• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一例多釩酸鹽雜化材料的制備及高效催化烯烴環(huán)氧化

    2024-04-17 00:57:18杜思宇王雪怡關(guān)致敏馬宏芳
    無機化學學報 2024年4期
    關(guān)鍵詞:山西大同大學化學化工學院

    李 寧 杜思宇 王雪怡 楊 輝 周 濤 關(guān)致敏 費 鵬 馬宏芳 蔣 尚

    (山西大同大學化學與化工學院,大同 037009)

    0 Introduction

    The inorganic - organic hybrid materials, which combine inorganic and organic constituents, have been studied and have a broad scope of applications in catalysis, magnetism, photochemistry, and biomedicine[1-3].Thus, the preparation of functionalized inorganicorganic hybrid materials is of great significance. The key procedure in the preparation of such combined materials is the selection of eligible organic and inorganic constituents. Polyoxometalates (POMs) are a fascinating class of inorganic cluster materials possessing enormous structures and multifaceted applications.Because of their excellent performances, POMs have been researched extensively as precursors for the construction of hybrid materials[4-7]. Polyoxovanadates(POVs), as a special subclass of POMs, have aroused great interest owing to their electromagnetism, redox activity, and medical chemistry[8-10]. Additionally, the V—O fragments possess the potency to bind transition metals to form functional hybrids using their terminal oxygen atoms. These hybrid materials have been considered as oxidation catalysts to catalyze a variety of organic substrates. The materials not merely overcome the troubles of the easy aggregation and hard recovery of POMs but also enhance the stabilization and recyclability of catalysts[11-13].

    Olefins epoxidation is a kind of important industrial catalytic reaction, and its epoxidation products are a kind of important organic intermediates, that have important applications in the fine chemical industry,petrochemical industry, polymer materials, and pharmaceutical synthesis[14-16]. In recent years, green chemistry has attracted great attention from researchers,hydrogen peroxide has high reactive oxygen content and its product is water, therefore, the reaction system using hydrogen peroxide as an oxidant has been widely studied. For the past few decades, varieties of POMs have been generally used as effective catalysts for the epoxidation of olefins. Up to now, many inorganicorganic hybrid POV materials have been applied to the selective oxidation of sulfides and alcohols and have shown efficient catalytic performance[17-20]. However,the investigation of hybrid POVs for olefin epoxidation catalysis is still rare[21-23].In addition,based on previous literature reports, cobalt-containing compounds show excellent catalytic effect and high selectivity of epoxidation products in various olefin epoxidation reactions and are potential epoxidation catalysts[24-26]. The combination of POVs and Co-complex may cooperatively interact giving rise to synergistic effects to enhance the catalytic activity.

    On considerations of the above content, to investigate the oxidation catalytic performance of POVs, we successfully synthesized an inorganic-organic hybrid cobalt vanadate, [Co(pIM)V2O6] (1) (pIM=2-(2-Pyridyl)imidazole), by reacting CoCl2·6H2O with NaVO3and pIM under hydrothermal conditions. The compound exhibited the 2D network composed of VO4tetrahedra and CoO3N2square pyramid via both edge- and cornersharing. As a catalyst for epoxidation, the conditions of epoxidation of olefin were optimized,and the reusability of the catalyst was also studied.

    1 Experimental

    1.1 Materials and methods

    The chemicals for the experiments were commercially sourced and no additional purifying was performed. Elemental analyses of Co and V were confirmed by PLASMASPEC (I)ICP atomic emission spectrometer, and the contents of C, H, and N were analyzed by a PerkinElmer 2400 CHN elemental analyzer.Powder X-ray diffraction (PXRD) was implemented on a Rigaku D/MAX-3 instrument and the radiation of CuKα(λ=0.154 2 nm) at 298 K and X-ray 40 kV/30 mA over a 2θrange of 5°-50°. The Fourier transform infrared (IR) spectra were collected using KBr pellets on an Alpha Centaurt FTIR system, implementing from 4 000 cm-1to 400 cm-1. Thermogravimetric (TG) analysis was determined with the Perkin-Elmer TGA7 apparatus with a heating speed of 10 ℃·min-1in an atmosphere of N2. The catalytic reaction process was monitored and evaluated by the GC-2014 (Shimadzu) system with biphenyl as an internal standard substrate.The collection of magnetic susceptibility data was used a SQUID magnetometer (Quantum Design, MPMS-5)with an external magnetic field of 1 000 Oe and a temperature region of 2 to 300 K.

    1.2 Synthesis of compound 1

    CoCl2·6H2O (0.24 g, 1.0 mmol), NaVO3(0.12 g,1.0 mmol) and pIM (0.15 g, 1.0 mmol) were added to 10 mL distilled water, and the reaction solution was adjusted to pH 4.2 with 1 mol·L-1HCl in the stirring process. The reaction solution was stirred for 15 min and then transferred to a 23 mL stainless reactor. The stainless reactor was placed in the oven at 170 ℃for three days and then decreased to ambient temperature at a rate of 10 ℃·h-1.Blocky crystals were collected by filtration, washing, and dried at ambient temperatures.Yield: 22.2% (V-based). Anal. Calcd.(%) for C8H7N3O6CoV2:C 24.3;H 1.7;N 10.6;Co 14.9;V 25.8;Found(%):C 23.9;H 1.8;N 10.9;Co 15.4;V 25.2.

    1.3 X-ray crystallography

    A regular block single crystal was selected to be wrapped with vaseline and encapsulated in a fine glass tube of appropriate size. Crystal data were obtained using a Bruker Smart-CCD diffractometer with monochromated MoKαradiation (λ=0.071 07 nm) at room temperature. Structure determination was fulfilled by direct methods using the SHELXS-2014 crystallographic program via the Olex 2 platform[27], and succedent atom refinement was accomplished using full-matrix least-squares procedures. In the process of refinement,all the non-hydrogen atoms in the structure were refined anisotropically. The H atoms on the C and N atoms were arranged geometrically.Table 1 summarizes the crystallology information of 1 and its refinement results.

    Table 1 Crystallographic data of 1 and corresponding structural refinements

    CCDC:2285966.

    2 Results and discussion

    2.1 Synthesis and structure

    X-ray single-crystal diffraction reveals the crystallization of 1 in the triclinicPspace group. The structure contains a crystallographically independent Co2+,a[V2O6]2-unit, and a pIM ligand. In this structure, Co2+coordinates with three O atoms and two N atoms from the ligand to form a twisted CoO3N2square pyramid configuration. There are two crystallographically different vanadium atoms:V1 and V2,both vanadiums adopt a distorted tetrahedral coordination pattern. Where, V1 coordinates with two bridging O atoms from two VO4,one bridging O from CoO3N2and the end O atoms of its own VO4, V2 coordinates with two bridged O atoms from CoO3N2and two bridged O atoms from VO4(Fig.1a). The average bond length of V—O is 0.172 9 nm, and those of Co—O and Co—N is 0.199 2 and 0.213 2 nm. The valence states of V and Co are determined to be +5 and +2 respectively through bondvalence sum calculations. An interesting feature of the structure is that the VO4tetrahedra and the CoO3N2tetragonal cone are connected by sharing O atoms to form a ternary ring system containing two fivemembered rings and one six-membered ring (Fig.1b).The five-membered ring includes four VO4tetrahedra and one CoO3N2tetragonal cone, while the sixmembered ring includes four VO4tetrahedra and two CoO3N2tetragonal cones. These ternary rings are further pointed and coplanar to form a 2D layer network(Fig.1c).

    Fig.1 (a)Coordination for the Co and V in 1;(b)Ternary ring system containing two five-membered rings and one six-membered ring;(c)2D layer formed by ternary rings

    2.2 IR spectra,PXRD and TG analysis

    The IR spectra of 1 were studied in a range of 4 000-400 cm-1using a KBr disc (Fig.2a). The absorption peaks at 978 and 928 cm-1are attributed to the vibrations ofνas(V—O—V) and the absorption peaks at 841 and 646 cm-1are assigned to the vibrations ofνas(V—O—Co). The absorption peaks at 963, 882, and 835 cm-1belong to V=Ot(Oterminal) vibration, the region from 1 621 to 1 308 cm-1corresponds to the ligand C—C and C—N stretching vibration[28-30]. To further check the repeatability and purity of the crystal, the recovered crystalline samples were crushed as a fine powder for PXRD analysis. Compared with the crystal structure, the experimental PXRD patterns of the samples were in good agreement with the crystal simulation results, indicating that the bulk powders were pure phase (Fig.2b). The TG test of 1 was conducted in N2atmosphere at a heating of 10 ℃·min-1. The TG curve exhibited a sustained weight loss of 34.2% (calculated value 33.8%) between 335 ℃and 775 ℃, corresponding to the loss of pIM(Fig.3).

    Fig.2 (a)IR spectra of 1 after each catalytic cycle;(b)PXRD patterns of recovered 1

    Fig.3 TG curve of 1 measured from 30 to 800 ℃under N2 atmosphere

    2.3 Epoxidation of olefins

    The catalytic epoxidation of olefin is affected by many factors, such as the dosage of the catalyst, temperature, reaction time, and the amount of oxidant.Therefore, we need to find the best reaction conditions to improve the conversion and selectivity of the product. Under gentle conditions, the olefins were oxidized in acetonitrile (CH3CN) with 1 as a heterogeneous catalyst and H2O2as an oxidant. An initiatory study on the oxidation of the cyclooctene to cyclooctane epoxide was selected to explore the catalytic activity of 1 in CH3CN at 60 ℃.Under the above conditions,the dosage of oxidant and catalyst was determined through controlled experiments. As shown in Fig.4a, the conversion of the epoxidation increased from the beginning 84.8% (0.01 mmol catalyst) to 98.6% (0.04 mmol catalyst). When the dosage of the catalyst added up to 0.07 mmol, the conversion remained nearly constant, suggesting that the appropriate dosage of the catalyst was only 0.04 mmol. Then, we examined the conversion for different dosages of oxidant. The conversion increased from 77.2% to 98.6% with the increase in the amount of oxidant from 0.5 mmol to 1.5 mmol (Fig.4b), however, the conversion did not improve significantly with further increase of H2O2dosage. According to the above test results,the most reasonable conditions for catalytic oxidation of cyclooctene are available 0.04 mmol catalyst and 1.5 mmol oxidant. So, we got optimum reaction conditions using 1 as the catalyst(0.04 mmol)and 30%H2O2as the oxidant (1.5 mmol) in CH3CN at 60 ℃(Scheme 1). As reflected in Table 2, 1 could availably catalyze cyclooctene to cyclooctane epoxide with the conversion of 98.6% and selectivity of 99.2% after 8 h of reaction, which was comparable to the previously reported POVs-based hybrids,such as[Zn(pIM)3]2V4O12·H2O,[Zn(ipIM)3]2V4O12,and[Co(eIM)3]2V4O12·H2O[23].

    Scheme 1 Epoxidation of cyclooctene catalyzed by 1

    Fig.4 Effect of(a)catalyst and(b)oxidant factors for cyclooctene oxidation;(c)Thermal filtration experiment;(d)Recycling of catalyst for oxidation of cyclooctene

    Table 2 Epoxidation of cyclooctene with different catalystsa

    To further explore the role of the Co-complex and vanadium-oxygen anion in the catalytic reaction, contrast experiments were carried out, and the CoCl2·6H2O, (n-Bu4N)4[V4O12] were also used as a catalyst to explore catalytic activity. When CoCl2·6H2O was used as a catalyst, the cyclooctene conversion was very low,while(n-Bu4N)4[V4O12] produced a different result: the cyclooctene conversion achieved 65.5% (Table 2).From the above results, we could conclude that the combination of Co2+and V—O cluster by the complexation may cause a positive synergistic catalysis and significantly increase catalytic activity, this was similar to the previous report[31]. Besides, the catalytic activity might be also related to the unsaturated coordination sites of the Co2+, which could interact with the substrate to facilitate chemical reactions. Again, when the reaction was carried out without catalyst, only 6.9%conversion was observed,which indicated that the catalyst was vital for the reaction. According to the above catalytic results and literature reports[32-33], a possible epoxidation mechanism was suggested using 1 as a catalyst(Scheme 2).Primary,the coordinatively unsaturated Co2+in the structure as Lewis acidic centers available activated the olefin substrate, which not only pi-electron delocalization to the metal center but also shortened the distance between substrate and the peroxovanadium groups, the four-coordinated V5+simultaneously reacted with H2O2to generate active peroxovanadium groups, then, the O atom in peroxovanadium nucleophilic attacked the olefin double bond forming the epoxidation products and the catalytic cycle completed.

    Scheme 2 Proposed mechanism of catalytic epoxidation procedure

    To support the heterogeneous nature of the catalyst, a hot filtering test was conducted during the cyclooctene epoxidation. The solid catalyst 1 was separated from the reaction system after 2 h of reaction,and the filter was kept reacting for another 6 h with this understanding. The obtained filter was monitored by gas chromatography (GC) analysis, and the conversion was almost immobile (38.2%), which was significantly lower than the value in the presence of 1 (Fig.4c). The result confirmed the heterogeneous nature of the reaction system. Due to the excellent catalytic properties, 1 was chosen to test the cycling stability in heterogeneous systems. After the reaction was completed, the catalyst could be recovered easily from the reaction system through filtering and further reused in the subsequent epoxidation reaction. 1 could be recirculated at least four times without significant reduction in activity(Fig.4d). The combination of IR and PXRD patterns(Fig.2)before and after catalysis certified that the structure and crystallization remained unaltered after the circular reactions, which indicated excellent cycling stability of the catalysts.

    Subsequently, various olefins were selected to estimate the catalytic universality of the catalyst. As shown in Table 3, the catalytic action of cyclohexene was examined under the same conditions, the slightly lower conversion achieved 94.2% within 6 h (entry 2),and the epoxidation yield was also slightly lower than that of cyclooctene (entry 1). So, the catalyst exerted excellent activity on cycloolefins.

    Table 3 Oxidation of various olefins catalyzed by 1 using H2O2 oxidant

    However,for aromatic olefins,the effect of the catalyst was lower than that for cycloolefins. Under optimal contexts, the conversion of styrene was 89.8% with a narrowly satisfying selectivity of 92.4% for 8 h (entry 3). Middling catalytic activities for the oxidation ofp-methylstyrene (conversion 91.1%, selectivity 89.6%)ando-methylstyrene (conversion 72.3%, selectivity 79.9%) (entries 4-5) were given after 10 h of catalytic reactions. Compared with styrene andp-methylstyrene,a relatively lower catalytic was observed for the electrondeficientp-chlorostyrene(conversion 86.1%,selectivity 78.6%)(entry 6)for 9 h.The catalytic activity of multi-substituted and large steric hindrance substances was also studied,trans-stilbene afforded obvious reduced activity with 69.6% conversion for 9 h, probably due to a larger steric resistance containing diphenyl groups(entry 7).The reaction of 2,5-dimethylstyrene exhibited 89.5% conversion and 90.3% selectivity for 6 h (entry 8),compared with 2,5-dimethylstyrene,3,4-dichlorostyrene resulted in a relatively lower reduced activity with 82.6% conversion and 77.5% selectivity at the same time (entry 9). As for aliphatic linear olefins, the 1-hexene was transformed into the corresponding epoxide with 67.8% conversion and 71.6% selectivity for 7 h, and the reaction of 1-octene afforded 65.4% conversion and 81.8% selectivity for 7 h (entries 10-11). The above results show that the nature of the substrates is an important element affecting the epoxidation, and the catalytic oxidation of the circular substrates is more effective than that of the aromatic and linear substrates during the epoxidation process[34].

    2.4 Magnetic measurements

    The variable temperature magnetic susceptibility(χM) of 1 was conducted with a field intensity of 1 kOe.Fig.5a showed theχMTplot againstTat temperatures variable between 2-300 K.WhenTwas 300 K,theχMTvalue was 2.27 emu·K·mol-1, which was slightly higher than the theoretical spin-only value of 1.875 emu·K·mol-1for the high-spind7Co2+ions (S=3/2,g=2.0),implying the existence of an orbital angular momentum contribution[35-37]. Gradually lowered the temperature,theχMTvalue decreased gently to 2.12 emu·K·mol-1at 45 K, the curvilinear relationship betweenχMTandTimplied the intramolecular antiferromagnetic coupling among the Co2+centers.Then theχMTvalue dramatically descended to a minimum of 0.66 emu·K·mol-1at 2 K,this might be attributed to the integrated action of the magnetic anisotropy and spin-orbit coupling of Co2+as well as the antiferromagnetic interactions[38-40]. As displayed in Fig.5b, the linear fitting of theχM-1vsTkept to the Curie-Weiss law between 300-10 K, with the Curie constantCof 2.26 emu·K·mol-1and the Weiss constantθof -2.22 K, farther notarizing that the antiferromagnetic effect present in 1.

    Fig.5 (a)Temperature reliance of χM and χMT for 1;(b)Temperature reliance of χM-1 for 1

    3 Conclusions

    A cobalt-vanadates architecture was hydrothermally prepared, containing cobalt nodes and V—O sheets. The compound was used as the catalyst for the olefins epoxidation and hydrogen peroxide was used as the oxidant. The catalytic results show that the compound has excellent epoxidation catalytic performance under optimized conditions, and can be recycled many times. The studies of other potential catalytic reactions using the compound were ongoing. Besides, magnetic measurements reveal the antiferromagnetical interactions between the Co2+ions.

    Acknowledgments:This work was supported by the Basic Research Project Fund of Shanxi Province (Grant No.202203021222296),the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grants No. 2023L254, 2022L425), the Foundation of Shanxi Datong University (Grants No.2017-B-04, 2019-B-11, 2022Q24), the Key Research and Development Project of Datong (Grant No.2023003).

    猜你喜歡
    山西大同大學化學化工學院
    使固態(tài)化學反應100%完成的方法
    山西大同 黃花菜豐收在望
    國家開放大學石油和化工學院學習中心列表
    《山西大同大學學報(自然科學版)》征稿簡則
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    山西大同大學采礦研究所簡介
    山西大同邀客共賞“小黃花大產(chǎn)業(yè)”
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    基于SCIE的大學化學學科文獻計量學研究——以河南大學為例
    信息技術(shù)在大學化學專業(yè)英語教學中的應用
    亞太教育(2015年18期)2015-02-28 20:54:31
    欧美日韩一级在线毛片| 香蕉av资源在线| 久久久久免费精品人妻一区二区| 亚洲人成网站高清观看| www.熟女人妻精品国产| 女人被狂操c到高潮| 国产真实乱freesex| 美女 人体艺术 gogo| 欧美成狂野欧美在线观看| 亚洲欧美日韩卡通动漫| 日本免费a在线| а√天堂www在线а√下载| 搡老妇女老女人老熟妇| 丰满乱子伦码专区| 少妇的逼好多水| 九九热线精品视视频播放| 淫秽高清视频在线观看| 欧美在线一区亚洲| 国产高清videossex| 久久精品综合一区二区三区| 精品不卡国产一区二区三区| 99久久精品热视频| 18美女黄网站色大片免费观看| 中出人妻视频一区二区| 欧美高清成人免费视频www| 亚洲成人久久性| 美女黄网站色视频| 国产精品嫩草影院av在线观看 | 97超视频在线观看视频| 欧美成狂野欧美在线观看| 国产aⅴ精品一区二区三区波| 午夜日韩欧美国产| 狂野欧美白嫩少妇大欣赏| 欧美在线一区亚洲| 啪啪无遮挡十八禁网站| 男女之事视频高清在线观看| 亚洲av电影在线进入| 日韩欧美一区二区三区在线观看| 91av网一区二区| 亚洲av免费在线观看| 变态另类丝袜制服| 成人特级av手机在线观看| 亚洲av日韩精品久久久久久密| 日本免费a在线| 可以在线观看的亚洲视频| 欧美一级a爱片免费观看看| 一区二区三区激情视频| 精品乱码久久久久久99久播| 亚洲国产色片| 亚洲av中文字字幕乱码综合| 老司机深夜福利视频在线观看| 亚洲国产欧洲综合997久久,| 亚洲最大成人中文| 久久国产精品影院| 亚洲精品一卡2卡三卡4卡5卡| 午夜两性在线视频| 精品国产亚洲在线| 不卡一级毛片| 国产高清视频在线播放一区| 国产一级毛片七仙女欲春2| 日韩欧美 国产精品| 大型黄色视频在线免费观看| 久久久久久人人人人人| 嫩草影院精品99| 亚洲成人久久爱视频| svipshipincom国产片| 高潮久久久久久久久久久不卡| 美女被艹到高潮喷水动态| 老司机深夜福利视频在线观看| 久久久久免费精品人妻一区二区| 麻豆一二三区av精品| 国产乱人伦免费视频| 欧美一区二区精品小视频在线| 91字幕亚洲| 欧美+亚洲+日韩+国产| 伊人久久大香线蕉亚洲五| 久久久久久久久大av| 十八禁人妻一区二区| 午夜久久久久精精品| 国产精品亚洲一级av第二区| 美女高潮喷水抽搐中文字幕| 一级作爱视频免费观看| 免费人成在线观看视频色| 精品国内亚洲2022精品成人| 国产成人a区在线观看| 国产精品电影一区二区三区| 此物有八面人人有两片| 岛国在线免费视频观看| 国产 一区 欧美 日韩| 麻豆成人av在线观看| 国产欧美日韩一区二区三| 桃红色精品国产亚洲av| 天堂网av新在线| 中文字幕av在线有码专区| 欧美+日韩+精品| 国产伦一二天堂av在线观看| 国内揄拍国产精品人妻在线| 国产亚洲av嫩草精品影院| 淫妇啪啪啪对白视频| 三级国产精品欧美在线观看| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| 久久精品亚洲精品国产色婷小说| 欧美区成人在线视频| 悠悠久久av| 欧美又色又爽又黄视频| 亚洲狠狠婷婷综合久久图片| 精品99又大又爽又粗少妇毛片 | 天堂影院成人在线观看| 日韩免费av在线播放| 国产精品自产拍在线观看55亚洲| 国产成人欧美在线观看| 中文字幕人妻熟人妻熟丝袜美 | 美女大奶头视频| 国产高清视频在线观看网站| 午夜激情福利司机影院| 欧美日韩国产亚洲二区| 国产真人三级小视频在线观看| 岛国在线免费视频观看| 黄色丝袜av网址大全| 夜夜看夜夜爽夜夜摸| 久久久久久久久大av| 亚洲精品色激情综合| 色综合站精品国产| 偷拍熟女少妇极品色| 岛国视频午夜一区免费看| 国产一区二区亚洲精品在线观看| 男人的好看免费观看在线视频| 女人被狂操c到高潮| 国产在视频线在精品| 99久久精品一区二区三区| 免费一级毛片在线播放高清视频| 成人高潮视频无遮挡免费网站| 激情在线观看视频在线高清| 亚洲,欧美精品.| 麻豆成人午夜福利视频| 好看av亚洲va欧美ⅴa在| 啦啦啦免费观看视频1| 色精品久久人妻99蜜桃| 亚洲人成网站高清观看| 老司机深夜福利视频在线观看| h日本视频在线播放| 国产久久久一区二区三区| 99久久精品一区二区三区| 欧美日本亚洲视频在线播放| 18美女黄网站色大片免费观看| 日韩大尺度精品在线看网址| 黄色成人免费大全| 午夜福利高清视频| 午夜福利欧美成人| 叶爱在线成人免费视频播放| 国产美女午夜福利| 国产精品一区二区三区四区免费观看 | 成人av一区二区三区在线看| 97人妻精品一区二区三区麻豆| 久久精品夜夜夜夜夜久久蜜豆| 深夜精品福利| 中文字幕熟女人妻在线| 亚洲精华国产精华精| 久99久视频精品免费| 国产视频内射| 国产成+人综合+亚洲专区| 一区福利在线观看| 成人av在线播放网站| 好看av亚洲va欧美ⅴa在| 黄色女人牲交| aaaaa片日本免费| 欧美日本视频| 在线天堂最新版资源| 欧美bdsm另类| 亚洲中文字幕日韩| 制服丝袜大香蕉在线| 老司机午夜福利在线观看视频| 亚洲午夜理论影院| 一区二区三区高清视频在线| 欧美在线黄色| 久久久国产精品麻豆| 久9热在线精品视频| 亚洲天堂国产精品一区在线| 亚洲精品亚洲一区二区| 成人午夜高清在线视频| 国产精品电影一区二区三区| 国产一区二区在线观看日韩 | 中文字幕久久专区| 亚洲国产高清在线一区二区三| 人人妻,人人澡人人爽秒播| 精品国产三级普通话版| 丰满乱子伦码专区| 性色avwww在线观看| 成人欧美大片| 国内揄拍国产精品人妻在线| 99久久精品国产亚洲精品| 波野结衣二区三区在线 | 尤物成人国产欧美一区二区三区| 婷婷亚洲欧美| 国产av在哪里看| 国产精品久久久人人做人人爽| 舔av片在线| 欧美乱妇无乱码| 亚洲在线自拍视频| 国产探花极品一区二区| 国产淫片久久久久久久久 | 最好的美女福利视频网| 美女黄网站色视频| 亚洲精品影视一区二区三区av| 少妇的丰满在线观看| 夜夜躁狠狠躁天天躁| 黄色日韩在线| 欧美av亚洲av综合av国产av| 美女高潮喷水抽搐中文字幕| 中国美女看黄片| 中出人妻视频一区二区| 女人被狂操c到高潮| 淫秽高清视频在线观看| av视频在线观看入口| 午夜免费激情av| 欧美一级毛片孕妇| 久久国产乱子伦精品免费另类| 国产精品久久久久久精品电影| 69人妻影院| 亚洲人与动物交配视频| 日韩大尺度精品在线看网址| www日本黄色视频网| 国产淫片久久久久久久久 | 99热这里只有是精品50| h日本视频在线播放| 亚洲国产精品sss在线观看| АⅤ资源中文在线天堂| 中国美女看黄片| 亚洲国产精品久久男人天堂| 中文资源天堂在线| 亚洲自拍偷在线| 啪啪无遮挡十八禁网站| 一本综合久久免费| 欧美性猛交黑人性爽| 久久伊人香网站| 日韩欧美国产一区二区入口| 麻豆成人午夜福利视频| 欧美成人免费av一区二区三区| 啦啦啦观看免费观看视频高清| 91九色精品人成在线观看| 亚洲 国产 在线| 久久久久久久久久黄片| 欧美黄色淫秽网站| 国产极品精品免费视频能看的| 搡老妇女老女人老熟妇| 国产亚洲精品av在线| 久久中文看片网| 亚洲第一欧美日韩一区二区三区| 日本免费一区二区三区高清不卡| 亚洲内射少妇av| 亚洲欧美一区二区三区黑人| 日韩亚洲欧美综合| 成熟少妇高潮喷水视频| 国产精品1区2区在线观看.| 琪琪午夜伦伦电影理论片6080| www.熟女人妻精品国产| 五月玫瑰六月丁香| 一夜夜www| 欧美3d第一页| 午夜视频国产福利| 在线观看av片永久免费下载| 国产精品爽爽va在线观看网站| 久久伊人香网站| 2021天堂中文幕一二区在线观| 18美女黄网站色大片免费观看| 国产伦一二天堂av在线观看| or卡值多少钱| 亚洲av中文字字幕乱码综合| 亚洲熟妇熟女久久| 夜夜躁狠狠躁天天躁| 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av| 变态另类成人亚洲欧美熟女| 欧美日韩乱码在线| 成人一区二区视频在线观看| 黄片小视频在线播放| 午夜福利成人在线免费观看| 午夜福利18| 操出白浆在线播放| 在线观看舔阴道视频| 亚洲欧美日韩无卡精品| 听说在线观看完整版免费高清| 亚洲最大成人手机在线| 国产色婷婷99| 三级国产精品欧美在线观看| 色综合站精品国产| 国产欧美日韩精品一区二区| 99精品欧美一区二区三区四区| 成熟少妇高潮喷水视频| 啦啦啦免费观看视频1| 国产成人av教育| 久久国产精品影院| 亚洲熟妇熟女久久| 日韩亚洲欧美综合| 免费观看精品视频网站| 在线观看免费视频日本深夜| 97超视频在线观看视频| 国产精品久久久久久久久免 | 成年女人看的毛片在线观看| 国模一区二区三区四区视频| 网址你懂的国产日韩在线| 男女之事视频高清在线观看| 9191精品国产免费久久| 最近视频中文字幕2019在线8| 内地一区二区视频在线| 9191精品国产免费久久| 亚洲专区中文字幕在线| 黄色视频,在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费成人在线视频| 日本撒尿小便嘘嘘汇集6| 久久久久久九九精品二区国产| 99riav亚洲国产免费| 99久久九九国产精品国产免费| 制服丝袜大香蕉在线| 看片在线看免费视频| 久久久久久久久久黄片| 最新在线观看一区二区三区| 欧美精品啪啪一区二区三区| 国产高清激情床上av| 嫩草影院入口| 男女那种视频在线观看| www.999成人在线观看| 国产伦精品一区二区三区视频9 | 亚洲av五月六月丁香网| 国产三级中文精品| 狠狠狠狠99中文字幕| 欧美成人免费av一区二区三区| 激情在线观看视频在线高清| 国产精品一及| 十八禁人妻一区二区| 国产精品99久久99久久久不卡| 免费观看人在逋| 在线播放无遮挡| 国产精品三级大全| 国产av麻豆久久久久久久| www.999成人在线观看| 国产在线精品亚洲第一网站| 热99在线观看视频| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添小说| 91字幕亚洲| 18禁美女被吸乳视频| 最近最新中文字幕大全电影3| 国产真人三级小视频在线观看| 少妇的丰满在线观看| 国产午夜精品久久久久久一区二区三区 | 亚洲第一电影网av| 草草在线视频免费看| 狂野欧美白嫩少妇大欣赏| 欧美日韩瑟瑟在线播放| 搡女人真爽免费视频火全软件 | 别揉我奶头~嗯~啊~动态视频| 精品国产超薄肉色丝袜足j| 在线观看午夜福利视频| 久久精品91蜜桃| 男插女下体视频免费在线播放| 99视频精品全部免费 在线| 亚洲精品影视一区二区三区av| 亚洲国产精品合色在线| 19禁男女啪啪无遮挡网站| 少妇的丰满在线观看| 老司机深夜福利视频在线观看| avwww免费| 亚洲精华国产精华精| a级一级毛片免费在线观看| 国产午夜精品久久久久久一区二区三区 | 日韩亚洲欧美综合| 亚洲成av人片在线播放无| 亚洲成人中文字幕在线播放| 亚洲国产精品成人综合色| 日韩欧美在线二视频| 成人av一区二区三区在线看| 丰满乱子伦码专区| 九色国产91popny在线| 亚洲,欧美精品.| 亚洲人成网站高清观看| 亚洲精品粉嫩美女一区| 国产亚洲精品综合一区在线观看| 听说在线观看完整版免费高清| 久久久久免费精品人妻一区二区| а√天堂www在线а√下载| 麻豆一二三区av精品| www.色视频.com| 麻豆成人午夜福利视频| 无限看片的www在线观看| 亚洲精品色激情综合| 成人亚洲精品av一区二区| 97人妻精品一区二区三区麻豆| 少妇的丰满在线观看| www日本黄色视频网| 熟女少妇亚洲综合色aaa.| 3wmmmm亚洲av在线观看| 黄色丝袜av网址大全| 国产精品一及| 国产精品电影一区二区三区| 露出奶头的视频| 日本黄色片子视频| 成人永久免费在线观看视频| 男女下面进入的视频免费午夜| 男人的好看免费观看在线视频| 亚洲国产高清在线一区二区三| 十八禁人妻一区二区| 精品国产超薄肉色丝袜足j| 真人一进一出gif抽搐免费| 日韩欧美 国产精品| 国产成人av教育| 亚洲精品一区av在线观看| 国产单亲对白刺激| 久久婷婷人人爽人人干人人爱| 97超级碰碰碰精品色视频在线观看| av天堂中文字幕网| 国产成人福利小说| 特大巨黑吊av在线直播| 午夜福利在线观看免费完整高清在 | 久久久色成人| 国产三级中文精品| 99久国产av精品| 婷婷六月久久综合丁香| 天堂网av新在线| 成年女人永久免费观看视频| 亚洲在线自拍视频| 久久精品国产自在天天线| 国产真实乱freesex| 欧美日韩国产亚洲二区| 国产精品一区二区三区四区久久| 91字幕亚洲| 五月伊人婷婷丁香| 国内久久婷婷六月综合欲色啪| 99久久精品热视频| 中文字幕久久专区| 听说在线观看完整版免费高清| 久久精品国产亚洲av涩爱 | 一级毛片高清免费大全| 国产精品久久久久久精品电影| 最新在线观看一区二区三区| 日本成人三级电影网站| 国内毛片毛片毛片毛片毛片| 手机成人av网站| 成人无遮挡网站| 亚洲精品在线美女| 亚洲欧美激情综合另类| 午夜a级毛片| 国产av一区在线观看免费| 国产精品免费一区二区三区在线| 精品久久久久久久人妻蜜臀av| 岛国视频午夜一区免费看| 欧美另类亚洲清纯唯美| 日韩免费av在线播放| 日本 欧美在线| 2021天堂中文幕一二区在线观| 一进一出抽搐动态| 91久久精品电影网| 99在线视频只有这里精品首页| 日韩高清综合在线| 又黄又爽又免费观看的视频| 国产一区二区在线av高清观看| 亚洲avbb在线观看| 久久欧美精品欧美久久欧美| 亚洲最大成人手机在线| 少妇高潮的动态图| 亚洲狠狠婷婷综合久久图片| 精品国内亚洲2022精品成人| 久久精品综合一区二区三区| 欧美日韩瑟瑟在线播放| 可以在线观看毛片的网站| 一级黄色大片毛片| 麻豆国产av国片精品| 欧美又色又爽又黄视频| 一卡2卡三卡四卡精品乱码亚洲| 色吧在线观看| a级一级毛片免费在线观看| 性色av乱码一区二区三区2| 在线a可以看的网站| 欧美日韩一级在线毛片| av国产免费在线观看| 最新美女视频免费是黄的| 欧美一区二区国产精品久久精品| 亚洲欧美日韩东京热| 日韩高清综合在线| 日韩欧美国产一区二区入口| 亚洲不卡免费看| 国产高清视频在线观看网站| 亚洲一区二区三区不卡视频| 亚洲精品影视一区二区三区av| 免费在线观看影片大全网站| 亚洲第一欧美日韩一区二区三区| 美女高潮喷水抽搐中文字幕| 国产伦一二天堂av在线观看| 久久久久九九精品影院| 国产av在哪里看| 国内久久婷婷六月综合欲色啪| 国产欧美日韩精品亚洲av| 小蜜桃在线观看免费完整版高清| 成年女人永久免费观看视频| 日本一本二区三区精品| 美女免费视频网站| 可以在线观看的亚洲视频| 亚洲精品一卡2卡三卡4卡5卡| 舔av片在线| 天堂网av新在线| 男女床上黄色一级片免费看| 美女被艹到高潮喷水动态| 搡老妇女老女人老熟妇| 国产一级毛片七仙女欲春2| 精品无人区乱码1区二区| 热99在线观看视频| a级一级毛片免费在线观看| 性色av乱码一区二区三区2| 夜夜看夜夜爽夜夜摸| 午夜激情欧美在线| av中文乱码字幕在线| xxxwww97欧美| 国产三级中文精品| 国产精品嫩草影院av在线观看 | 婷婷精品国产亚洲av在线| 久久久国产成人精品二区| www.色视频.com| 成人精品一区二区免费| 亚洲aⅴ乱码一区二区在线播放| 免费在线观看影片大全网站| 精品日产1卡2卡| 老汉色av国产亚洲站长工具| 欧美日韩瑟瑟在线播放| 国产真实乱freesex| 日韩 欧美 亚洲 中文字幕| 亚洲第一电影网av| 国产伦精品一区二区三区视频9 | 国产亚洲精品av在线| 成年女人永久免费观看视频| 18+在线观看网站| 午夜福利免费观看在线| 国产伦精品一区二区三区四那| 99国产精品一区二区蜜桃av| 国产爱豆传媒在线观看| 校园春色视频在线观看| 欧美一区二区国产精品久久精品| 黄色日韩在线| 99精品久久久久人妻精品| 日韩成人在线观看一区二区三区| 最近最新中文字幕大全电影3| 18禁在线播放成人免费| 久久精品91蜜桃| 在线看三级毛片| 搡老岳熟女国产| 国产v大片淫在线免费观看| 精品人妻1区二区| 欧美色视频一区免费| 欧美三级亚洲精品| 日韩欧美精品免费久久 | 国产欧美日韩精品亚洲av| 亚洲最大成人中文| 成人性生交大片免费视频hd| 热99在线观看视频| 免费av观看视频| 成人无遮挡网站| 久久人人精品亚洲av| 国产aⅴ精品一区二区三区波| 免费看美女性在线毛片视频| 不卡一级毛片| 国产成人a区在线观看| 91av网一区二区| 天堂影院成人在线观看| 亚洲熟妇中文字幕五十中出| 免费av观看视频| 99国产精品一区二区蜜桃av| 全区人妻精品视频| 无人区码免费观看不卡| 午夜福利欧美成人| 午夜久久久久精精品| 女生性感内裤真人,穿戴方法视频| 欧美日韩国产亚洲二区| 久久亚洲真实| 人妻夜夜爽99麻豆av| 成年免费大片在线观看| 欧美av亚洲av综合av国产av| 校园春色视频在线观看| 国产成年人精品一区二区| netflix在线观看网站| 国产精品久久久久久人妻精品电影| 亚洲中文字幕日韩| 亚洲欧美激情综合另类| 国产主播在线观看一区二区| 夜夜躁狠狠躁天天躁| 欧美日韩中文字幕国产精品一区二区三区| 成人欧美大片| 一个人免费在线观看的高清视频| 又黄又粗又硬又大视频| 日本 欧美在线| 国产乱人视频| 国产又黄又爽又无遮挡在线| 在线观看美女被高潮喷水网站 | 两个人的视频大全免费| 日本三级黄在线观看| 免费大片18禁| 老熟妇仑乱视频hdxx| av黄色大香蕉| 日韩欧美免费精品| 午夜福利高清视频| 在线播放国产精品三级| 国产国拍精品亚洲av在线观看 | 日本免费一区二区三区高清不卡| 亚洲人成伊人成综合网2020| 美女大奶头视频| 国内久久婷婷六月综合欲色啪| 99热只有精品国产| 中文字幕av在线有码专区| 国产亚洲av嫩草精品影院| 一区福利在线观看| 男女那种视频在线观看| 欧美性猛交黑人性爽| 欧美绝顶高潮抽搐喷水| 天天躁日日操中文字幕| 欧美三级亚洲精品|