dāng)錯(cuò)誤折疊或未折疊的蛋白質(zhì)超過ER折疊能力時(shí),也會(huì)出現(xiàn)反饋抑制促折疊蛋白的活性,增強(qiáng)ERAD途徑,緩解系統(tǒng)的壓力,過多蛋白質(zhì)被ERAD途徑降解會(huì)直接影響外源蛋白的表達(dá)水平[2526]。當(dāng)外源基因在畢赤酵母內(nèi)轉(zhuǎn)錄水平超過畢赤酵母本身的折疊能力時(shí),過表達(dá)促折疊分子伴侶能很好地促進(jìn)外源蛋白質(zhì)的正確折疊,減少UPR壓力,從而提高外源蛋白表達(dá)水平。Wang等[27]首先嘗試增加基因拷貝數(shù)來提高殼聚糖酶的產(chǎn)量,發(fā)現(xiàn)在含4個(gè)殼聚糖酶基因時(shí)殼聚糖酶酶活性最高,繼續(xù)增加基因拷貝數(shù),酶活性反而降低,隨后在含4個(gè)殼聚糖酶基因菌株中過表達(dá)組合分子伴侶Pdi/Ero1、Ssa4/Sse1 和Ydj1/Sso2,酶活性分別提高61%、31%、42%,最后構(gòu)建了同時(shí)過表達(dá)6個(gè)分子伴侶的菌株,并在此基礎(chǔ)上繼續(xù)增加基因拷貝數(shù)來提高酶活性,使酶活性提高了約7倍。這就為優(yōu)化外源基因在畢赤酵母中的高效表達(dá)提供了一種策略,通過過表達(dá)分子伴侶或其調(diào)節(jié)蛋白,提高外源蛋白質(zhì)的折疊,降低ER的壓力,從而促進(jìn)外源蛋白的表達(dá)。
目前,在畢赤酵母系統(tǒng)中能促進(jìn)外源蛋白表達(dá)水平的分子伴侶或調(diào)節(jié)蛋白主要有調(diào)節(jié)蛋白(Hac1)、二硫化物異構(gòu)酶(protein disulfideisomerase,Pdi)、氧化還原酶1(endoplasmicreticulum oxidoreductin 1,Ero1)和重鏈結(jié)合蛋白(heavy-chain binding protein,Bip)等。其中,Hac1是能激活分子伴侶基因表達(dá)的轉(zhuǎn)錄因子,通過調(diào)節(jié)Hac1能間接增加伴侶蛋白表達(dá),從而促進(jìn)外源蛋白質(zhì)的折疊和分泌[28]。Liu等[29]構(gòu)建篩選獲得了過表達(dá)Hac1 的菌株,發(fā)現(xiàn)利用該菌株作為宿主菌,能使人源溶菌酶的產(chǎn)量提高約20%,達(dá)到目前搖瓶發(fā)酵中的最高水平。Bip屬于熱休克蛋白70(heat shock proteins 70,HSP70)家族,主要功能是促進(jìn)目的蛋白和其他分子伴侶結(jié)合[3031],Sallada等[32]通過在畢赤酵母中過表達(dá)Bip 使生物表面活性劑HFBI的表達(dá)量增加了大約20倍。Ero1能調(diào)節(jié)Pdi 的活性,而Pdi 主要催化二硫鍵形成[33]。Wang等[34]過表達(dá)Pdi,杜邦嗜熱菌來源的脂肪酶表達(dá)量提高了1.46倍;Huang等[35]研究發(fā)現(xiàn),過表達(dá)Pdi 使脂肪酶產(chǎn)量提高1 倍;Shen 等[36]通過過表達(dá)Ero1 提高了腈化酶的表達(dá)水平。研究表明,過表達(dá)與蛋白質(zhì)折疊相關(guān)的分子伴侶可以提高重組蛋白在畢赤酵母中的表達(dá)水平或蛋白活性(表2),但分子伴侶的選擇由目的蛋白的性質(zhì)決定。
分子伴侶中最大的一類是熱休克蛋白(heatshock proteins,HSP)家族,根據(jù)其分子量大小,大致將熱休克蛋白分為HSP90、HSP70、HSP60、HSP40 和小分子熱休克蛋白(small heat shockproteins,sHSP)。熱休克蛋白發(fā)揮功能需要具有其他功能(結(jié)合目的蛋白、運(yùn)輸目的蛋白)的分子伴侶,各個(gè)家族之間共同協(xié)作蛋白質(zhì)的折疊與運(yùn)輸[42]。畢赤酵母源的Ssa1和釀酒酵母源Sis1伴侶蛋白屬于HSP40家族,能幫助新生肽鏈維持正確構(gòu)象 [43]。Deng等[44]在畢赤酵母中過表達(dá)了Ssa1-Sis1 組合伴侶,顯著提高了可溶性豬生長激素(pGH)蛋白的產(chǎn)量,達(dá)到70 mg·L-1。Ydi1p(HSP40家族)和Sec63(輔助分子伴侶)均是分泌蛋白在跨膜易位過程中的關(guān)鍵伴侶蛋白[4546]。
Zhang等[47]過表達(dá)了Ydj1p和Sec63的組合伴侶,使重組激素蛋白G-CSF的產(chǎn)量提高了7.6倍。上述研究表明,HSP家族的分子伴侶及其輔助分子伴侶能促進(jìn)外源蛋白的表達(dá)。哺乳動(dòng)物細(xì)胞作為高等真核細(xì)胞,其分子伴侶系統(tǒng)更加完善,可以用來表達(dá)醫(yī)藥領(lǐng)域所需要的活性蛋白,但其成本高、操作難度大,難以實(shí)現(xiàn)產(chǎn)業(yè)化。而這些活性蛋白結(jié)構(gòu)復(fù)雜、穩(wěn)定性差,使其在畢赤酵母表達(dá)系統(tǒng)中難以表達(dá)[48],因此可以借助高等真核細(xì)胞來源的分子伴侶幫助其在畢赤酵母中表達(dá)。此外,畢赤酵母中大部分的分子伴侶在哺乳動(dòng)物中有功能同源物,如酵母源Sec63與人源SEC63有53% 的同源性[49],酵母源Sis1 和人源DNAJB6 是功能同源物[50]。Bankefa等[51]比較了畢赤酵母、釀酒酵母、里氏木霉和人源的Hac1p 同源物PpHac1p、ScHac1p、TrHac1p 和HsXbp1 對(duì)畢赤酵母外源蛋白表達(dá)的影響,發(fā)現(xiàn)過表達(dá)HsXbp1 使β-甘露聚糖酶產(chǎn)量提高48.6%,而過表達(dá)其余3種Hac1p 同源物對(duì)β-甘露聚糖酶產(chǎn)量無明顯影響。因此,高等真核細(xì)胞來源的促折疊因子能促進(jìn)外源蛋白在畢赤酵母中的表達(dá),可以嘗試將其導(dǎo)入畢赤酵母表達(dá)系統(tǒng),幫助活性蛋白表達(dá)。
3 融合表達(dá)技術(shù)
融合表達(dá)技術(shù)是大腸桿菌表達(dá)系統(tǒng)常用的一種促進(jìn)蛋白可溶性表達(dá)的策略,融合蛋白能幫助目標(biāo)蛋白正確折疊以降低外源蛋白對(duì)宿主細(xì)胞的壓力,能促進(jìn)外源蛋白的可溶表達(dá),從而增加外源蛋白的表達(dá)量。目前在大腸桿菌中常用的融合標(biāo)簽包括麥芽糖結(jié)合蛋白(maltose binding protein,MBP)、谷胱甘肽-S-轉(zhuǎn)移酶(glutathione S-transferase,GST)、小泛素相關(guān)修飾物(small ubiquitin-related modifier protein,SUMO)、硫氧還蛋白(thioredoxin,Trx)、肝片蟲8 kD 抗原(fasciola hepatica 8kDantigen,F(xiàn)h8)和N-Utilization substance A(NusA)等。但融合標(biāo)簽的存在可能會(huì)影響蛋白質(zhì)本身的活性,所以在設(shè)計(jì)融合蛋白時(shí)需要根據(jù)外源蛋白的性質(zhì)考慮后續(xù)融合標(biāo)簽切除的問題[52]。融合表達(dá)技術(shù)在畢赤酵母中的應(yīng)用不如在大腸桿菌中廣泛,但近幾年受到的關(guān)注越來越多,下文對(duì)畢赤酵母系統(tǒng)中應(yīng)用到的融合表達(dá)策略進(jìn)行概述,部分融合表達(dá)技術(shù)在畢赤酵母中的應(yīng)用見表3。
3.1 小泛素相關(guān)修飾物
SUMO(11.6 kD)是泛素相關(guān)蛋白家族的成員,具有調(diào)節(jié)蛋白的結(jié)構(gòu)功能、提高融合蛋白的表達(dá)量、促進(jìn)靶蛋白正確折疊、提高重組蛋白可溶性等作用[53]。融合表達(dá)后可以使用特定的SUMO蛋白酶將其從融合蛋白上切割分離,不影響目的蛋白的活性[54]。Zhan 等[55]對(duì)抗菌肽LL37 活性中心氨基酸進(jìn)行了置換,并和6×His-SUMO 標(biāo)簽結(jié)合,成功表達(dá)了融合蛋白,標(biāo)簽切割后具有很強(qiáng)的抗菌活性。Wang 等[56]使用人源SUMO3 與抗菌肽NZ17074融合表達(dá),并通過去除融合標(biāo)簽,首次在畢赤酵母中高水平發(fā)酵得到具有抑菌活性的抗菌肽NZ17074,產(chǎn)量達(dá)到4.1 mg·L-1。Zhang 等[57]將黑曲霉來源的酸性脂肪酶(acidic lipase fromAspergillus niger,ANL)與SUMO融合表達(dá),成功獲得其融合蛋白SANL,融合蛋白不需要切割就具有ANL活性,活性比母體ANL高1.85倍,且融合蛋白對(duì)胃蛋白酶具有抗性,在pH 3.0~6.0時(shí)對(duì)三油酸甘油酯具有高水解活性。上述研究表明,在畢赤酵母中采用SUMO 標(biāo)簽與外源蛋白融合策略,能促進(jìn)目標(biāo)蛋白的表達(dá),甚至增強(qiáng)了某些蛋白的生物活性。
3.2 麥芽糖結(jié)合蛋白
麥芽糖結(jié)合蛋白(MBP,42 kD)是最常用的融合標(biāo)簽之一,可增強(qiáng)目標(biāo)蛋白的可溶性,并具有類似分子伴侶的功能,同時(shí)它被認(rèn)為可與未折疊蛋白中的疏水性氨基酸殘基相互作用,以防止蛋白質(zhì)聚集或水解[58]。已有研究表明,MBP可以增強(qiáng)畢赤酵母中外源蛋白的分泌,MBP在融合蛋白中的位置會(huì)調(diào)節(jié)畢赤酵母分泌途徑[59]。D?lken等[60]將人源顆粒酶B(GrB)與MBP 融合表達(dá),并在二者之間加入酵母內(nèi)源性蛋白酶識(shí)別序列,結(jié)果在培養(yǎng)上清液中檢測(cè)到單獨(dú)的MBP和GrB,MBP的融合顯著提高了分泌到培養(yǎng)上清液中的GrB 含量,且GrB具有正?;钚?。
3.3 木聚糖酶
木聚糖酶是水解酶家族的一員,能夠降解植物細(xì)胞壁中的木聚糖,在食品、農(nóng)業(yè)、紡織業(yè)和工業(yè)等生產(chǎn)中都有廣泛應(yīng)用[61],目前木聚糖酶能夠在多個(gè)微生物表達(dá)系統(tǒng)中穩(wěn)定高效表達(dá)[18,6263]。瘤胃真菌Neocallimastix patriciarum 來源的木聚糖酶富含酸性氨基酸,是優(yōu)質(zhì)的融合標(biāo)簽選擇對(duì)象,且在畢赤酵母系統(tǒng)中的表達(dá)水平很高。Huang等[64]將木聚糖酶XynCDBFV作為融合標(biāo)簽與生長抑素融合表達(dá),成功表達(dá)出了具有雙功能的融合蛋白,既有生長抑素的活性,又具備木聚糖酶的活性。Cui等[65]將木聚糖酶XynCDBFV作為融合標(biāo)簽與雞蛋清溶菌酶(hen egg white lysozyme,HEWL)融合表達(dá),并在二者間加入包含內(nèi)源性蛋白酶識(shí)別位點(diǎn)的序列,成功表達(dá)了HEWL,產(chǎn)量達(dá)到3.5 g·L-1,活性達(dá)到1.5×105 U·L-1,是目前重組表達(dá)的最高水平。上述研究表明,木聚糖酶作為融合標(biāo)簽的策略可以有效提高一些難表達(dá)蛋白的產(chǎn)量。
3.4 人血清白蛋白
人血清白蛋白(human serum albumin,HSA)半衰期長、免疫功能少,在不切割的情況下一般不影響目的蛋白的特性,是一種優(yōu)秀的融合標(biāo)簽,通常與一些醫(yī)藥蛋白融合表達(dá),可改善重組醫(yī)藥蛋白的生物活性[66]。Naseem 等[67]將HSA 和干擾素在畢赤酵母中融合表達(dá),得到了具有生物活性的融合蛋白(86 mg·L-1),且延長了干擾素的半衰期;黃甜甜等[68]將HSA和人成纖維細(xì)胞生長因子在畢赤酵母中融合表達(dá),得到了具有生物活性的融合蛋白(0.94 mg·mL-1),且使人成纖維細(xì)胞生長因子的半衰期延長了27.6 倍。上述研究表明,HSA作為融合標(biāo)簽?zāi)軒椭鞍椎谋磉_(dá),更能延長部分醫(yī)藥蛋白的半衰期,是醫(yī)藥蛋白在畢赤酵母中表達(dá)的優(yōu)質(zhì)融合標(biāo)簽選擇對(duì)象。關(guān)于HSA作為融合標(biāo)簽在畢赤酵母中融合表達(dá)的應(yīng)用見表3。
3.5 連接肽
在融合表達(dá)技術(shù)的應(yīng)用中,因目的蛋白和融合標(biāo)簽的不同特性,二者之間的連接肽(linker)可能對(duì)表達(dá)水平產(chǎn)生不同的影響,因此linker的選擇也十分重要。Linker主要包括柔性linker和剛性linker。柔性linker 通常由甘氨酸與絲氨酸或蘇氨酸組成,通過保持功能性蛋白質(zhì)之間的距離來發(fā)揮作用;剛性linker 通常由谷氨酸、丙氨酸和賴氨酸組成,能準(zhǔn)確分割功能域,方便增加伴侶蛋白之間的安全距離[69]。重組融合蛋白一般是以融合標(biāo)簽-目的蛋白結(jié)合在一起的形式表達(dá),這種形式可能會(huì)因?yàn)槿诤蠘?biāo)簽的存在影響目的蛋白的活性,因此,可以在linker后加入一段特定序列,使融合標(biāo)簽?zāi)軌蚝湍康牡鞍追蛛x,這段序列通常選擇能夠被特定蛋白酶識(shí)別的位點(diǎn)[69]。畢赤酵母本身會(huì)分泌一些能識(shí)別特定位點(diǎn)的蛋白酶[70],因此可以選擇畢赤酵母內(nèi)源性蛋白酶,例如Kex2[71]和STE13[72],也可以選擇一些外源特異性蛋白酶,例如腸激酶(enterokinase,EK)[73]和煙草蝕紋病毒(tobacco etch virus,TEV)蛋白酶[74]。
4 結(jié) 語
畢赤酵母表達(dá)系統(tǒng)經(jīng)過幾十年的發(fā)展逐漸成熟,已經(jīng)實(shí)現(xiàn)了千余種外源蛋白的表達(dá),但目前仍有很多蛋白未能在其中實(shí)現(xiàn)高效表達(dá),因此仍有改良的空間。信號(hào)肽在畢赤酵母表達(dá)系統(tǒng)的外源蛋白分泌過程中扮演了重要角色,使用外源蛋白本身的信號(hào)肽往往不能達(dá)到很高的分泌表達(dá)水平,目前主要是利用畢赤酵母中常用的高效分泌信號(hào)肽來實(shí)現(xiàn)外源蛋白的高效分泌[80]。伴隨畢赤酵母基因組測(cè)序完成,其自身越來越多的信號(hào)肽被發(fā)現(xiàn),有些已經(jīng)驗(yàn)證對(duì)外源蛋白分泌有良好的效果,后續(xù)根據(jù)目的蛋白的性質(zhì),可以有選擇的利用信號(hào)肽,并對(duì)其進(jìn)行改造優(yōu)化以提高目的蛋白的產(chǎn)量。目的蛋白在合適信號(hào)肽引導(dǎo)下經(jīng)過正確途徑分泌表達(dá),可能會(huì)由于轉(zhuǎn)錄水平較高,導(dǎo)致大量蛋白在內(nèi)質(zhì)網(wǎng)積壓無法正確折疊,共表達(dá)分子伴侶是解決該問題的一個(gè)良好策略 [81]。目前,分子伴侶在外源蛋白折疊過程中的作用已被確證,但作用機(jī)制尚不清楚,主要是通過大量的嘗試來驗(yàn)證各個(gè)分子伴侶對(duì)外源蛋白表達(dá)的影響,未來可以聚焦分子伴侶的協(xié)同作用機(jī)制,更有針對(duì)性地理性改造分子伴侶系統(tǒng),最終實(shí)現(xiàn)更多外源蛋白的高效表達(dá)。部分蛋白在分泌表達(dá)后不穩(wěn)定,會(huì)被降解,利用融合表達(dá)技術(shù)可以提高其穩(wěn)定性,從而促進(jìn)外源蛋白的高效表達(dá)[67],目前該技術(shù)在畢赤酵母表達(dá)系統(tǒng)中的應(yīng)用還不廣泛,但已經(jīng)顯現(xiàn)良好的效果,部分外源蛋白已經(jīng)通過該技術(shù)達(dá)到了較高的產(chǎn)量,未來隨著融合標(biāo)簽的豐富,可以有更多的選擇來實(shí)現(xiàn)難表達(dá)的外源蛋白在畢赤酵母系統(tǒng)的高效表達(dá)。
參 考 文 獻(xiàn)
[1] KARBALAEI M, REZAEE S A, FARSIANI H. Pichia pastoris:a highly successful expression system for optimal synthesis ofheterologous proteins [J]. J. Cell. Physiol., 2020, 235(9): 5867-5881.
[2] AHMAD M, HIRZ M, PICHLER H, et al .. Protein expressionin Pichia pastoris: recent achievements and perspectives forheterologous protein production [J]. Appl. Microbiol. Biotechnol.,2014, 98(12): 5301-5317.
[3] WANG Y, JIANG S, JIANG X, et al .. Cloning and codonoptimization of a novel feline interferon omega gene forproduction by Pichia pastoris and its antiviral efficacy inpolyethylene glycol-modified form [J]. Virulence, 2022, 13(1):297-309.
[4] CHE Z, CAO X, CHEN G, et al .. An effective combination ofcodon optimization, gene dosage, and process optimization forhigh-level production of fibrinolytic enzyme in Komagataellaphaffii (Pichia pastoris) [J/OL]. BMC Biotechnol., 2020, 20(1):63 [2023-02-06]. https://doi.org/10.1186/s12896-020-00654-7.
[5] LEE M C, MILLER E A, GOLDBERG J, et al .. Bi-directionalprotein transport between the ER and Golgi [J]. Annu. Rev.Cell Dev. Biol., 2004, 20: 87-123.
[6] 張偉,劉志敏,陳惠鵬.酵母蛋白分泌途徑的研究進(jìn)展[J].生物技術(shù)通訊, 2006,17(1): 81-83.
ZHANG W, LIU Z M, CHEN H P. Advance in secretorypathway of yeast [J]. Lett. Biotechnol., 2006,17(1): 81-83.
[7] ALMAGRO ARMENTEROS J J, TSIRIGOS K D, S?NDERBYC K, et al .. SignalP 5.0 improves signal peptide predictionsusing deep neural networks [J]. Nat. Biotechnol., 2019, 37(4):420-423.
[8] BAGOS P G, NIKOLAOU E P, LIAKOPOULOS T D, et al ..Combined prediction of Tat and Sec signal peptides withhidden Markov models [J]. Bioinformatics, 2010, 26(22): 2811-2817.
[9] KATO T, SHIONO Y, KOSEKI T. Identification andcharacterization of an acetyl xylan esterase from Aspergillusoryzae [J]. J. Biosci. Bioeng., 2021, 132(4): 337-342.
[10] OWJI H, NEZAFAT N, NEGAHDARIPOUR M, et al .. Acomprehensive review of signal peptides: structure, roles, andapplications [J]. Eur. J. Cell Biol., 2018, 97(6): 422-441.
[11] FREUDL R. Signal peptides for recombinant protein secretionin bacterial expression systems [J/OL]. Microb. Cell Fact.,2018, 17(1): 52 [2023-02-06]. https://doi.org/10.1186/s12934-018-0901-3.
[12] KANG Z, HUANG H, ZHANG Y, et al .. Recent advances ofmolecular toolbox construction expand Pichia pastoris insynthetic biology applications [J/OL]. World J. Microbiol.Biotechnol., 2016, 33(1): 19 [2023-02-06]. https://doi.org/10.1007/s11274-016-2185-2.
[13] 梁?jiǎn)⑿牵钩?,金學(xué)榮,等.腸激酶在畢赤酵母中的分泌表達(dá)優(yōu)化[J].生物工程學(xué)報(bào), 2020, 36(8): 1689-1698.
LIANG Q X, SHI J C, JIN X R, et al .. Optimization ofenterokinase secretion in Pichia pastoris [J]. Chin. J. Biotech.,2020, 36(8):1689-1698.
[14] SHEN Q, ZHOU X T, GUO Q, et al .. Potential of the signalpeptide derived from the PAS_chr3_0030 gene product forsecretory expression of valuable enzymes in Pichia pastoris [J/OL].Appl. Environ. Microbiol., 2022, 88(9): e0029622 [2023-02-06]. https://doi.org/10.1128/aem.00296-22.
[15] ITO Y, ISHIGAMI M, HASHIBA N, et al .. Avoiding entry intointracellular protein degradation pathways by signal mutationsincreases protein secretion in Pichia pastoris [J]. Microb.Biotechnol., 2022, 15(9): 2364-2378.
[16] DUAN G, DING L, WEI D, et al .. Screening endogenous signalpeptides and protein folding factors to promote the secretoryexpression of heterologous proteins in Pichia pastoris [J]. J.Biotechnol., 2019, 306: 193-202.
[17] LI D, WU J, CHEN J, et al .. Optimized expression of classicalswine fever virus E2 protein via combined strategy in Pichiapastoris [J/OL]. Protein Expr. Purif., 2020, 167: 105527 [2023-02-06]. https://doi.org/10.1016/j.pep.2019.105527.
[18] MIAO T, BASIT A, LIU J, et al .. Improved production ofxylanase in Pichia pastoris and its application in xylose productionfrom xylan [J/OL]. Front. Bioeng. Biotechnol., 2021, 9: 690702[2023-02-06]. https://doi.org/10.3389/fbioe.2021.690702.
[19] RIEDER L, EBNER K, GLIEDER A, et al .. Novel molecularbiological tools for the efficient expression of fungal lyticpolysaccharide monooxygenases in Pichia pastoris [J/OL].Biotechnol. Biofuels, 2021, 14(1): 122 [2023-02-06]. https://doi.org/10.1186/s13068-021-01971-5.
[20] BARRERO J J, CASLER J C, VALERO F, et al .. An improvedsecretion signal enhances the secretion of model proteins fromPichia pastoris [J/OL]. Microb. Cell Fact., 2018, 17(1): 161[2023-02-06]. https://doi.org/10.1186/s12934-018-1009-5.
[21] AGGARWAL S, MISHRA S. Differential role of segments ofα-mating factor secretion signal in Pichia pastoris towardsgranulocyte colony-stimulating factor emerging from a wildtype or codon optimized copy of the gene [J/OL]. Microb. CellFact., 2020, 19(1): 199 [2023-02-06]. https://doi.org/10.1186/s12934-020-01460-8.
[22] AGGARWAL S, MISHRA S. Modifications in the Kex2 P1'cleavage site in the α -MAT secretion signal lead to higherproduction of human granulocyte colony-stimulating factor inPichia pastoris [J/OL]. World J. Microbiol. Biotechnol., 2021,37(11): 197[2023-02-06]. https://doi.org/10.1007/s11274-021-03167-3.
[23] GRAF A, GASSER B, DRAGOSITS M, et al .. Novel insightsinto the unfolded protein response using Pichia pastorisspecific DNA microarrays [J/OL]. BMC Genomics, 2008, 9:390 [2023-02-06]. https://doi.org/10.1186/1471-2164-9-390.
[24] VOGL T, THALLINGER G G, ZELLNIG G, et al .. Towardsimproved membrane protein production in Pichia pastoris: generaland specific transcriptional response to membrane proteinoverexpression [J]. New Biotechnol., 2014, 31(6): 538-552.
[25] RASCHMANOV? H, WENINGER A, KNEJZL?K Z, et al ..Engineering of the unfolded protein response pathway inPichia pastoris: enhancing production of secreted recombinantproteins [J]. Appl. Microbiol. Biotechnol., 2021, 105(11): 4397-4414.
[26] MOILANEN A, RUDDOCK L W. Non-native proteins inhibitthe ER oxidoreductin 1 (Ero1) -protein disulfide-isomeraserelay when protein folding capacity is exceeded [J]. J. Biol.Chem., 2020, 295(26): 8647-8655.
[27] WANG Y, LUO X, ZHAO Y, et al .. Integrated strategies forenhancing the expression of the AqCoA chitosanase in Pichiapastoris by combined optimization of molecular chaperonescombinations and copy numbers via a novel plasmid pMC-GAP [J].Appl. Biochem. Biotechnol., 2021, 193(12): 4035-4051.
[28] BACK S H, SCHR?DER M, LEE K, et al .. ER stress signalingby regulated splicing: IRE1/HAC1/XBP1 [J]. Methods, 2005,35(4): 395-416.
[29] LIU J, HAN Q, CHENG Q, et al .. Efficient expression ofhuman lysozyme through the increased gene dosage and coexpressionof transcription factor Hac1p in Pichia pastoris [J].Curr. Microbiol., 2020, 77(5): 846-854.
[30] HUANG B, SUN M, HOXIE R, et al .. The endoplasmicreticulum chaperone BiP is a closure-accelerating cochaperoneof Grp94 [J/OL]. Proc. Natl. Acad. Sci. USA, 2022, 119(5):e2118793119 [2023-02-06]. https://doi.org/10.1073/pnas.2118793119.
[31] POBRE K F R, POET G J, HENDERSHOT L M. Theendoplasmic reticulum (ER) chaperone BiP is a masterregulator of ER functions: getting by with a little help fromERdj friends [J]. J. Biol. Chem., 2019, 294(6): 2098-2108.
[32] SALLADA N D, HARKINS L E, BERGER B W. Effect of genecopy number and chaperone coexpression on recombinanthydrophobin HFBI biosurfactant production in Pichia pastoris [J].Biotechnol. Bioeng., 2019, 116(8): 2029-2040.
[33] ZITO E. ERO1: a protein disulfide oxidase and H2O2 producer[J]. Free Radic Biol. Med., 2015, 83: 299-304.
[34] WANG J, WU Z, ZHANG T, et al .. High-level expression ofThermomyces dupontii thermophilic lipase in Pichia pastorisvia combined strategies [J/OL]. 3 Biotech., 2019, 9(2): 62[2023-02-06]. https://doi.org/10.1007/s13205-019-1597-8.
[35] HUANG J, ZHAO Q, CHEN L, et al .. Improved production ofrecombinant Rhizomucor miehei lipase by coexpressing proteinfolding chaperones in Pichia pastoris, which triggered ER stress [J].Bioengineered, 2020, 11(1): 375-385.
[36] SHEN Q, YU Z, LYU P J, et al .. Engineering a Pichia pastorisnitrilase whole cell catalyst through the increased nitrilasegene copy number and co-expressing of ER oxidoreductin 1 [J].Appl. Microbiol. Biotechnol., 2020, 104(6): 2489-2500.
[37] HAN M, WANG W, GONG X, et al .. Increased expression ofrecombinant chitosanase by co-expression of Hac1p in theyeast Pichia pastoris [J]. Protein Pept. Lett., 2021, 28(12):1434-1441.
[38] HE H, WU S, MEI M, et al.. A combinational strategy for effectiveheterologous production of functional human lysozyme in Pichiapastoris [J/OL]. Front. Bioeng. Biotechnol., 2020, 8: 118 [2023-02-06]. https://doi.org/10.3389/fbioe.2020.00118.
[39] LI J, CAI J, MA M, et al .. Preparation of a Bombyx moriacetylcholinesterase enzyme reagent through chaperone proteindisulfide isomerase co-expression strategy in Pichia pastoris fordetection of pesticides [J/OL]. Enzyme Microb. Technol., 2021,144: 109741 [2023-02-06]. https://doi.org/10.1016/j.enzmictec.2020.109741.
[40] NAVONE L, VOGL T, LUANGTHONGKAM P, et al ..Disulfide bond engineering of AppA phytase for increasedthermostability requires co-expression of protein disulfideisomerase in Pichia pastoris [J/OL]. Biotechnol. Biofuels, 2021,14(1): 80 [2023-02-06]. https://doi.org/10.1186/s13068-021-01936-8.
[41] WANG L, HU T, JIANG Z, et al .. Efficient production of anovel alkaline cold-active phospholipase C from Aspergillusoryzae by molecular chaperon co-expression for crude oildegumming [J/OL]. Food Chem., 2021, 350: 129212 [2023-02-06]. https://doi.org/10.1016/j.foodchem.2021.129212.
[42] FREILICH R, ARHAR T, ABRAMS J L, et al .. Protein-proteininteractions in the molecular chaperone network [J]. Acc.Chem. Res., 2018, 51(4): 940-949.
[43] ZININGA T, RAMATSUI L, SHONHAI A. Heat shock proteinsas immunomodulants [J/OL]. Molecules, 2018, 23(11): 2846[2023-02-06]. https://doi.org/10.3390/molecules23112846.
[44] DENG J, LI J, MA M, et al .. Co-expressing GroEL-GroES,Ssa1-Sis1 and Bip-PDI chaperones for enhanced intracellularproduction and partial-wall breaking improved stability ofporcine growth hormone [J/OL]. Microb. Cell Fact., 2020, 19(1): 35[2023-02-06]. https://doi.org/10.1186/s12934-020-01304-5.
[45] JUNG S J, KIM H. Emerging view on the molecular functions of Sec62 and Sec63 in protein translocation [J/OL]. Int. J. Mol.Sci., 2021, 22(23): 12757 [2023-02-06]. https://doi.org/10.3390/ijms222312757.
[46] CAPLAN A J, CYR D M, DOUGLAS M G. Ydj1p facilitatespolypeptide translocation across different intracellular membranesby a conserved mechanism [J]. Cell, 1992, 71(7): 1143-1155.
[47] ZHANG W, ZHAO H L, XUE C, et al .. Enhanced secretion ofheterologous proteins in Pichia pastoris following overexpression ofSaccharomyces cerevisiae chaperone proteins [J]. Biotechnol. Prog.,2006, 22(4): 1090-1095.
[48] KESIK-BRODACKA M. Progress in biopharmaceuticaldevelopment [J]. Biotechnol. Appl. Biochem., 2018, 65(3):306-322.
[49] SKOWRONEK M H, ROTTER M, HAAS I G. Molecularcharacterization of a novel mammalian DnaJ-like Sec63phomolog [J]. Biol. Chem., 1999, 380(9): 1133-1138.
[50] BHADRA A K, RAU M J, DAW J A, et al .. Disease-associatedmutations within the yeast DNAJB6 homolog Sis1 slowconformer-specific substrate processing and can be correctedby the modulation of nucleotide exchange factors [J/OL]. Nat.Commun., 2022, 13(1): 4570 [2023-02-06]. https://doi.org/10.1038/s41467-022-32318-9.
[51] BANKEFA O E, WANG M, ZHU T, et al .. Hac1p homologuesfrom higher eukaryotes can improve the secretion of heterologousproteins in the yeast Pichia pastoris [J]. Biotechnol. Lett., 2018, 40(7): 1149-1156.
[52] KI M R, PACK S P. Fusion tags to enhance heterologousprotein expression [J]. Appl. Microbiol. Biotechnol., 2020, 104(6): 2411-2425.
[53] PANAVAS T, SANDERS C, BUTT T R. SUMO fusiontechnology for enhanced protein production in prokaryotic andeukaryotic expression systems [J]. Methods Mol. Biol., 2009,497: 303-317.
[54] YAU T Y, SANDER W, EIDSON C, et al .. SUMO Interactingmotifs: structure and function [J/OL]. Cells, 2021, 10(11): 2825[2023-02-06]. https://doi.org/10.3390/cells10112825.
[55] ZHAN N, ZHANG L, YANG H, et al .. Design and heterologousexpression of a novel dimeric LL37 variant in Pichia pastoris [J/OL].Microb. Cell Fact., 2021, 20(1): 143 [2023-02-06]. https://doi.org/10.1186/s12934-021-01635-x.
[56] WANG X J, WANG X M, TENG D, et al .. Recombinantproduction of the antimicrobial peptide NZ17074 in Pichiapastoris using SUMO3 as a fusion partner [J]. Lett. Appl.Microbiol., 2014, 59(1): 71-78.
[57] ZHANG X F, AI Y H, XU Y, et al .. High-level expression ofAspergillus niger lipase in Pichia pastoris: characterization andgastric digestion in vitro [J]. Food Chem., 2019, 274: 305-313.
[58] LI Z, LEUNG W, YON A, et al .. Secretion and proteolysis ofheterologous proteins fused to the Escherichia coli maltosebinding protein in Pichia pastoris [J]. Protein Expr. Purif.,2010, 72(1): 113-124.
[59] MOUA P S, GONZALEZ A, OSHIRO K T, et al .. Differentialsecretion pathways of proteins fused to the Escherichia colimaltose binding protein (MBP) in Pichia pastoris [J/OL].Protein Expr. Purif., 2016, 124: 005 [2023-02-06]. https://doi.org/10.1016/j.pep.2016.04.005.
[60] D?LKEN B, JABULOWSKY R A, OBEROI P, et al .. Maltosebindingprotein enhances secretion of recombinant humangranzyme B accompanied by in vivo processing of a precursorMBP fusion protein [J/OL]. PLoS One, 2010, 5(12): e14404[2023-02-06]. https://doi.org/10.1371/journal.pone.0014404.
[61] SOHAIL M, BARZKAR N, MICHAUD P, et al .. Cellulolyticand xylanolytic enzymes from yeasts: properties and industrialapplications [J/OL]. Molecules, 2022, 27(12): 3783 [2023-02-06]. https://doi.org/10.3390/molecules27123783.
[62] LI Y, ZHANG X, LU C, et al .. Identification andcharacterization of a novel endo-β-1,4-xylanase from Streptomycessp. T7 and its application in xylo-oligosaccharide production[J/OL]. Molecules, 2022, 27(8): 2516 [2023-02-06]. https://doi.org/10.3390/molecules27082516.
[63] TALENS-PERALES D, NICOLAU-SANUS M, POLAINA J,et al .. Expression of an extremophilic xylanase in Nicotianabenthamiana and its use for the production of prebioticxylooligosaccharides [J/OL]. Sci. Rep., 2022, 12(1): 15743[2023-02-06]. https://doi.org/10.1038/s41598-022-19774-5.
[64] HUANG K, CHU Y, QIN X, et al .. Recombinant production oftwo xylanase-somatostatin fusion proteins retaining somatostatinimmunogenicity and xylanase activity in Pichia pastoris [J]. Appl.Microbiol. Biotechnol., 2021, 105(10): 4167-4175.
[65] CUI L, HUANG H, ZHANG H, et al .. Recombinant expressionof hen egg white lysozyme with the assistance of xylanasefusion partner in Pichia pastoris [J]. Bioengineered, 2022, 13(5):13860-13871.
[66] KRATZ F. Albumin as a drug carrier: design of prodrugs, drugconjugates and nanoparticles [J]. J. Control. Release, 2008, 132(3):171-183.
[67] NASEEM M U, AHMED N, KHAN M A, et al .. Production ofpotent long-lasting consensus interferon using albumin fusiontechnology in Pichia pastoris expression system [J/OL]. ProteinExpr. Purif., 2020, 166: 105509 [2023-02-06]. https://doi.org/10.1016/j.pep.2019.105509.
[68] 黃甜甜,齊劍英,楊剛剛,等.重組rHSA-hFGF21融合蛋白在畢赤酵母中的表達(dá)純化及活性分析[J]. 生物工程學(xué)報(bào),2022, 38(9): 3419-3432.
HUANG T T, QI J Y, YANG G G, et al .. Expression,purification and bioactivity analysis of a recombinant fusionprotein rHSA-hFGF21 in Pichia pastoris [J]. Chin. J. Biotech.,2022, 38(9): 3419-3432.
[69] PATEL D K, MENON D V, PATEL D H, et al .. Linkers: asynergistic way for the synthesis of chimeric proteins [J/OL].Protein Expr. Purif., 2022, 191: 106012 [2023-02-06]. https://doi.org/10.1016/j.pep.2021.106012.
[70] JONES E W. The synthesis and function of proteases inSaccharomyces: genetic approaches [J]. Annu. Rev. Genet.,1984, 18: 233-270.
[71] KIM M J, SUNG B H, KIM H J, et al .. Production of autolysisproofKex2 protease from Candida albicans in Saccharomycescerevisiae for in vitro processing of fusion proteins [J]. Appl.Microbiol. Biotechnol., 2022, 106(21): 7063-7072.
[72] LI X, FAN Y, LIN Q, et al .. Expression of chromogranin A- derived antifungal peptide CGA-N12 in Pichia pastoris [J].Bioengineered, 2020, 11(1): 318-327.
[73] KUBITZKI T, NOLL T, L?TZ S. Immobilisation of bovineenterokinase and application of the immobilised enzyme infusion protein cleavage [J]. Bioprocess Biosyst. Eng., 2008, 31(3):173-182.
[74] RARAN-KURUSSI S, CHERRY S, ZHANG D, et al .. Removalof affinity tags with TEV protease [J]. Methods Mol. Biol.,2017, 1586: 221-230.
[75] GUAN B, CHEN F, LEI J, et al .. Constitutive expression of arhIL-2-HSA fusion protein in Pichia pastoris using glucose ascarbon source [J]. Appl. Biochem. Biotechnol., 2013, 171(7):1792-1804.
[76] CAO J, DE LA FUENTE-NUNEZ C, OU R W, et al .. Yeastbasedsynthetic biology platform for antimicrobial peptideproduction [J]. ACS Synth. Biol., 2018, 7(3): 896-902.
[77] KRAINER F W, DARNHOFER B, BIRNER-GRUENBERGERR, et al.. Recombinant production of a peroxidase-protein Gfusion protein in Pichia pastoris [J]. J. Biotechnol., 2016, 219:24-27.
[78] CHEN Z, ZHANG Z, WANG Z, et al .. Fabricating a novelHLC-hBMP2 fusion protein for the treatment of bone defects [J]. J.Control. Release, 2021, 329: 270-285.
[79] SUN J, JIANG J, LIU L, et al .. Expression of the hybridantimicrobial peptide lactoferrin-lysozyme in Pichia pastoris [J].Biotechnol. Appl. Biochem., 2019, 66(2): 202-208.
[80] INGRAM Z, PATKAR A, OH D, et al .. Overcoming obstaclesin protein expression in the yeast Pichia pastoris: interviews ofleaders in the Pichia field [J/OL]. Pac. J. Health (Stockton,Calif.), 2021, 4(1): 2[2023-02-06]. https://doi.org/10.56031/2576-215x.1010.
[81] GARVEY M . Non-mammalian eukaryotic expression systemsyeast and fungi in the production of biologics [J/OL]. J. Fungi,2022, 8(11):1179 [2023-02-06]. https://doi.org/10.3390/jof8111179.
(責(zé)任編輯:胡立霞)