徐迎慶,周沁怡,鄧婕,張煜,付心儀
【數(shù)智共生設(shè)計(jì)未來】
人工智能在設(shè)計(jì)產(chǎn)業(yè)中的應(yīng)用及發(fā)展
徐迎慶,周沁怡,鄧婕,張煜,付心儀*
(清華大學(xué),北京 100090)
對人工智能在設(shè)計(jì)領(lǐng)域的應(yīng)用進(jìn)行梳理與總結(jié),分析當(dāng)下人工智能對設(shè)計(jì)流程和設(shè)計(jì)師的影響,展望未來人工智能對設(shè)計(jì)行業(yè)的影響趨勢。使用VOSviewer工具和文獻(xiàn)計(jì)量法對Web of Science數(shù)據(jù)庫中關(guān)于“人工智能在設(shè)計(jì)領(lǐng)域的創(chuàng)新與應(yīng)用”的文獻(xiàn)進(jìn)行詳細(xì)的可視化和聚類分析,深入探討文獻(xiàn)中的核心觀點(diǎn)和案例?;谒膫€(gè)主要聚類(AI+技術(shù)應(yīng)用、AI+設(shè)計(jì)流程、AI+創(chuàng)意協(xié)作、AI+影響反思)來展開討論。特別關(guān)注生成式人工智能(AIGC)技術(shù)對設(shè)計(jì)方法和設(shè)計(jì)流程的影響,指出生成式人工智能在促進(jìn)設(shè)計(jì)創(chuàng)新和提升設(shè)計(jì)效率方面發(fā)揮著至關(guān)重要的作用。此外,生成式人工智能對設(shè)計(jì)師的傳統(tǒng)角色及設(shè)計(jì)原創(chuàng)性提出了新的挑戰(zhàn)并重新定義需求。預(yù)測未來人工智能將進(jìn)一步整合進(jìn)設(shè)計(jì)流程,促進(jìn)設(shè)計(jì)創(chuàng)新,更加關(guān)注人工智能的原創(chuàng)性、責(zé)任邊界問題,探討人工智能與設(shè)計(jì)師合作的新模式。通過對人工智能在設(shè)計(jì)領(lǐng)域應(yīng)用的全面綜述,為未來設(shè)計(jì)創(chuàng)新與人工智能融合提供了有價(jià)值的理論參考和發(fā)展方向。
生成式人工智能(AIGC);生成式內(nèi)容;設(shè)計(jì)產(chǎn)業(yè)革新;設(shè)計(jì)創(chuàng)新;創(chuàng)意過程;人機(jī)協(xié)作
隨著人工智能技術(shù)的快速發(fā)展,以生成式人工智能(Artificial Intelligence Generated Content,AIGC)為代表的技術(shù)在設(shè)計(jì)產(chǎn)業(yè)被廣泛、深入地應(yīng)用。這一現(xiàn)象不僅強(qiáng)有力地推動(dòng)了設(shè)計(jì)產(chǎn)業(yè)的發(fā)展,也為藝術(shù)家、設(shè)計(jì)師和創(chuàng)意專業(yè)人士提供了新的設(shè)計(jì)手段和機(jī)遇。與此同時(shí)也帶來了挑戰(zhàn)和對傳統(tǒng)設(shè)計(jì)師角色的再定義。本文從人工智能驅(qū)動(dòng)設(shè)計(jì)的角度出發(fā),利用知識(shí)圖譜聚類分析方法,綜述了人工智能(Artificial Intelligence,AI)在設(shè)計(jì)領(lǐng)域的最新進(jìn)展和應(yīng)用現(xiàn)狀。此外,探討了生成式人工智能技術(shù)如何變革傳統(tǒng)的設(shè)計(jì)理念和實(shí)踐方式。通過對現(xiàn)有文獻(xiàn)的深入分析及具體實(shí)例的剖析,本文旨在提供關(guān)于人工智能在設(shè)計(jì)產(chǎn)業(yè)中應(yīng)用的全面視角,探討這一領(lǐng)域的未來發(fā)展方向,反思生成式人工智能對設(shè)計(jì)師這一角色和設(shè)計(jì)行業(yè)未來的影響。
本文采取了知識(shí)圖譜的分析方法,基于Web of Science核心數(shù)據(jù)庫進(jìn)行文獻(xiàn)檢索,并使用VOSviewer軟件(版本1.6.20)進(jìn)行數(shù)據(jù)可視化分析。本研究通過檢索“設(shè)計(jì)創(chuàng)新”“人工智能”等關(guān)鍵詞,在Web of Science數(shù)據(jù)庫中共篩選出2 706篇相關(guān)文獻(xiàn)。這些文獻(xiàn)的發(fā)表時(shí)間跨度從2005年5月23日至2023年12月14日。關(guān)鍵詞的共現(xiàn)次數(shù)按照由高到低的順序依次為“創(chuàng)意價(jià)值”“設(shè)計(jì)方法論”“算法”等(如表1所示)。
通過對Web of Science數(shù)據(jù)庫中的文獻(xiàn)分別進(jìn)行VOSviewer工具和文獻(xiàn)計(jì)量法的可視化分析(如圖1所示),本研究梳理并識(shí)別出四個(gè)主要的聚類群,它們分別代表著人工智能在設(shè)計(jì)領(lǐng)域內(nèi)不同的應(yīng)用與研究方向:AI+技術(shù)應(yīng)用、AI+設(shè)計(jì)流程、AI+創(chuàng)意協(xié)作、AI+影響反思(如圖2所示)。下文將對每個(gè)聚類進(jìn)行分析。
表1 生成式人工智能在設(shè)計(jì)領(lǐng)域的創(chuàng)新與應(yīng)用高頻共現(xiàn)關(guān)鍵詞
1.2.1 聚類群1——AI+技術(shù)應(yīng)用
以“人工智能”“人工智能技術(shù)”等關(guān)鍵詞為核心的綠色聚類群,強(qiáng)調(diào)了人工智能的技術(shù)發(fā)展及其在設(shè)計(jì)領(lǐng)域的應(yīng)用潛力。人工智能技術(shù),尤其是神經(jīng)網(wǎng)絡(luò)(Neural Network,NN)、生成對抗網(wǎng)絡(luò)(Generative Adversarial Network,GAN)、擴(kuò)散模型(Diffusion Model,DM)和大語言模型(Large Language Model,LLM)等技術(shù)正在被廣泛地應(yīng)用于設(shè)計(jì)領(lǐng)域。本章節(jié)將主要回顧人工智能近年的主要技術(shù)突破,并結(jié)合具體案例闡述人工智能在設(shè)計(jì)領(lǐng)域中的應(yīng)用實(shí)例。
圖1 “人工智能在設(shè)計(jì)領(lǐng)域的創(chuàng)新與應(yīng)用”關(guān)鍵詞共現(xiàn)聚類標(biāo)簽視圖
圖2 人工智能在設(shè)計(jì)領(lǐng)域內(nèi)的主要應(yīng)用與研究方向
從功能上區(qū)分,人工智能可以分為判別式及生成式AI[1]。判別式AI通過對已有數(shù)據(jù)的學(xué)習(xí)從而能夠準(zhǔn)確地對未知數(shù)據(jù)進(jìn)行類別的判定。而生成式AI指通過對已有數(shù)據(jù)的學(xué)習(xí),從而創(chuàng)造出新的數(shù)據(jù)。隨著生成式人工智能在2023年的大爆發(fā),人工智能在許多方面的能力已經(jīng)可以與人一較高下,甚至超越人類。人工智能正成為設(shè)計(jì)領(lǐng)域中一股不可忽視的力量,其深刻地改變著傳統(tǒng)設(shè)計(jì)方式。這個(gè)變革并非僅僅是技術(shù)手段的升級,更是創(chuàng)新設(shè)計(jì)方法的變革,將設(shè)計(jì)的可能性推向了一個(gè)新的高度。人們已經(jīng)見識(shí)了ChatGPT的強(qiáng)大能力,其通過對大量的文本信息進(jìn)行學(xué)習(xí),從而能夠自主地創(chuàng)造出新的文本內(nèi)容。這十分接近人的“學(xué)習(xí)-創(chuàng)造”過程。這樣的智能模型蘊(yùn)含著許多新的應(yīng)用可能。
深度學(xué)習(xí)為生成式人工智能的爆發(fā)提供了基礎(chǔ)。深度學(xué)習(xí)是一種機(jī)器學(xué)習(xí)的方法,它強(qiáng)調(diào)通過大量的數(shù)據(jù)自動(dòng)提取其高維特征[2]。近年來,隨著數(shù)據(jù)量的增加和計(jì)算能力的提升,深度學(xué)習(xí)成為了人工智能的主流。深度學(xué)習(xí)以神經(jīng)網(wǎng)絡(luò)為基礎(chǔ),通過多層次的學(xué)習(xí)結(jié)構(gòu)模擬人腦神經(jīng)元之間的連接,從而實(shí)現(xiàn)對復(fù)雜信息的學(xué)習(xí)和處理。隨著對深度學(xué)習(xí)的理解不斷加深,人們對算法的不斷更新迭代成為推動(dòng)AI發(fā)展的動(dòng)力。當(dāng)前的生成式人工智能大模型可分為九類:文本轉(zhuǎn)圖像、文本轉(zhuǎn)3D、圖像轉(zhuǎn)文本、文本轉(zhuǎn)視頻、文本轉(zhuǎn)音頻、文本轉(zhuǎn)文本、文本轉(zhuǎn)代碼、文本轉(zhuǎn)科學(xué)文本,以及其他模型[3]。
例如,由谷歌在2017年開發(fā)的Transformer[4],最初是為執(zhí)行翻譯任務(wù)時(shí),解決循環(huán)神經(jīng)網(wǎng)絡(luò)等傳統(tǒng)模型在處理可變長度序列和上下文理解上的局限性所提出的。但是其中蘊(yùn)含的多頭注意力思想?yún)s被廣泛使用,可以說Transformer引爆了如今的生成式人工智能熱潮?;赥ransformer架構(gòu)的經(jīng)典應(yīng)用包括了語言模型BERT[5]、ChatGPT[6],視覺模型ViT[7]、CLIP[8]。Transformer架構(gòu)的核心就是自注意力機(jī)制,讓模型能夠自己學(xué)習(xí)序列中的重要信息,通過不斷學(xué)習(xí)并根據(jù)內(nèi)容之間的相關(guān)性來自動(dòng)地分配權(quán)重。Transformer由編碼器和解碼器組成,編碼器將輸入序列轉(zhuǎn)為隱藏表示,而解碼器將隱藏表示生成新的序列。這一架構(gòu)也十分適合進(jìn)行大規(guī)模并行計(jì)算。
在前沿設(shè)計(jì)創(chuàng)新應(yīng)用領(lǐng)域,深度學(xué)習(xí)也發(fā)揮了一定作用,清華大學(xué)未來實(shí)驗(yàn)室在智慧家居[9-10]、情感計(jì)算[11]、嗅覺計(jì)算等設(shè)計(jì)創(chuàng)新領(lǐng)域利用深度學(xué)習(xí)技術(shù)創(chuàng)造了AI與設(shè)計(jì)相結(jié)合的典型案例。例如,針對現(xiàn)有的智能系統(tǒng)缺乏推理和思考能力的現(xiàn)狀,在進(jìn)行智能系統(tǒng)的設(shè)計(jì)時(shí),在推理和思考層面引入大語言模型以形成一個(gè)基于物聯(lián)網(wǎng)(Internet of Things,IoT)設(shè)備的自主決策系統(tǒng),使系統(tǒng)中的每個(gè)設(shè)備均能夠根據(jù)人工智能的實(shí)時(shí)決策做出反應(yīng),從而把用戶從冗雜的條件判斷、操作切換和家庭自動(dòng)化配置的工作中解放出來[12]。
在圖像生成領(lǐng)域,Diffusion Models帶來了原理性的創(chuàng)新。相較于傳統(tǒng)的生成模型,Diffusion Models引入了擴(kuò)散過程,通過逐步迭代來生成圖像[13]。具體來說,Diffusion Models生成圖像的過程分為兩步:第一步是在原有圖案中不斷添加噪聲,這便是擴(kuò)散過程;而第二步逆擴(kuò)散過程則是根據(jù)已有數(shù)據(jù)逐步去除噪聲以顯露出生成結(jié)果的過程。這一思想與馬爾可夫鏈的概念相聯(lián)系,擴(kuò)散過程與逆擴(kuò)散過程都可以拆分為多步,每一步都基于上一步的結(jié)果生成[14-16]。Diffusion Models通過將圖像生成問題建模為一個(gè)逐步演化的過程,避免了一次性生成整個(gè)圖像所帶來的挑戰(zhàn)。這種逐步生成的方法使得模型更容易學(xué)到圖像中的細(xì)節(jié)和全局結(jié)構(gòu),不僅有助于生成更為真實(shí)和高質(zhì)量的圖像,還對生成模型的訓(xùn)練穩(wěn)定性和效率產(chǎn)生了積極影響。
隨著生成式人工智能技術(shù)在自動(dòng)內(nèi)容生成、分析、理解及優(yōu)化等方面取得重大進(jìn)展,人工智能的應(yīng)用范圍已從基本的數(shù)據(jù)處理擴(kuò)展至更為高級的創(chuàng)新和任務(wù)分析。利用生成式人工智能來輔助設(shè)計(jì)的思想已經(jīng)得到了廣泛的認(rèn)可,大量人工智能輔助的設(shè)計(jì)工具也不斷涌現(xiàn)。從自動(dòng)化設(shè)計(jì)生成到數(shù)據(jù)驅(qū)動(dòng)的設(shè)計(jì)決策,設(shè)計(jì)的每一個(gè)環(huán)節(jié)都變得更加智能、迅速、精準(zhǔn)。這是個(gè)充滿機(jī)遇和挑戰(zhàn)的時(shí)代,人工智能正成為設(shè)計(jì)創(chuàng)新的引擎,為設(shè)計(jì)領(lǐng)域注入新的活力和可能性。
1.2.2 聚類群2——AI+設(shè)計(jì)流程
以“設(shè)計(jì)方法論”“算法”“性能”等關(guān)鍵詞為核心的紅色聚類群,體現(xiàn)了生成式人工智能技術(shù)對傳統(tǒng)設(shè)計(jì)方法的影響。在當(dāng)前的設(shè)計(jì)領(lǐng)域,生成式人工智能已經(jīng)超越了輔助設(shè)計(jì)的工具角色,成為設(shè)計(jì)創(chuàng)新過程中的共同參與者。AI對設(shè)計(jì)過程的影響不僅在于效率的提升,還拓展了設(shè)計(jì)師的思維方式和創(chuàng)新能力。
在設(shè)計(jì)初期,傳統(tǒng)方法要求設(shè)計(jì)師進(jìn)行全面而深入的市場和用戶研究,以準(zhǔn)確捕捉和理解用戶的具體需求、行為模式和市場研究。這意味著設(shè)計(jì)師需要花費(fèi)大量時(shí)間收集和分析一手資料,如用戶訪談和觀察,并且結(jié)合二手資料進(jìn)行綜合評估。而現(xiàn)在,生成式人工智能極大提高了設(shè)計(jì)師在信息搜集和獲取階段的效率[17]。基于簡單的提示,生成式人工智能可利用深度學(xué)習(xí)和自然語言處理技術(shù)生成大量多角度的專業(yè)信息并以結(jié)構(gòu)化方式呈現(xiàn)。例如,在用戶界面設(shè)計(jì)(User Interface Design)領(lǐng)域,Huang等[18]、Chen等[19]、Bunian等[20]利用視覺和文本信息輔助用戶快速搜索設(shè)計(jì)參考圖,提高了設(shè)計(jì)師的查找效率。此外,人工智能技術(shù)在理解和預(yù)測用戶行為、偏好方面的應(yīng)用,為用戶體驗(yàn)設(shè)計(jì)(User Experience Design)和交互設(shè)計(jì)(Interaction Design)提供了新的可能性。人工智能可以分析大量用戶數(shù)據(jù),有效構(gòu)建用戶需求和審美偏好的模型。這一能力為設(shè)計(jì)師提供了深刻的洞察,使他們能夠更準(zhǔn)確地理解用戶需求,進(jìn)而創(chuàng)造出更加個(gè)性化且符合用戶期望的設(shè)計(jì)方案[21-25]。
在創(chuàng)意構(gòu)思階段,AI通過提供靈感及創(chuàng)意想法,擴(kuò)展了設(shè)計(jì)師的創(chuàng)意空間。研究表明,GPT-4這類生成式AI在創(chuàng)造性思維方面表現(xiàn)出與人類相似甚至超越人類的能力[26-27]。它們能夠提供創(chuàng)意提示,幫助人類克服在生成概念時(shí)的局限性。在設(shè)計(jì)過程中,生成式人工智能可以根據(jù)設(shè)計(jì)師輸入的設(shè)計(jì)主題和需求,提供多樣化的圖像和文本靈感,激發(fā)設(shè)計(jì)師的“頓悟時(shí)刻”(Aha! Moment)[28]。這種技術(shù)不僅促進(jìn)了設(shè)計(jì)方案的創(chuàng)新和思維的發(fā)散[29-31],還有助于克服人類在創(chuàng)意過程中常見的“創(chuàng)意固定”現(xiàn)象[32]?!皠?chuàng)意固定”現(xiàn)象是一種認(rèn)知偏差,通常限制了思維的廣度和深度。目前,利用生成式人工智能的靈感推薦系統(tǒng)已經(jīng)應(yīng)用在服裝設(shè)計(jì)[33]、三維視覺化概念建模[34]、用戶體驗(yàn)設(shè)計(jì)[35]、工業(yè)設(shè)計(jì)[36]等多個(gè)設(shè)計(jì)領(lǐng)域。
在設(shè)計(jì)定義階段,生成式人工智能通過其強(qiáng)大的信息處理能力,促進(jìn)了更加個(gè)性化的設(shè)計(jì)定義。人工智能可基于不同的設(shè)計(jì)背景和目標(biāo)需求,提供定制化的設(shè)計(jì)方案和建議,實(shí)現(xiàn)了數(shù)據(jù)驅(qū)動(dòng)的設(shè)計(jì)方法。例如,來自客戶或公司的數(shù)據(jù)可以直接影響設(shè)計(jì)定義,人工智能可自動(dòng)且無需人工干預(yù)地為每個(gè)用戶生成具體的解決方案[25,37]。這種能力不僅確保了設(shè)計(jì)與實(shí)際應(yīng)用場景的緊密契合,而且為用戶提供了更加個(gè)性化的設(shè)計(jì)體驗(yàn)。
在設(shè)計(jì)的實(shí)施階段,生成式人工智能的介入顯著加速了設(shè)計(jì)流程。它能夠自動(dòng)化執(zhí)行重復(fù)性高且技術(shù)要求強(qiáng)的任務(wù),例如自動(dòng)化草圖繪制、文字排版和風(fēng)格遷移,使設(shè)計(jì)師能更多地專注于創(chuàng)意和策略層面的工作。以Midjourney、Stable Diffusion為代表的工具,可以根據(jù)用戶輸入的提示詞(Prompt)快速生成設(shè)計(jì)師預(yù)期的效果圖,減少傳統(tǒng)繪圖、建模和渲染所需的時(shí)間[38]。除了上述應(yīng)用外,相關(guān)的研究也覆蓋了包括自動(dòng)排版[39,40-42]、插畫[43-44]、上色[45-48]、字體設(shè)計(jì)[49-51]、圖標(biāo)設(shè)計(jì)[52-53]、三維模型設(shè)計(jì)[54-55]、室內(nèi)設(shè)計(jì)[48]等設(shè)計(jì)領(lǐng)域。此外,在設(shè)計(jì)實(shí)施階段,確保人工智能可準(zhǔn)確理解用戶輸入的需求至關(guān)重要。除了基于文字的描述外,相關(guān)研究致力于通過引入更自然、直觀的用戶輸入形式,幫助用戶用更直接、便捷地表達(dá)其設(shè)計(jì)需求。例如,生成式人工智能已能解析用戶的草圖并將其轉(zhuǎn)化為詳細(xì)的設(shè)計(jì)方案或視覺表達(dá)。在語音命令的應(yīng)用中,語音用戶界面(Voice-user Interface,VUI)結(jié)合了語音合成、自動(dòng)語音識(shí)別等AI技術(shù),運(yùn)用AI處理用戶的語音輸入,在云端理解意圖并返回響應(yīng),從而提升了輸入效率并增強(qiáng)了設(shè)計(jì)流程的直觀性和互動(dòng)性[43]。最后,生成式人工智能利用擴(kuò)散模型做風(fēng)格遷移,基于示例的圖像編輯可以模仿輸入圖像的特征、風(fēng)格,提升了設(shè)計(jì)的創(chuàng)造性和個(gè)性化輸出[50-51,53]。隨著生成式人工智能的進(jìn)一步發(fā)展,設(shè)計(jì)輸出的過程會(huì)進(jìn)一步自動(dòng)化,并拓展到更多設(shè)計(jì)領(lǐng)域。
在設(shè)計(jì)評估階段,人工智能通過精確量化設(shè)計(jì)元素(如顏色、布局)和美學(xué)原則,并分析網(wǎng)絡(luò)信息趨勢,提供深入、客觀且與人類感知一致的分析[56-57]。
綜上所述,在AI介入設(shè)計(jì)流程之前,設(shè)計(jì)師通常全流程、高投入地參與設(shè)計(jì)的各個(gè)流程[58-60]。但隨著生成式人工智能的加入,這一流程發(fā)生了顯著變化。AI的介入不僅加速了設(shè)計(jì)的生成過程,減少了人力資源的消耗,而且通過數(shù)據(jù)分析,提供了更多元化的設(shè)計(jì)方案?;谶@樣的變化,一些研究提出人工智能時(shí)代下新的設(shè)計(jì)流程[61-62]。
1.2.3 聚類群3——AI+創(chuàng)意協(xié)作
以“設(shè)計(jì)師角色”“團(tuán)隊(duì)合作”為核心的黃色聚類群,展示了AI在設(shè)計(jì)過程中對設(shè)計(jì)師和團(tuán)隊(duì)角色的影響。本章節(jié)將探討人工智能的出現(xiàn)對設(shè)計(jì)協(xié)同和團(tuán)隊(duì)協(xié)作的影響。
1.2.3.1 設(shè)計(jì)師與AI的協(xié)同工作
在AI驅(qū)動(dòng)的設(shè)計(jì)領(lǐng)域中,設(shè)計(jì)師們不再只是藝術(shù)的創(chuàng)作者,更是與智能工具協(xié)同合作的創(chuàng)新者。對于人工智能在共同創(chuàng)造中的角色,學(xué)者們提出了多種分類。Lin等[63]將人工智能在與人類交互時(shí)的角色分為了四種,即分包商、批評家、隊(duì)友和教練。Tholander等[64]區(qū)分了兩種視角,即將人工智能視為僅執(zhí)行用戶指令的工具或?qū)⑵湟暈橹悄艽?。目前,生成式人工智能可以作為一個(gè)工具,協(xié)助具體的設(shè)計(jì)任務(wù),如圖像生成、圖像編輯和3D建模[48-49]。作為一個(gè)助手,執(zhí)行時(shí)間密集型的任務(wù),如市場研究和數(shù)據(jù)分析[33]。作為一個(gè)合作者,提供創(chuàng)造性的輸入。Lin等[28]設(shè)計(jì)制作的Cobbie機(jī)器人能夠分析設(shè)計(jì)師繪制的草圖并生成新草圖以激發(fā)設(shè)計(jì)師靈感。AI與設(shè)計(jì)師的協(xié)同工作為設(shè)計(jì)領(lǐng)域帶來了諸多優(yōu)勢,包括提高效率、增強(qiáng)創(chuàng)造力和做出更加精準(zhǔn)的設(shè)計(jì)決策。隨著人工智能的發(fā)展,其角色經(jīng)歷了顯著的轉(zhuǎn)變,從最初的“實(shí)習(xí)生”(Intern)逐漸演變?yōu)椤昂献骰锇椤保≒eer)[65]。
人工智能角色的轉(zhuǎn)變意味著設(shè)計(jì)師需要學(xué)會(huì)如何與人工智能進(jìn)行有效協(xié)作。設(shè)計(jì)師的直覺和專業(yè)判斷與AI的數(shù)據(jù)驅(qū)動(dòng)決策相結(jié)合能最大化設(shè)計(jì)成果。這種協(xié)同工作方式要求設(shè)計(jì)師不僅掌握傳統(tǒng)的設(shè)計(jì)技能,還要熟悉數(shù)據(jù)解讀和機(jī)器學(xué)習(xí)概念,從而更有效地利用AI工具、指導(dǎo)AI助手、與AI伙伴協(xié)作。Figoli等[66]認(rèn)為未來設(shè)計(jì)師將是一個(gè)能夠深入了解設(shè)計(jì)項(xiàng)目和人工智能技術(shù)且具有扎實(shí)評估能力的仲裁者。
人工智能與設(shè)計(jì)結(jié)合有無限潛力,也為設(shè)計(jì)師帶來巨大挑戰(zhàn)。設(shè)計(jì)師的創(chuàng)造力可能受到AI推薦或預(yù)生成解決方案的限制,過分依賴AI也可能導(dǎo)致設(shè)計(jì)師的技能退化或創(chuàng)造力下降[34,63]。Habib等[67]的研究指出雖然人工智能極大地促進(jìn)了創(chuàng)造性思維,但也會(huì)對創(chuàng)造力和創(chuàng)意自信產(chǎn)生負(fù)面影響。為了克服這些挑戰(zhàn),設(shè)計(jì)師需要設(shè)置正確的期望,明確AI在設(shè)計(jì)過程中的能力和角色,并學(xué)會(huì)管理和批判性地評估AI的輸出。
1.2.3.2 團(tuán)隊(duì)利用AI促進(jìn)創(chuàng)意與協(xié)作
AI不僅作為增強(qiáng)設(shè)計(jì)創(chuàng)意、提高設(shè)計(jì)效率的工具,還可以促進(jìn)設(shè)計(jì)團(tuán)隊(duì)協(xié)作。AI的應(yīng)用顯著提升了團(tuán)隊(duì)工作流程的效率。以Teams、Notion為代表的AI增強(qiáng)型項(xiàng)目管理工具能自動(dòng)生成會(huì)議總結(jié)和要點(diǎn),提升會(huì)議效率。Hong等[68]搭建了MetaGPT,并通過構(gòu)建一套標(biāo)準(zhǔn)執(zhí)行程序推動(dòng)Multi-agent框架高效地完成任務(wù)。通過任務(wù)自動(dòng)化、進(jìn)度追蹤和資源管理,AI減少了設(shè)計(jì)團(tuán)隊(duì)成員在日常管理活動(dòng)上的時(shí)間消耗,使他們能夠更集中精力于核心創(chuàng)意工作。
AI促進(jìn)跨學(xué)科理解和協(xié)作。以GPT為代表的生成式語言模型通過預(yù)訓(xùn)練掌握了廣泛全面的跨領(lǐng)域、跨學(xué)科知識(shí)。在跨學(xué)科團(tuán)隊(duì)中,GPT幫助團(tuán)隊(duì)成員跨越專業(yè)障礙,更好地理解彼此的工作和貢獻(xiàn)。AI工具能夠翻譯專業(yè)術(shù)語、解釋復(fù)雜概念。Chen等[69]開發(fā)的AgentVerse可自動(dòng)招募不同學(xué)科背景的專家,提供跨學(xué)科的信息與知識(shí)解釋。AI還可以通過可視化方式展示數(shù)據(jù)和設(shè)計(jì)原理,從而促進(jìn)團(tuán)隊(duì)成員之間的有效溝通和協(xié)作。
AI增強(qiáng)團(tuán)隊(duì)的創(chuàng)意決策過程。在團(tuán)隊(duì)創(chuàng)意過程中,AI提供基于數(shù)據(jù)的深入洞察,識(shí)別設(shè)計(jì)對象的潛在模式,揭示不同學(xué)科間的潛在聯(lián)系,支持團(tuán)隊(duì)作出可靠的決策。Huang等[70]通過構(gòu)建可視化的知識(shí)圖譜,提供全面的設(shè)計(jì)信息,優(yōu)化設(shè)計(jì)流程。
AI作為一種強(qiáng)大的團(tuán)隊(duì)工具,在促進(jìn)創(chuàng)意和協(xié)作方面發(fā)揮著至關(guān)重要的作用。它不僅提升了工作效率,還加強(qiáng)了跨學(xué)科團(tuán)隊(duì)之間的溝通和理解。然而,團(tuán)隊(duì)成員之間的人際互動(dòng)仍然是不可或缺的。AI與人類團(tuán)隊(duì)成員的合作是構(gòu)建未來高效、創(chuàng)新工作環(huán)境的關(guān)鍵。
1.2.4 聚類群4——AI+影響反思
以“原創(chuàng)價(jià)值”“影響”“作用”為核心的藍(lán)色聚類群,集中討論生成式人工智能對設(shè)計(jì)的影響。
1.2.4.1 人工智能時(shí)代下的設(shè)計(jì)師角色與價(jià)值
生成式人工智能在對設(shè)計(jì)流程及設(shè)計(jì)師等方面的深刻影響,是否意味著設(shè)計(jì)師的工作將被人工智能取代?事實(shí)上,雖然當(dāng)前的生成式人工智能已經(jīng)十分強(qiáng)大,但是設(shè)計(jì)師仍然是最重要的角色。
設(shè)計(jì)師的不可替代性主要體現(xiàn)在審美判斷、文化敏感度創(chuàng)造性思維上。盡管人機(jī)對齊研究已經(jīng)得到關(guān)注和發(fā)展,但此前的研究主要關(guān)注人機(jī)道德倫理上的對齊[71],而在審美、文化、思維方式上的對齊則有待加強(qiáng)。首先,設(shè)計(jì)師能夠進(jìn)行細(xì)膩的審美判斷,這是基于長期的美術(shù)訓(xùn)練和對人類文化深刻理解的結(jié)果。而AI在這方面仍然有限。其次,設(shè)計(jì)師能夠理解并體現(xiàn)社會(huì)文化的多樣性,這在AI生成的設(shè)計(jì)中往往缺失。最后,盡管AI可以生成多樣的設(shè)計(jì)方案,但它們?nèi)狈?chuàng)新性思維和跳躍性聯(lián)想的能力,這正是設(shè)計(jì)師的核心競爭力。雖然人工智能將從根本上改變設(shè)計(jì)的生產(chǎn)方式,完全自治、自我創(chuàng)造的系統(tǒng)可能被開發(fā)實(shí)現(xiàn),但許多研究一致認(rèn)為,人工智能的更大影響應(yīng)該是補(bǔ)充和增強(qiáng)人類創(chuàng)造力,而不是取代人類創(chuàng)造力[72-73]??梢钥闯?,設(shè)計(jì)師的角色將轉(zhuǎn)變?yōu)楦幼⒅卦O(shè)計(jì)指導(dǎo)、審美判斷和最終方案的選擇。設(shè)計(jì)師需要具備能夠有效使用AI工具來實(shí)現(xiàn)設(shè)計(jì)目標(biāo)的能力,同時(shí)保持對設(shè)計(jì)過程的主導(dǎo)地位。
人工智能影響下的設(shè)計(jì)變成了以信息為核心載體的加工過程,包括信息溝通、信息生產(chǎn)和信息判斷[74]。通過強(qiáng)調(diào)設(shè)計(jì)師在審美判斷、文化敏感度和創(chuàng)造性思維上的不可替代性,有助于提升設(shè)計(jì)師在人工智能時(shí)代的價(jià)值。
首先,設(shè)計(jì)師需要具有跨學(xué)科交叉及溝通能力,包括用同理心與用戶溝通需求痛點(diǎn)、與跨學(xué)科團(tuán)隊(duì)合作以解決問題等。設(shè)計(jì)師對現(xiàn)實(shí)世界的理解,和對用戶、使用情境的觀察與洞悉是目前的人工智能無法企及的。設(shè)計(jì)師需要保持對社會(huì)文化變遷的敏感度和批判性,將這些變化融入設(shè)計(jì)生產(chǎn)和設(shè)計(jì)評估判斷中,以增強(qiáng)設(shè)計(jì)的文化價(jià)值和社會(huì)意義,做以人為本的設(shè)計(jì)。設(shè)計(jì)師應(yīng)當(dāng)提高自身的創(chuàng)新和審美素養(yǎng),持續(xù)探索新的設(shè)計(jì)理念和方法。
再者,增強(qiáng)使用AI作為設(shè)計(jì)生產(chǎn)工具的技能,如熟練掌握提示詞技巧,理解和調(diào)整人工智能輸出以準(zhǔn)確表達(dá)設(shè)計(jì)意圖、傳達(dá)設(shè)計(jì)目標(biāo)[75]。盡管許多生成式人工智能工具和服務(wù)已經(jīng)能夠高效地生產(chǎn)視覺內(nèi)容、增強(qiáng)視覺效果,但它們只改變圖像表層的視覺風(fēng)格,不觸及深層的想法表達(dá)[38]。在設(shè)計(jì)師與人工智能協(xié)作的過程中,提示詞(Prompt)是設(shè)計(jì)師讓人工智能理解圖像背后想法的重要手段。這個(gè)轉(zhuǎn)換過程不僅需要設(shè)計(jì)師清晰地表達(dá)設(shè)計(jì)預(yù)期,還要精確使用生成模型以識(shí)別特定的術(shù)語。例如,為了生成理想的圖像,設(shè)計(jì)師必須從多個(gè)維度進(jìn)行描述,包括畫面內(nèi)容、視角、風(fēng)格、顏色和組成元素等。潛在的挑戰(zhàn)是文本提示轉(zhuǎn)換的圖像與設(shè)計(jì)師預(yù)期的視覺概念不一致,從而影響最終設(shè)計(jì)成果的準(zhǔn)確性和質(zhì)量。針對這一挑戰(zhàn),設(shè)計(jì)師需要培養(yǎng)出強(qiáng)大的Prompt能力,這不僅涉及對相關(guān)理論的深刻理解,也包括熟練掌握實(shí)際操作。
最后,在評估和篩選人工智能(AI)生成的設(shè)計(jì)作品時(shí),設(shè)計(jì)師不僅需對作品的審美價(jià)值進(jìn)行考量,而且必須評估AI產(chǎn)出內(nèi)容的準(zhǔn)確性與潛在偏見[76]。當(dāng)前生成式人工智能在信息準(zhǔn)確性和道德標(biāo)準(zhǔn)上依然存在問題,這不僅影響設(shè)計(jì)的質(zhì)量和可信度,還可能對社會(huì)倫理和公共安全產(chǎn)生影響。設(shè)計(jì)師在使用AI工具時(shí),需要批判性地評估AI是否產(chǎn)生了錯(cuò)誤或虛假信息,以及是否展現(xiàn)了有偏見或歧視性的內(nèi)容。除了設(shè)計(jì)師自身的評估外,還必須引入外部的校準(zhǔn)機(jī)制以增強(qiáng)驗(yàn)證過程。這包括實(shí)施錯(cuò)誤檢測和修正機(jī)制、使用多元化和平衡的訓(xùn)練數(shù)據(jù)集,以及開發(fā)能夠有效識(shí)別和消除偏見的算法。這些措施對確保AI系統(tǒng)的公正性和包容性至關(guān)重要,有助于提高設(shè)計(jì)成果的質(zhì)量和可信度。
1.2.4.2 人工智能的責(zé)任邊界與倫理原則
由于人工智能技術(shù)的發(fā)展,它能夠做的事情越來越多,影響也越來越大,人工智能具有承擔(dān)責(zé)任的能力。經(jīng)濟(jì)合作組織(OECD)在2019年發(fā)布的AI原則(AI Principle)中提出“負(fù)責(zé)任的AI”(Responsible AI)應(yīng)包含以下原則:(1)包容性增長、可持續(xù)地發(fā)展和謀取福利;(2)以人為中心的價(jià)值和公平性;(3)透明度和可解釋性;(4)魯棒性和安全性;(5)能夠被問責(zé)[77-78]。這要求人工智能不僅公平地展示作品中不同參與者的智力成果貢獻(xiàn),也能夠限制或規(guī)避對人類社會(huì)有害的內(nèi)容。
人工智能技術(shù)的發(fā)展讓圖像或文本的生成變得前所未有的容易,這使得設(shè)計(jì)師工作的價(jià)值和原創(chuàng)性可能會(huì)被質(zhì)疑[79]。在新技術(shù)蓬勃發(fā)展的今天,一味地拒絕并限制新技術(shù)顯然是不可取的,要讓人工智能技術(shù)能夠真正服務(wù)好設(shè)計(jì)師的工作,不僅需要明確設(shè)計(jì)師的智力貢獻(xiàn),也要尊重為人工智能的訓(xùn)練所貢獻(xiàn)數(shù)據(jù)的人類智慧成果。這要求人工智能的開發(fā)者和設(shè)計(jì)師都能夠遵循“負(fù)責(zé)任的AI”原則,促進(jìn)人工智能技術(shù)應(yīng)用的發(fā)展。
目前,針對生成式AI的研究主要集中在設(shè)計(jì)的某些特定階段,例如圖像生成或信息搜集。然而,隨著技術(shù)的進(jìn)步,未來可能出現(xiàn)能夠參與到整個(gè)設(shè)計(jì)流程中的超級AI系統(tǒng)。
在這種模式下,AI將作為設(shè)計(jì)師的合作伙伴,參與到設(shè)計(jì)的各個(gè)階段,實(shí)現(xiàn)從間歇性到連續(xù)性和主動(dòng)性的互動(dòng)變革。例如,AI可以提供持續(xù)的支持和自動(dòng)調(diào)整,從而在整個(gè)設(shè)計(jì)過程中與設(shè)計(jì)師密切合作。預(yù)計(jì)未來AI將更加主動(dòng)、密切地參與設(shè)計(jì)流程,與設(shè)計(jì)師建立更緊密的合作關(guān)系,共同推動(dòng)設(shè)計(jì)的創(chuàng)新和發(fā)展[80]。
Lin等[81]展示了一種創(chuàng)新的多模態(tài)交互方法,其中不同的AI模型被構(gòu)建為可組合的模塊。設(shè)計(jì)師可以在不同模態(tài)之間靈活地融合這些模型的功能。該研究提供了一種更為豐富和以任務(wù)為導(dǎo)向的交互體驗(yàn),超越了傳統(tǒng)的、基于設(shè)計(jì)軟件的交互限制。這種方法不僅提升了交互的靈活性,還增強(qiáng)了設(shè)計(jì)師在多樣化任務(wù)處理中的創(chuàng)造力和效率。
要實(shí)現(xiàn)全流程設(shè)計(jì)的AI系統(tǒng),關(guān)鍵在于增強(qiáng)AI的跨模態(tài)、跨任務(wù)協(xié)同能力。在這方面,多智能體系統(tǒng)(Multi-agent System)顯示出其獨(dú)特優(yōu)勢。例如,Ding等[82]通過模擬設(shè)計(jì)公司中不同角色的AI代理,允許設(shè)計(jì)師用自然語言與這些代理協(xié)作,從而提高設(shè)計(jì)效率并融合領(lǐng)域知識(shí)。
然而,目前AI在規(guī)劃和執(zhí)行整個(gè)設(shè)計(jì)流程方面仍面臨挑戰(zhàn)。雖然近期的研究證明了AI可以完成較為復(fù)雜的思維過程和邏輯推理能力[83-87],但是AI在處理復(fù)雜問題和對任務(wù)進(jìn)度進(jìn)行管理方面的能力依然有限。設(shè)計(jì)思維是一個(gè)迭代的非線性過程,包含共情、定義、構(gòu)思、原型和測試等階段[88-89]。要讓AI準(zhǔn)確理解這個(gè)過程并有效參與,需要強(qiáng)化其文本管理和計(jì)劃能力。Wu等[90]開發(fā)的Autogen通過特定策略來管理進(jìn)度,但仍然存在效率低下和進(jìn)程丟失的問題。
隨著技術(shù)進(jìn)步,深入研究AI的規(guī)劃、跨模態(tài)交互和協(xié)作能力是關(guān)鍵,這將使AI從設(shè)計(jì)輔助者轉(zhuǎn)變?yōu)槟塥?dú)立完成并自動(dòng)化設(shè)計(jì)流程的關(guān)鍵角色。
在智能化浪潮之中,機(jī)遇與挑戰(zhàn)并存。隨著人工智能技術(shù)的迅猛發(fā)展,許多設(shè)計(jì)師已經(jīng)開始利用人工智能技術(shù)幫助自己工作。本文深入探討了人工智能技術(shù)在設(shè)計(jì)領(lǐng)域的應(yīng)用與影響,通過檢索大量相關(guān)文獻(xiàn)并進(jìn)行關(guān)鍵詞聚類的方法整理出了若干個(gè)視角,樹立了人工智能技術(shù)的發(fā)展,總結(jié)了人工智能在設(shè)計(jì)領(lǐng)域的應(yīng)用,討論了設(shè)計(jì)師利用人工智能工作時(shí)遇到的問題,并且提出了AI+設(shè)計(jì)在未來可能的發(fā)展方向。
人工智能技術(shù)為設(shè)計(jì)師提供了強(qiáng)大的工具和資源,這些技術(shù)不僅為創(chuàng)意的產(chǎn)生提供了新的途徑,還加速了設(shè)計(jì)過程。人工智能技術(shù)參與設(shè)計(jì)工作改變了原有的設(shè)計(jì)方法,在設(shè)計(jì)初期、創(chuàng)意構(gòu)思階段、設(shè)計(jì)定義階段、設(shè)計(jì)實(shí)施階段,設(shè)計(jì)師都可以利用人工智能來幫助自己完成該階段的設(shè)計(jì)工作。同時(shí)人們需要正視目前人工智能技術(shù)并不十分成熟,在應(yīng)用人工智能技術(shù)時(shí)需要仔細(xì)權(quán)衡其對社會(huì)的影響,隱私保護(hù)、算法公正性和技術(shù)透明度等問題需要在設(shè)計(jì)過程中得到充分考慮。這其中設(shè)計(jì)師的角色十分重要。研究人員正在試圖降低設(shè)計(jì)師們與人工智能合作交互的門檻,構(gòu)建設(shè)計(jì)師與人工智能的協(xié)作體系??梢灶A(yù)見未來人工智能將會(huì)逐步參與設(shè)計(jì)的全階段。
總體而言,人工智能技術(shù)為設(shè)計(jì)領(lǐng)域帶來了革命性的變化,但也必須謹(jǐn)慎對待其潛在的負(fù)面影響。在未來,需要持續(xù)關(guān)注技術(shù)的發(fā)展,加強(qiáng)倫理標(biāo)準(zhǔn),并尋求創(chuàng)新的解決方案,以確保人工智能與設(shè)計(jì)的融合能更好地服務(wù)于人類社會(huì)。
[1] WANG K, GOU C, DUAN Y, et al. Generative Adversarial Networks: Introduction and Outlook[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 588-598.
[2] LWCUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521(7553): 436-444.
[3] WANG Y, PAN Y, YAN M, et al. A Survey on ChatGPT: AI-generated Contents, Challenges and Solutions[J]. IEEE Open Journal of the Computer Society, 2023, 4: 280-302.
[4] WASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[C]// Proceedings of Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017. Long Beach: NIPS, 2017: 30.
[5] DEVLIN J, CHANG M, LEE K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis: NAACL-HLT, 2019: 4171-4186.
[6] BROWN T, MANN B, RYDER N, et al. Language Models are Few-shot Learners[J]. Advances in Neural Information Processing Systems, 2020, 33: 1877-1901.
[7] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[C]// Proceedings of the 9th International Conference on Learning Representations. Sydney: ICLR. 2020: 1-21.
[8] RADFORD A, KIM J W, HALLACY C, et al. Learning Transferable Visual Models from Natural Language Supervision[C]// Proceedings of the International Conference on Machine Learning Research[S.l.]: PMLR, 2021: 8748-8763.
[9] 付心儀, 張鶴, 薛程, 等. 智能家居綜合實(shí)驗(yàn)平臺(tái)設(shè)計(jì)研究與應(yīng)用實(shí)踐[J]. 包裝工程, 2022, 43(16): 50-58. FU X, ZHANG H, XUE C, et al. Design Research and Application Practice of Integrated Experimental Platform for Smart Home[J]. Packaging Engineering, 2022, 43(16): 50-58.
[10] 付心儀, 張鶴, 薛程, 等. 面向未來的智能家居前沿進(jìn)展[J]. 科技導(dǎo)報(bào), 2023, 41(8): 36-52. FU X, ZHANG H, XUE C, et al. A Review of the Frontier Research on Future Smart Home[J]. Science & Technology Review, 2023, 41(8): 36-52.
[11] 肖虹, 唐健凱, 丘雨涵, 等. 隱私友好的步態(tài)數(shù)據(jù)采集與情緒識(shí)別方法[J]. 計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào), 2023, 35(2): 203-212. XIAO H, TANG J K, XUE Y H, et al. A Method of Privacy-friendly Gait Date Acquisition and Emotion Recognition[J]. Journal of Computer-aided Design & Computer Graphics, 2023, 35(2): 203-212.
[12] DU J, JIA B, FU X. Space Brain: An AI Autonomous Spatial Decision System[C]// Proceedings of the Artificial Intelligence- Third CAAI International Conference. Fuzhou: CICAI, 2023: 61-67.
[13] YANG L, ZHANG Z, SONG Y, et al. Diffusion Models: A Comprehensive Survey of Methods and Applications[J]. ACM Computing Surveys, 2023, 56(4): 1-39.
[14] HO J, JAIN A, ABBEEL P. Denoising Diffusion Probabilistic Models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851.
[15] SOHL-DICKSTEIN J, WEISS E, MAHESWARANA-THAN N, et al. Deep Unsupervised Learning Using Nonequilibrium Thermodynamics[C]// Proceedings of the International Conference on Machine Learning. Lille: PMLR, 2015: 2256-2265.
[16] NICHOL A Q, DHARIWAL P. Improved Denoising Diffusion Probabilistic Models[C]// Proceedings of the International Conference on Machine Learning.[S.l.]: PMLR, 2021: 8162-8171.
[17] PAN Y, BURNAP A, HARTLEY J, et al. Deep Design: Product Aesthetics For Heterogeneous Markets[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data. Halifax: ACM, 2017: 1961-1970.
[18] HUANG F, CANNY J F, NICHOLS J. Swire: Sketch- Based User Interface Retrieval[C]// Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. Glasgow: CHI, 2019: 1–10.
[19] CHEN C, FENG S, LIU Z, et al. From Lost to Found: Discover Missing UI Design Semantics Through Recovering Missing Tags[C]// Proceedings of the ACM on Human-Computer Interaction.[S.l.]: CSCW, 2020: 1-22.
[20] BUNIAN S, LI K, JEMMALI C, et al. VINS: Visual Search For Mobile User Interface Design[C]// Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Yokohama: CHI, 2021: 1-14.
[21] LIN D C E, MARTELARO N. Learning Personal Style from Few Examples[C]// Proceedings of the 2021 ACM Designing Interactive Systems Conference.[S.l.]: DIS, 2021: 1566-1578.
[22] DEKA B, HUANG Z, KUMAR R. ERICA: Interaction Mining Mobile Apps[C]// Proceedings of the 29th Annual Symposium on User Interface Software and Technology. Tokyo: UIST, 2016: 767-776.
[23] FAN M, WU K, ZHAO J, et al. VisTA: Integrating Machine Intelligence with Visualization to Support the Investigation of Think-Aloud Sessions[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 26(1): 343-352.
[24] SUN W, LI Y, SHEOPURI A, et al. Computational Creative Advertisements[C]// Proceedings of the The Web Conference. Lyon: WWW, 2018: 1155-1162.
[25] O'DONOVAN P, AGARWALA A, HERTZMANN A. Collaborative Filtering of Color Aesthetics[C]// Proceedings of the Workshop on Computational Aesthetics. Vancouver: CAe@Expressive, 2014: 33-40.
[26] HUBERT K F, AWA K N, ZABELINA D L. The Current State of Artificial Intelligence Generative Language Models is More Creative than Humans on Divergent Thinking Tasks[J]. Scientific Reports, 2024, 14(1): 3440.
[27] VARTANIAN A, SUN X, CHUANG Y-S, et al. Learning Interactions to Boost Human Creativity with Bandits And GPT-4[J/OL]. arXiv preprint, 2023[2023-11-05]. https://doi.org/10.48550/arXiv.2311.10127.
[28] LIN Y, GUO J, CHEN Y, et al. It is Your Turn: Collaborative Ideation with a Co-creative Robot Through Sketch[C]// Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Honolulu: CHI, 2020: 1-14.
[29] KOCH J, TAFFIN N, BEAUDOUIN-LAFON M, et al. Imagesense: An Intelligent Collaborative Ideation Tool to Support Diverse Human-computer Partnerships[C]// Proceedings of the ACM on Human-computer Interaction.[S.l.]: CSCW, 2020: 1-27.
[30] MOZAFFARI M A, ZHANG X, CHENG J, et al. GANSpiration: Balancing Targeted and Serendipitous Inspiration in User Interface Design with Style-based Generative Adversarial Network[C]// Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. New Orleans: CHI, 2022: 1-15.
[31] RICK S R, GIACOMELLI G, WEN H, et al. Supermind Ideator: Exploring Generative AI to Support Creative Problem-solving[J/OL]. arXiv preprint, 2023[2023-11- 05]. https://doi.org/10.48550/arXiv.2311.01937.
[32] GIZZI E, NAIR L, CHERNOVA S, et al. Creative Problem Solving in Artificially Intelligent Agents: A Survey and Framework[J]. Journal of Artificial Intelligence Research, 2022, 75: 857-911.
[33] JEON Y, JIN S, SHIH P C, et al. FashionQ: An AI- driven Creativity Support Tool for Facilitating Ideation in Fashion Design[C]// Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Yokohama: CHI, 2021: 1-18.
[34] CHO Y T, KUO Y L, YEH Y T, et al. IntuModels: Enabling Interactive Modeling for the Novice Through Idea Generation and Selection[C]// Proceedings of the 13th Conference on Creativity and Cognition. Venice: C&C, 2021: 1-10.
[35] FAN M, YANG X, YU T T, et al. Human-AI Collaboration for UX Evaluation: Effects Of Explanation and Synchronization[C]// Proceedings of the ACM on Human-computer Interaction.[S.l.]: CSCW1, 2021: 1-32.
[36] YUN G, CHO K, JEONG Y, et al. Ideasquares: Utilizing Generative Text as a Source of Design Inspiration[C]// Proceedings of the DRS Conference. Bilbao: DRS, 2022: 150.
[37] VERGANTI R, VENDRAMINELLI L, IANSITI M. Innovation and Design in the Age of Artificial Intelligence[J]. Journal of Product Innovation Management, 2020, 37(3): 212-227.
[38] HONG M K, HAKIMI S, CHEN Y Y, et al. Generative AI for Product Design: Getting the Right Design and the Design Right[J/OL]. arXiv preprint, 2023[2023-11-05]. https://doi.org/10.48550/arXiv.2306.01217.
[39] WANG G, QIN Z, YAN J, et al. Learning to Select Elements for Graphic Design[C]// Proceedings of the 2020 International Conference on Multimedia Retrieval. Dublin: ICMR, 2020: 91-99.
[40] ZHANG Y, HU K, REN P, et al. Layout Style Modeling for Automating Banner Design[C]// Proceedings of the Thematic Workshops of ACM Multimedia. Mountain View: ACM, 2017: 451-459.
[41] MAHESHWARI P, BANSAL N, DWIVEDI S, et al. Exemplar Based Experience Transfer[C]// Proceedings of the 24th International Conference on Intelligent User Interfaces. Marina del Ray: IUI, 2019: 673-680.
[42] KIKUCHI K, SIMO-SERRA E, OTANI M, et al. Constrained Graphic Layout Generation via Latent Ptimization[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: MM, 2021: 88-96.
[43] HUANG F, SCHOOP E, HA D, et al. Scones: Towards Conversational Authoring of Sketches[C]// Proceedings of the 25th International Conference on Intelligent User Interfaces. Cagliari: IUI, 2020: 313-323.
[44] WEI J, SCHALDENBRAND P, CHOI J H, et al. Collaborative Robotic Painting and Paint Mixing Demonstration[C]// Companion Publication of the 2023 ACM Designing Interactive Systems Conference. Pittsburgh: ACM, 2023: 292-296.
[45] YAN C, CHUNG J J Y, KIHEON Y, et al. FlatMagic: Improving Flat Colorization through AI-driven Design for Digital Comic Professionals[C]// Proceedings of the 2022 ACM Designing Interactive Systems Conference. New Orleans: ACM, 2022.
[46] CAO S, ZHANG J, SHI J, et al. Probabilistic Tree-of- thought Reasoning for Answering Knowledge-intensive Complex Questions[C]// Findings of the Association for Computational Linguistics. Singapore: EMNLP, 2023: 12541-12560.
[47] JAHANIAN A, KESHVARI S, VISHWANATHAN S V N, et al. Colors—Messengers of Concepts: Visual Design Mining for Learning Color Semantics[J]. Transactions on Computer-human Interaction, 2017, 24(1): 1-39.
[48] WU W, FU X M, TANG R, et al. Data-driven Interior Plan Generation for Residential Buildings[J]. Transactions on Graphics, 2019, 38(6): 1-12.
[49] WANG Y, GAO Y, LIAN Z. Attribute2Font: Creating Fonts You Want from Attributes[J]. Transactions on Graphics, 2020, 39(4): 1-18.
[50] LIAN Z, ZHAO B, CHEN X, et al. EasyFont: A Style Learning-based System to Easily Build Your Large-scale Handwriting Fonts[J]. Transactions on Graphics, 2019, 38(1): 1-18.
[51] CAMPBELL N D F, KAUTZ J. Learning a Manifold of Fonts[J]. Transactions on Graphics, 2014, 33(4): 1-11.
[52] ZHAO N, KIM N W, HERMAN L M, et al. Iconate: Automatic Compound Icon Generation and Ideation[C]// Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Honolulu: ACM, 2020: 1-13.
[53] KARAMATSU T, BENITEZ-GARCIA G, YANAI K, et al. Iconify: Converting photographs into icons[C]// Proceedings of the 2020 Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia. Dublin: ACM, 2020: 7-12.
[54] LI C, PAN H, BOUSSEAU A, et al. Sketch2CAD: Sequential CAD Modeling by Sketching in Context[J]. Transactions on Graphics, 2020, 39(6): 1-14.
[55] WILLIS K D D, PU Y, LUO J, et al. Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD Construction from Human Design Sequences[J]. Transactions on Graphics, 2021, 40(4): 1-24.
[56] ZHAO N, CAO Y, LAU R W H. What Characterizes Personalities Of Graphic Designs?[J]. Transactions on Graphics, 2018, 37(4): 1-15.
[57] WACHS J, DARóCZY B, HANNáK A, et al. And Now for Something Completely Different: Visual Novelty in an Online Network of Designers[C]// Proceedings of the 10th ACM Conference on Web Science. Amsterdam: ACM, 2018: 163-172.
[58] BUCHANAN R. Wicked Problems in Design Thinking[J]. Design Issues, 1992, 8(5): 5-21.
[59] ABRAS C, MALONEY-KRICHMAR D, PREECE J. User-centered Design[J]. Encyclopedia of Human- computer Interaction, 2004, 37(4): 445-456.
[60] Design Council. Design Methods for Developing Services, Keeping Connected Business Challenge[M]. London: Design Council, 2015
[61] ZARZYCKI A. Maintaining Agency in AI-generated Works of Art and Design: Deliberate Creative Processes[C]// Proceedings of SIGGRAPH Asia 2023 Educator's Forum. Sydney: ACM, 2023: 1-8.
[62] BOUSCHERY S G, BLAZEVIC V, PILLER F T. Augmenting Human Innovation Teams with Artificial Intelligence: Exploring Transformer-based Language Models[J]. Journal of Product Innovation Management, 2023, 40(2): 139-153.
[63] LIN Z, RIEDL M. An Ontology of Co-creative AI Systems[J]. arXiv preprint arXiv, 2023[2023-11-05]. https:// doi.org/10.48550/arXiv.2310.07472.
[64] THOLANDER J, JONSSON M. Design Ideation with AI - Sketching, Thinking And Talking With Generative Machine Learning Models[C]// Proceedings of the 2023 ACM Designing Interactive Systems Conference. Pittsburgh: ACM, 2023.
[65] LIU J, NAH K. Design Collaboration Mode of Man– computer Symbiosis in the Age of Intelligence[M]. Cham: Springer International Publishing, 2020.
[66] FIGOLI F A, RAMPINO L, MATTIOLI F. AI in Design Idea Development: A Workshop on Creativity and Human-AI Collaboration[C]// Proceedings of Design Research Society 2022. Bilbao: DRS, 2022: 1-17.
[67] HABIB S, VOGEL T, ANLI X, et al. How does Generative Artificial Intelligence Impact Student Creativity?[J]. Journal of Creativity, 2024, 34(1): 100072.
[68] HONG S, ZHENG X, CHEN J, et al. Metagpt: Meta Programming for Multi-agent Collaborative Framework[J/OL]. arXiv preprint, 2023[2023-11-05]. https:// doi.org/10.48550/arXiv.2308.00352.
[69] CHEN W, SU Y, ZUO J, et al. Agentverse: Facilitating multi-agent Collaboration and Exploring Emergent Behaviors in Agents[J/OL]. arXiv preprint, 2023[2023-11- 05]. https://doi.org/10.48550/arXiv.2308.10848.
[70] HUANG Y, YU S, CHU J, et al. Design Knowledge Graph-aided Conceptual Product Design Approach Based on Joint Entity and Relation Extraction[J]. Journal of Intelligent & Fuzzy Systems, 2023, 44(3): 5333- 5355.
[71] BURNS C, IZMAILOV P, KIRCHNER J H, et al. Weak- to-strong Generalization: Eliciting Strong Capabilities with Weak Supervision[J/OL]. arXiv preprint, 2023 [2023-11-05]. https://doi.org/10.48550/arXiv.2312.09390.
[72] CILA N. Designing Human-agent Collaborations: Com-mi-tment, Responsiveness, and Support[C]// Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. New Orleans: CHI, 2022: 1-18.
[73] SENDHOFF B, WERSING H. Cooperative Intelligence: a Humane Perspective[C]// Proceedings of the 2020 IEEE International Conference on Human-machine Systems (ICHMS). Rome: IEEE, 2020: 1-6.
[74] 李杰, 蔡新元. 人工智能使設(shè)計(jì)重返“意義”[J]. 設(shè)計(jì), 2024, 37(2): 30-35. LI J, CAI X Y. Artificial Intelligence Brings Design Back to "Meaning"[J]. Design, 2024, 37(2): 30-35.
[75] GMEINER F, YANG H, YAO L, et al. Exploring Challenges and Opportunities to Support Designers in Learning to Co-create with AI-based Manufacturing Design Tools[C]// Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. Hambury: CHI, 2023: 1-20.
[76] SHAIKH S, MHASKE S. The Rise of Creative Machines: Exploring the Impact of Generative AI[J/OL]. arXiv preprint, 2023[2023-11-05]. https://doi.org/10. 48550/arXiv.2311.13262.
[77] CHEN C, FU J, LYU L. A Pathway towards Responsible AI-generated Content[J/OL]. arXiv preprint, 2023[2023- 11-05]. https://doi.org/10.48550/arXiv.2303.01325.
[78] LU Q, ZHU L, XU X, et al. Towards a Roadmap on Software Engineering for Responsible AI[C]// Proceedings of the 1st International Conference on AI Engineering: Software Engineering for AI. Pittsburgh: ACM, 2022: 101-112.
[79] PISKOPANI A M, CHAMBERLAIN A, TEN HOLTER C. Responsible AI and the Arts: The Ethical and Legal Implications of AI in the Arts and Creative Industries[C]// Proceedings of the First International Symposium on Trustworthy Autonomous Systems. Edinburgh: ACM, 2023: 1-5.
[80] VAN BERKEL N, SKOV MB, KJELDSKOV J. Human-AI Interaction: Intermittent, Continuous, and Proactive[J]. Interactions, 2021, 28(6): 67-71.
[81] LIN D C E, MARTELARO N. Jigsaw: Supporting Designers in Prototyping Multimodal Applications by Assembling AI Foundation Models[J/OL]. arXiv preprint, 2023[2023-11-05]. https://doi.org/10.48550/arXiv.2310. 08574.
[82] DING S, CHEN X, FANG Y, et al. DesignGPT: Multi- agent Collaboration in Design[J/OL]. arXiv preprint, 2023[2023-11-05]. https://doi.org/10.48550/arXiv.2311.11591.
[83] SHINN N, CASSANO F, GOPINATH A, et al. Reflexion:Language Agents with Verbal Reinforcement Learning[C]// Advances in Neural Information Processing Systems. New Orleans: Curran Associates, 2023, 36: 8634-8652.
[84] LIN B Y, FU Y, YANG K, et al. Swiftsage: A Generative Agent with Fast and Slow Thinking for Complex Interactive Tasks[C]// Advances in Neural Information Processing Systems. New Orleans: Curran Associates, 2023, 36: 23813-23825.
[85] WEI J, WANG X, SCHUURMANS D, et al. Chain-of- thought Prompting Elicits Reasoning in Large Language Models[C]// Advances in Neural Information Processing Systems. New Orleans: Curran Associates, 2022, 35: 24824-24837.
[86] YAO S, YU D, ZHAO J, et al. Tree of Thoughts: Deliberate Problem Solving with Large Language Models[C]// Advances in Neural Information Processing Systems. New Orleans: Curran Associates, 2023, 36: 11809-11822.
[87] CHEN B, ZHANG Z, LANGRENé N, et al. Unleashing the Potential of Prompt Engineering in Large Language Models: A Comprehensive Review[J/OL]. arXiv preprint, 2023[2023-11-05]. https://doi.org/10.48550/arXiv. 2310.14735.
[88] Wikipedia Contributors. Double Diamond (Design Process Model)[EB/OL]. (2023-11-6) [2023-11-08]. https://en. wikipedia.org/w/index.php?title=Double_Diamond_(design_ process_model)&oldid=1183822561.
[89] CROSS N. Design Thinking: Understanding How Designers Think and Work[M]. London: Bloomsbury Publishing, 2023.
[90] WU Q, BANSAL G, ZHANG J, et al. Autogen: Enabling next-gen LLM Applications via Multi-agent Conversation Framework[J/OL]. arXiv preprint, 2023[2023-11- 08]. https://doi.org/10.48550/arXiv.2308.08155.
Application and Development of Artificial Intelligence in Design Industry
XU Yingqing, ZHOU Qinyi, DENG Jie, ZHANG Yu, FU Xinyi*
(Tsinghua University, Beijing 100090, China)
The work aims to sort out and summarize the application of artificial intelligence in the field of design and explore its impact on design processes and designers, while looking forward to the influence trend of artificial intelligence on design industry in the future. VOSviewer tool and bibliometric analysis were used to visualize and cluster the literature on the "innovation and application of artificial intelligence in the design field" from the Web of Science database and deeply analyze the core viewpoints and cases. The four main clusters (AI + Technology Application, AI + Design Process, AI + Creative Collaboration, and AI + Reflective Impact) were discussed, particularly with the focus on the influence of artificial intelligence generated content (AIGC) technology on design methods and design processes and its role in enhancing innovation and efficiency was highlighted. Additionally, AIGC poses new challenges and redefinition requirements for designers' traditional roles and design originality. It is predicted that artificial intelligence will be further integrated into the design process in the future to promote design innovation, pay more attention to the originality and responsibility boundary, and explore a new mode of cooperation between artificial intelligence and designers. Through a comprehensive review of the application of artificial intelligence in the design field, it provides valuable theoretical reference and development direction for the integration of design innovation and artificial intelligence in the future.
artificial intelligence generated content (AIGC); generative content; design industry innovation; design innovation; creative process; human-computer collaboration
TB472
A
1001-3563(2024)08-0001-10
10.19554/j.cnki.1001-3563.2024.08.001
2023-11-10
教育部人文社科基金青年項(xiàng)目(23YJCZH049)
通信作者