• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于雙金屬高核鈦氧簇基電極的高性能超級電容器的制備

    2024-04-17 00:57:10PalanisamyKannan侯進樂姚金忠
    無機化學學報 2024年4期
    關鍵詞:化工學院周口雙金屬

    羅 穩(wěn) 靳 林*, Palanisamy Kannan 侯進樂 霍 鵬 姚金忠 王 鵬*,,5,6

    (1周口師范學院河南省稀土功能材料重點實驗室,周口 466001)

    (2嘉興學院生物與化學工程學院,嘉興 314001)

    (3聊城大學化學化工學院,聊城 252000)

    (4復旦大學航空航天系,上海 200433)

    (5嘉興學院G60研究院,嘉興 314001)

    (6西安理工大學儀器科學與技術博士后流動站,西安 710048)

    0 Introduction

    Titanium-oxo-clusters (TOCs) have attracted significant attention in research due to their potential as precursors for soluble molecular titanium-oxo materials and nano-TiO2, which possess uniform scale and precise structure[1-3]. Among the numerous reported TOCs modified by metal doping and organic ligands, it can be found that the calculated electronic states of small clusters (nuclei number<10) vary significantly with the number of clusters′ nuclearity[4-6]. This highlights the significant potential for the synthesis and application research of high-nuclearity TOCs. Ti12[Ti12O16(OR)16](R=ethyl or isopropyl) has been extensively studied and widely applied in photocatalysis,photoelectric conversion,etc., likely due to its band gap that can be effectively regulated by doping transition metal ions[7-9].In recent decades, research on Ti12-based transitionmetal doped TOCs has primarily focused on functional ligands used to stabilize the structure of TOCs, such as pyrocatechol, benzoic acid, and 1, 10 - phenanthroline[10-12]. Therefore, developing novel functional ligandstable Ti12-based transition-metal doped TOCs and exploring their applications in emerging fields remain significant challenges.

    Supercapacitors,with their ability to store and discharge energy quickly and efficiently,present a promising solution to the energy-storage crisis[13-14].At present,the main electrode materials that can be used as supercapacitors are carbon materials, MXenes, layered double hydroxides, black phosphorus, and perovskites[13-14].Recently,some metal-oxo-clusters (MOC)based energy storage devices have been reported,i.e.,AlO6and CuⅠ-MOFs containing[Mo8O26]4-clusters based supercapacitors[15-16]. However, their energy storage capacity and cycle performance are still lower than common energy storage materials in most studies, which were attributed to the introduction of low energy density metal elements and ligands with complex structures that are not resistant to high current environments[17-18]. Moreover,although the experimental and theoretical results of these MOC-based supercapacitors have revealed some details of energy storage, the diversity and systematisms of MOCs used in model studies are still incomplete, especially the TOC-based supercapacitor model has never been reported. This is mainly due to the low energy and easy breakage of Ti—O bonds, leading to the instability of the cluster structure and a sharp decline in electrical properties[4,19]. Therefore, it is necessary to search for a newly available ligand with a simple structure that can enhance the overall structural strength of the crystal cluster and keep the structure stable under an electrical environment. Meanwhile,another transition element needs to be introduced inside the lattice to further adjust the bond energy and increase the overall energy density of the system.

    In this work,as a proof-of-concept study,the novel TOCs with electrical energy storage capabilities were successfully synthesized. TOCs with different transition metals(Zn and Cd)were obtained by a simple onestep solvothermal method, using thiophenol (SPh) as the chromophore and transition metals (Zn and Cd) as the second metal.The experimental results showed that the synthesized TOCs (Ti11clusters) had good energy storage capacity. Among them, the supercapacitor based on Zn-Ti11showed an excellent discharge capacity(175 F·g-1at 1 A·g-1)and provided the maximum power density and energy density of 9.5 W·kg-1and 463 Wh·kg-1,respectively.This work provides a reliable method for producing titanium-oxide-based energy storage devices with high energy density.

    1 Experimental

    1.1 Materials and instruments

    All the analytical pure reagents were purchased from Adams and used without further purification.[Me4N]2[M4(SPh)10] (M=Cd, Zn) was prepared by the reported methods[20-21].UV-Vis absorbance spectra were obtained on a Shimadzu UV-2600 spectrometer. FTIR spectra were recorded on a Nicolet 6700 spectrophotometer (KBr pellet). X-ray diffraction (XRD) measurements were carried out using a Rigaku CCD X-ray diffractometer with Ni-filtered CuKαradiation (λ=0.156 nm, 2θ=5°-30°, 40 kV, 40 mA). Transmission electron microscopy (TEM) images were obtained on a Tecnai G220 TEM with carbon film-coated grids. The photocurrent experiments were performed on a CHI650 electrochemistry workstation in a three-electrode system.The microcrystal samples were mixed with Nafion -D521 (Alfa) and coated directly on a cleaned ITO electrode (50 Ω·cm2), which was used as the working electrode. A Pt plate and a saturated calomel electrode(SCE) were used as the auxiliary electrode and the reference electrode, respectively. The working electrodes were positioned 20 cm from the light source with an effective irradiation area of 0.5 cm2. An aqueous solution of Na2SO4(0.1 mmol·L-1, 100 mL) in a quartz cell was used as the supporting electrolyte.

    1.2 Syntheses of Zn-Ti11 and Cd-Ti11

    1.2.1 [ZnTi11O14(SPh)(OiPr)17](Zn-Ti11)

    Analytically pure titanium tetraisopropoxide(Ti(OiPr)4,0.15 mL,0.39 mmol)and[Me4N]2[Zn4(SPh)10](0.006 0 g,0.003 mmol)were mixed in 0.3 mL acetonitrile and anhydrous isopropanol (2∶1,V/V). The mixture was placed in a thick Pyrex tube (0.7 cm in diameter, 15 cm in length) and quickly degassed by argon.The sealed tube was heated under autogenous pressure at 60 ℃for 7 d and then cooled to room temperature to yield colorless block-shaped crystals (53% yield based on Ti). The crystals were rinsed with isopropanol and preserved in a sealed glass tube. The crystals were rinsed with isopropanol for crystal structure and XRD analysis. Selected FTIR data (KBr, cm-1): 3 060(b),2 966(b), 2 922(w), 2 866(w), 2 613(w), 1 462(s), 1 373(vs), 1 324(w), 1 137(w), 1 015(w), 856(m), 668(m),529(s), 464(w). [ZnTi11O14(SPh)(OiPr)17]: Calcd. for C57H124ZnO31STi11(%,Mw=1 929.88): C, 35.44; H, 6.43;S,1.66.Found(%):C,34.98;H,6.22;S,1.60.

    1.2.2 [CdTi11O14(SPh)(OiPr)17](Cd-Ti11)

    Analytically pure Ti(OiPr)4(0.15 mL, 0.39 mmol),[Me4N]2[Cd4(SPh)10] (0.006 7 g, 0.004 mmol) were mixed in 0.3 mLN,N-dimethyl formamide (DMF) and anhydrous isopropanol (2∶1,V/V). The mixture was placed in a thick Pyrex tube (0.7 cm in diameter, 15 cm in length) and quickly degassed by argon. The sealed tube was heated under autogenous pressure at 60 ℃for 5 d and then cooled to room temperature to yield colorless block-shaped crystals (55% yield based on Ti). The crystals were rinsed with isopropanol and preserved in a sealed glass tube. Selected FTIR data(KBr, cm-1): 3 065(b), 2 963(b), 2 925(w), 2 864(w),2 615(w),1 466(s),1 375(vs),1 328(w),1 139(w),1 013(w), 856(m), 666(m), 530(s), 465(w). [CdTi11O14(SPh)(OiPr)17]:Calcd.for C57H124CdO31STi11(%,Mw=1 976.91):C, 34.59; H, 6.27; S, 1.62. Found(%): C, 33.98; H,6.02;S,1.57.

    1.3 X-ray crystallographic analysis

    The single crystal measurements of Zn-Ti11and Cd-Ti11were carried out on a Bruker APEX-ⅡCCD diffractometer with graphite monochromated MoKα(λ=0.071 075 nm) radiation at room temperature. The structures were solved by direct methods using SHELXS-2016 and the refinements were performed againstF2using SHELXL-2016. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were positioned with idealized geometry and refined with fixed isotropic displacement parameters.Relevant crystal data, collection parameters, and refinement results can be found in Table S1 (Supporting information).

    CCDC:2217954,Zn-Ti11;2219848,Cd-Ti11.

    1.4 Electrochemical measurements

    The electrochemical properties of the as-prepared materials were studied on a CHI 660E electrochemical workstation.The experiments were performed in a threeelectrode configuration comprising the 1 cm2samples,the activated carbon (AC),and the Hg/HgO in 3.0 mol·L-1KOH as a working electrode, a counter electrode,and a reference electrode, respectively. To prepare the working electrode, porous carbon, acetylene black,and polytetra fluoroethylene (mass ratio of 8∶1∶1)were ultrasonically mixed in a solution containing distilled water and ethanol and then dried. The obtained sticky mixture was roll-pressed into a thin sheet, cut into small pieces, and fi nally pressed onto the nickel (Ni)foam current collector. The loading mass of the active material was approximately 2.0 mg·cm-2. Cyclic voltammetry (CV) measurements were carried out in a three-electrode setup in 3 mol·L-1KOH. Galvanostatic charge-discharge (GCD) and cycling tests were conducted in a two-electrode configuration in 3 mol·L-1KOH using a LAND CT2001A battery measurement system. The energy density (E) and the power density(P)were calculated from the following equations[22]:

    whereI,t,m, and ΔVrepresent the discharge current(mA), the discharge time (s), the total mass of active materials (g), and the potential window of the electrode(V)in that order.

    The asymmetric supercapacitor was fabricated by combining M-Ti11(M=Cd,Zn)and AC as a cathode and an anode in a 3 mol·L-1KOH electrolyte. The mass loadings of the cathode and anode were calculated by using Eq.3:

    WhereC+,C-andm+,m-are the capacitance and mass of the positive and negative electrodes. In this study,the mass ratio of the cathode and the anode was set at 2.9∶1.

    2 Results and discussion

    2.1 Structural characterization

    Colorless crystals of clusters Zn-Ti11and Cd-Ti11were obtained directly by one step in situ solvothermal synthesis at 60 ℃. All samples were carefully isolated by handpicking under a microscope.The identity of the collected cluster samples with the crystals for structure analysis was confirmed by comparing the experimental XRD patterns with the calculated patterns from the crystal data of the Zn-Ti11and Cd-Ti11clusters (Fig.S1 in the ESI).

    The FTIR spectra of the clusters (Fig.S2) showed asymmetric and symmetric stretching vibrations of the SPh ligand. The isopropoxy groups were identified based on theνC—Hvibrations ranging from 2 860 to 2 975 cm-1and theνO—Cvibration around 1 010 cm-1.The bands around 760 cm-1are attributed to the Ti—O vibrations. The solid-state UV-Vis diffuse-reflection spectra of Zn-Ti11and Cd-Ti11are shown in Fig.S3a.The absorption data were calculated from the reflectance, which indicated no absorption above 400 nm(3.1 eV), consistent with their colorless nature (Fig.S3b).

    As revealed by single-crystal X-ray diffraction analysis, compounds Zn-Ti11and Cd-Ti11are isostructural in the formula [MTi11O14(SPh)(OiPr)17] (M=Zn,Cd).Two clusters crystallize in the space groupCcand two clusters are included in a unit cell (Table S1). Fig.1a,1b,and S4 show the structures of Zn-Ti11and Cd-Ti11in ball-stick presentation. The structure of Zn-Ti11is discussed here in detail. Fig.1c and 1d give polyhedron views of Zn-Ti11. The Ti11cluster core is constructed by two Ti3O13subunits and one Ti5O13subunit. Six Ti (Ⅳ)atoms in two Ti3O13subunits adopt distorted octahedral geometry (green in Fig.1d) while the other five Ti (Ⅳ)adopt a trigonal bipyramid geometry (yellow in Fig.1d).The Zn atom takes a five-coordinated geometry with an SPh and fourμ3-oxo groups together to be the[ZnTi11O14(SPh)] subunit and 17 OiPr groups further stabilize the structure of the cluster, which is similar to the reported isostructural of [(CoⅠ)Ti11O14(OiPr)17][14]and [LnTi11O14(NO3)2(OiPr)17]·3H2O (Ln=Sm (1), Eu (2), and Gd (3))[8]clusters, in which the Co+, two [Eu (NO3)2]+, are replaced by a Zn(SPh) moiety. A unique characteristic of Zn-Ti11and Cd-Ti11, different from the CoTi11and LnTi11clusters,was coordinated with SPh and with better photoelectric performance. Fig.1e shows the cluster packing along theb-axis.

    Fig.1 Ball-stick(a,b)and polyhedron(c,d)views of cluster Zn-Ti11 in one direction and the cluster packing viewed from the b direction(e)

    2.2 Electrochemical performance

    The electrochemical performance of Zn-Ti11and Cd-Ti11as supercapacitor working electrodes was tested in a three-electrode system with 3 mol·L-1KOH as the electrolyte. All samples in this paper were attached and measured on Ni foam substrates. According to the research of Xu et al.[23-24], only a very slight current was recorded on the bare Ni foam electrode, so it is reasonable to ignore the capacitive contribution of Ni foam.

    The CV curves of Zn-Ti11and Cd-Ti11are shown in Fig.2. The presence of multiple pairs of redox peaks at Zn-Ti11and Cd-Ti11electrodes indicates the nature of typical pseudocapacitive behavior[25], which can be attributed to the redox reactions of cations in the Ti11electrode,as shown in Eq.4 and 5[26].Moreover,the oxidation peak(Ox2,ca.0.54 V)and reduction peak(Re1,ca. 0.34 V) for Cd-Ti11,which is closely consistent with the values for Zn-Ti11can be attributed to the existing of thiophenol[27]. However, Cd-Ti11exhibited two redox peaks (Ox1/Re1,ca. 0.409 V and Ox2/Re2,ca. 0.479 V) slightly shift compared to that of Zn-Ti11(ca. 0.412 and 0.484 V) due to the coordination of different metal atoms (i. e.Zn and Cd) and thiophenol within the lattice, which indicates that there may be differences between the electrochemical properties of Cd-Ti11and Zn-Ti11electrodes.

    Fig.2 CV curves of Zn-Ti11 and Cd-Ti11 at the scan rate of 2 mV·s-1

    The Zn-Ti11and Cd-Ti11electrodes showed the same symmetrical redox peaks at different scan rates(ranging from 1 to 30 mV·s-1),indicating that these Ti11clusters had excellent rate capability and relatively low resistance (Fig. 3a and 3c). The linear relationship between the square root of the scan rate (v1/2) and the peak current density (ip) provides further evidence that a Faraday redox reaction occurs on the electrode surface(Fig.3c and 3d).Moreover,CV curves can also provide greater insight into the charge storage kinetics of Ti11electrodes. Generally, the following equation proposed by Lindstr?m et al.[28-29]can be used to depict the relationship between the scan rates (v) and peak current density(i):

    Fig.3 CV curves of(a)Cd-Ti11 and(b)Zn-Ti11 at various scan rates;Corresponding relationships between v1/2 and ip of(c)Cd-Ti11 and(d)Zn-Ti11 in voltage range of 0-0.6 V(vs Hg/HgO);Determination of the b-value of(e)Cd-Ti11 and(f)Zn-Ti11 using the relationship between lg ip and v

    whereaandbare adjustable parameters. Specifically,kinetic limitations can be estimated from the limiting cases of theb-value;b=0.5, which suggests a diffusioncontrolled (or battery-like) behavior, caused by slowly semi-infinite linear ion diffusion;b=1.0, which indicates a capacitive behavior related to a fast-Faraday redox reaction on the surface. Calculated from CV curves with scan rates ranging from 1 to 30 mV·s-1, all of theb-values of the anodic and cathodic peaks for both Zn-Ti11and Cd-Ti11electrodes were between 0.5 and 1, which suggests that this electrochemical reaction is both surface-controlled and diffusion-controlled(Fig.3e and 3f).

    The electrochemical properties of Cd-Ti11and Zn-Ti11electrodes were further investigated. Fig.4a and 4b shows GCD curves of Cd-Ti11electrodes at the range of 0.1 to 1 A·g-1. Although these electrodes had long discharge times at low current densities (452 F·g-1at 0.1 A·g-1for Cd-Ti11and 709 F·g-1at 0.1 A·g-1for Zn-Ti11)(Fig.4c),their Coulombic efficiencies appeared unsatisfactory (only 69% for Cd-Ti11and 59% for Zn-Ti11).With the increasing current density,the Coulombic efficiency increased significantly.When the current density was up to 1 A·g-1, the Coulombic efficiencies of Cd-Ti11and Zn-Ti11electrodes were 96% and 93%,respectively (Fig.4d). Although Cd-Ti11electrode had a larger voltage window (0-0.92 V) compared that of Zn-Ti11electrode (0-0.60 V) (Fig.S5), the discharge specific capacitance of Zn-Ti11electrode wasca. 175 F·g-1at 1 A·g-1, significantly better than that of the Cd-Ti11electrode (ca. 76 F·g-1at 1 A·g-1) and many related MOCbased electrodes (Table 1). Moreover, the specific capacitance of both Cd-Ti11and Zn-Ti11electrodes decreased almost linearly with increasing current density,which may be attributed to the electrode polarization.

    Table 1 Summary of MOC-based composite electrodes of three-electrode supercapacitors

    Fig.4 GCD curves of(a)Cd-Ti11 and(b)Zn-Ti11 scanned at various current densities;(c)Specific capacitances and(d)Coulombic efficiencies of Cd-Ti11 and Zn-Ti11 after IR-drop correction

    As shown in Fig.S6, the Zn-Ti11electrode exhibited a higher initial capacitance (114 F·g-1) at 1 A·g-1,compared to Cd-Ti11(74 F·g-1). Moreover, the Cd-Ti11-based cell failed inca.200 cycles,accompanied by violent fluctuations in specific capacity. However, the Zn-Ti11cell can be stably cycled for more than 500 cycles,with a capacitance retention rate of 84.7% and a decay rate of only 0.003% per cycle. The above results showed that the Zn-Ti11-based supercapacitor had a stronger structure and could operate stably for a long time at a higher current density.Furthermore,after calculation,Cd-Ti11and Zn-Ti11electrodes can provide the maximum power density and energy density of 9.5 W·kg-1and 463 Wh·kg-1, 8.7 W·kg-1and 324 Wh·kg-1,respectively, which are significantly better than many related reports in the literature[29-31], implying the great potential of Ti11clusters in the energy storage area.

    3 Conclusions

    In this study, two novel Ti11clusters (Zn-Ti11and Cd-Ti11)with fascinating structures were synthesized by introducing thiophenol and a second metal.Their applications in supercapacitors were investigated for the first time.The experimental results showed that Zn-Ti11-based supercapacitors showed higher specific capacitance than that of Cd-Ti11, and were better than most reported MOC-based electrode materials. Therefore,this work provides an effective strategy for designing and synthesizing novel TOC-based electrode materials with excellent specific capacitance and may open a new avenue for high-performance supercapacitors.

    Acknowledgments:We are grateful for the financial support from the National Natural Science Foundation of China (Grant No.62204272), the Natural Science Foundation of Shandong Province(Grant No.ZR2021QB077),youth fund of Zhoukou Normal University (Grant No. ZKNUC2020044), Baiqing project(Grant No.CD70621019), and Jiaxing University SRT project(Grant No.8517221253).

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    化工學院周口雙金屬
    使固態(tài)化學反應100%完成的方法
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    雙金屬支承圈擴散焊替代技術研究
    雙金屬復合管液壓脹形機控制系統(tǒng)
    重型機械(2020年2期)2020-07-24 08:16:08
    “一站一臺”連民心 繪出周口新畫卷
    人大建設(2018年9期)2018-11-13 01:10:00
    雙金屬復合管焊接方法選用
    為周口人民的健康事業(yè)做出更大貢獻
    人大建設(2018年1期)2018-04-18 11:30:09
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    二次多階段不確定系統(tǒng)的Bang-Bang最優(yōu)控制
    大型黄色视频在线免费观看| 国产白丝娇喘喷水9色精品| 黄色一级大片看看| 国内少妇人妻偷人精品xxx网站| 黄片wwwwww| 国产成人福利小说| 免费看美女性在线毛片视频| 简卡轻食公司| 亚洲在线自拍视频| 波野结衣二区三区在线| 国产午夜精品久久久久久一区二区三区| 日韩三级伦理在线观看| 亚洲精品久久国产高清桃花| 欧美高清性xxxxhd video| 国产伦理片在线播放av一区 | 久久久久久久午夜电影| 人妻少妇偷人精品九色| 一级毛片aaaaaa免费看小| 精品不卡国产一区二区三区| 26uuu在线亚洲综合色| 乱人视频在线观看| 成年免费大片在线观看| 中文资源天堂在线| 欧美日本亚洲视频在线播放| 久久久久久大精品| 国产精品久久久久久精品电影小说 | 五月玫瑰六月丁香| 久久午夜福利片| 国产成人aa在线观看| videossex国产| 日本色播在线视频| 国内精品美女久久久久久| 亚洲欧美精品自产自拍| 中文亚洲av片在线观看爽| 国产极品精品免费视频能看的| 国产女主播在线喷水免费视频网站 | 日本熟妇午夜| 亚洲色图av天堂| 人体艺术视频欧美日本| 久久这里只有精品中国| 成人无遮挡网站| 欧美极品一区二区三区四区| 看十八女毛片水多多多| 99久久中文字幕三级久久日本| 免费人成视频x8x8入口观看| 99久久人妻综合| 欧美不卡视频在线免费观看| 国产高清激情床上av| 狠狠狠狠99中文字幕| 麻豆av噜噜一区二区三区| 国产在线男女| 欧美又色又爽又黄视频| 成人特级av手机在线观看| 麻豆国产av国片精品| 亚洲人成网站高清观看| 99久久久亚洲精品蜜臀av| 久久久久久久久久黄片| 久久久久网色| 国产在线男女| 村上凉子中文字幕在线| 国产高清有码在线观看视频| 九九爱精品视频在线观看| 少妇熟女aⅴ在线视频| 日韩欧美精品v在线| 淫秽高清视频在线观看| 中文字幕精品亚洲无线码一区| 亚洲丝袜综合中文字幕| 国产精品久久久久久亚洲av鲁大| 日本av手机在线免费观看| 欧美性猛交黑人性爽| 六月丁香七月| 亚洲在线自拍视频| 久久久午夜欧美精品| 国产精品人妻久久久影院| 最后的刺客免费高清国语| 国产在视频线在精品| 国产精品1区2区在线观看.| 一区福利在线观看| 午夜免费激情av| 精品人妻一区二区三区麻豆| 身体一侧抽搐| 亚洲最大成人av| 秋霞在线观看毛片| 免费看光身美女| 欧美又色又爽又黄视频| 校园人妻丝袜中文字幕| 免费黄网站久久成人精品| 少妇高潮的动态图| 亚洲成人中文字幕在线播放| 亚洲高清免费不卡视频| 久久久精品大字幕| 亚洲精品久久久久久婷婷小说 | 18禁在线播放成人免费| 极品教师在线视频| 少妇熟女aⅴ在线视频| 国内揄拍国产精品人妻在线| 亚洲精品影视一区二区三区av| 欧美高清性xxxxhd video| 成人亚洲欧美一区二区av| 国产精品免费一区二区三区在线| 久久午夜亚洲精品久久| 看黄色毛片网站| 久久久午夜欧美精品| 青青草视频在线视频观看| 麻豆av噜噜一区二区三区| 欧美变态另类bdsm刘玥| 91av网一区二区| а√天堂www在线а√下载| 精品日产1卡2卡| 少妇高潮的动态图| 久久中文看片网| 午夜福利在线观看吧| 内地一区二区视频在线| 亚洲av中文字字幕乱码综合| 99久久九九国产精品国产免费| 国产精品1区2区在线观看.| 久久精品人妻少妇| 精品久久久久久久久亚洲| 久久精品国产清高在天天线| 狂野欧美激情性xxxx在线观看| 夜夜爽天天搞| 51国产日韩欧美| 99热这里只有精品一区| 欧美一级a爱片免费观看看| 国产成人一区二区在线| 成人毛片a级毛片在线播放| 久久精品国产自在天天线| 国产亚洲91精品色在线| 日韩av在线大香蕉| 青春草国产在线视频 | 日本黄大片高清| 久久这里只有精品中国| 一本久久中文字幕| a级一级毛片免费在线观看| 中文字幕av成人在线电影| 久久久精品欧美日韩精品| 国产精品一二三区在线看| 麻豆成人av视频| 亚洲国产精品sss在线观看| 舔av片在线| 欧美激情在线99| 看十八女毛片水多多多| 久久鲁丝午夜福利片| 成人午夜精彩视频在线观看| 婷婷色av中文字幕| 久久精品久久久久久久性| 高清在线视频一区二区三区 | 舔av片在线| 国产成人影院久久av| 久久久久性生活片| 久久久a久久爽久久v久久| 中国美白少妇内射xxxbb| 国产亚洲精品久久久久久毛片| 日本五十路高清| eeuss影院久久| 欧美在线一区亚洲| 高清在线视频一区二区三区 | 日韩一本色道免费dvd| 国产一区二区在线av高清观看| 国产人妻一区二区三区在| 国产av麻豆久久久久久久| 精品人妻偷拍中文字幕| 综合色丁香网| 国产av一区在线观看免费| 成人亚洲欧美一区二区av| 亚洲熟妇中文字幕五十中出| 久久草成人影院| 看免费成人av毛片| 丰满人妻一区二区三区视频av| 精品一区二区三区视频在线| 成年版毛片免费区| 变态另类丝袜制服| 麻豆乱淫一区二区| 成人特级黄色片久久久久久久| 国产成人福利小说| 少妇人妻精品综合一区二区 | 波多野结衣高清作品| 国产老妇伦熟女老妇高清| 午夜视频国产福利| 草草在线视频免费看| 日韩亚洲欧美综合| 可以在线观看毛片的网站| 99国产极品粉嫩在线观看| 搡老妇女老女人老熟妇| 国产又黄又爽又无遮挡在线| 99国产极品粉嫩在线观看| 99国产精品一区二区蜜桃av| 久久这里有精品视频免费| 波多野结衣高清无吗| 18禁在线播放成人免费| 国产在视频线在精品| 久久久久久九九精品二区国产| 少妇裸体淫交视频免费看高清| 男人舔女人下体高潮全视频| 简卡轻食公司| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲一级一片aⅴ在线观看| 成人av在线播放网站| 国产精品不卡视频一区二区| 草草在线视频免费看| 国产黄色小视频在线观看| 中出人妻视频一区二区| 日本黄色视频三级网站网址| 亚洲av第一区精品v没综合| 男人狂女人下面高潮的视频| 搞女人的毛片| avwww免费| 最近中文字幕高清免费大全6| 老司机影院成人| 亚洲av中文字字幕乱码综合| 草草在线视频免费看| 精品人妻熟女av久视频| 一级黄色大片毛片| 黄色视频,在线免费观看| 人妻久久中文字幕网| 一级黄色大片毛片| 激情 狠狠 欧美| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品乱码久久久久久按摩| 夜夜爽天天搞| 中文字幕久久专区| 男人舔女人下体高潮全视频| 可以在线观看的亚洲视频| 国产精品人妻久久久久久| 国产真实伦视频高清在线观看| 免费人成视频x8x8入口观看| av专区在线播放| 黄片wwwwww| 国产精品一区www在线观看| 日韩,欧美,国产一区二区三区 | 能在线免费看毛片的网站| av专区在线播放| 91av网一区二区| 国产亚洲精品久久久com| 天堂av国产一区二区熟女人妻| 亚洲精品成人久久久久久| 中国美女看黄片| 国内精品久久久久精免费| 国产精品无大码| 男插女下体视频免费在线播放| 看片在线看免费视频| 少妇丰满av| 久久久久九九精品影院| 色5月婷婷丁香| 久久久成人免费电影| 国产精品嫩草影院av在线观看| 熟妇人妻久久中文字幕3abv| 少妇的逼好多水| 中文字幕免费在线视频6| 国产乱人视频| 亚洲av第一区精品v没综合| 久久久a久久爽久久v久久| av在线观看视频网站免费| 天堂√8在线中文| 国产人妻一区二区三区在| 青春草视频在线免费观看| 欧美潮喷喷水| 网址你懂的国产日韩在线| 欧美+亚洲+日韩+国产| 一级毛片电影观看 | 国产高清有码在线观看视频| 久久精品国产99精品国产亚洲性色| 久久久久久久久中文| 亚洲av中文av极速乱| 舔av片在线| 欧美3d第一页| 国产精品.久久久| 草草在线视频免费看| 精品久久久久久久末码| 亚洲图色成人| 在线观看66精品国产| 在线免费观看的www视频| 一本一本综合久久| 中文资源天堂在线| 国产高清视频在线观看网站| 亚洲第一电影网av| 欧美bdsm另类| 麻豆乱淫一区二区| 午夜福利高清视频| 久久午夜亚洲精品久久| 欧美日韩综合久久久久久| 欧美性猛交黑人性爽| 99久久成人亚洲精品观看| 日韩欧美 国产精品| or卡值多少钱| 桃色一区二区三区在线观看| 国产伦一二天堂av在线观看| 成人特级黄色片久久久久久久| 男人舔女人下体高潮全视频| 国产成人91sexporn| 亚洲av男天堂| 99riav亚洲国产免费| 老女人水多毛片| 91狼人影院| 永久网站在线| 国产高清激情床上av| 噜噜噜噜噜久久久久久91| 青春草国产在线视频 | 国产成人精品久久久久久| 我要搜黄色片| 国产av麻豆久久久久久久| 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 国产高潮美女av| 嫩草影院入口| 久久久久国产网址| 免费大片18禁| 国产探花在线观看一区二区| 少妇被粗大猛烈的视频| 午夜激情欧美在线| av.在线天堂| av在线天堂中文字幕| 国产又黄又爽又无遮挡在线| 黄片wwwwww| 三级毛片av免费| 亚洲第一区二区三区不卡| 亚洲欧美日韩卡通动漫| 亚洲成av人片在线播放无| 亚洲一级一片aⅴ在线观看| 国产精品伦人一区二区| 人人妻人人澡欧美一区二区| av女优亚洲男人天堂| 欧美最新免费一区二区三区| 校园人妻丝袜中文字幕| 亚洲无线观看免费| 色哟哟·www| 日本三级黄在线观看| 亚洲激情五月婷婷啪啪| 国产人妻一区二区三区在| 成人特级黄色片久久久久久久| 少妇猛男粗大的猛烈进出视频 | 18禁在线播放成人免费| 午夜免费男女啪啪视频观看| 丰满乱子伦码专区| 亚洲在线自拍视频| 亚洲精品日韩在线中文字幕 | 日韩大尺度精品在线看网址| 男人舔女人下体高潮全视频| 亚洲av第一区精品v没综合| 一进一出抽搐动态| av专区在线播放| 亚洲精品久久久久久婷婷小说 | 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 九九爱精品视频在线观看| 久久精品91蜜桃| 国产精品人妻久久久影院| 久久精品夜色国产| 亚洲无线观看免费| 少妇被粗大猛烈的视频| 欧美xxxx黑人xx丫x性爽| av在线老鸭窝| 男的添女的下面高潮视频| 成人漫画全彩无遮挡| 免费黄网站久久成人精品| 亚洲第一区二区三区不卡| 校园人妻丝袜中文字幕| 特级一级黄色大片| 国产精品精品国产色婷婷| 99热这里只有是精品50| 久久婷婷人人爽人人干人人爱| 蜜桃亚洲精品一区二区三区| 波多野结衣高清无吗| av女优亚洲男人天堂| 欧美日韩一区二区视频在线观看视频在线 | 国产午夜精品论理片| 一区二区三区高清视频在线| a级毛片a级免费在线| 午夜激情欧美在线| 特级一级黄色大片| 男女下面进入的视频免费午夜| av在线播放精品| 亚洲人成网站在线播| 搞女人的毛片| 色综合亚洲欧美另类图片| 亚洲欧美日韩高清专用| 亚洲av中文字字幕乱码综合| 深夜a级毛片| 一个人观看的视频www高清免费观看| 久久精品国产鲁丝片午夜精品| 色哟哟哟哟哟哟| 欧美性感艳星| 99久久人妻综合| 男女啪啪激烈高潮av片| 最近中文字幕高清免费大全6| 国产综合懂色| 国产av在哪里看| 夜夜爽天天搞| 中文字幕av在线有码专区| 日日撸夜夜添| 夜夜夜夜夜久久久久| 变态另类成人亚洲欧美熟女| 一个人免费在线观看电影| 尾随美女入室| 青春草亚洲视频在线观看| 国产精品人妻久久久久久| 色综合站精品国产| 亚洲精华国产精华液的使用体验 | 亚洲无线观看免费| 少妇裸体淫交视频免费看高清| 成人永久免费在线观看视频| 淫秽高清视频在线观看| 亚洲,欧美,日韩| 国产视频首页在线观看| 大又大粗又爽又黄少妇毛片口| 久久精品影院6| av在线老鸭窝| 亚洲av成人av| 小蜜桃在线观看免费完整版高清| 国产一区二区三区在线臀色熟女| 久久久欧美国产精品| 久久久精品94久久精品| kizo精华| 在线观看美女被高潮喷水网站| 欧美日韩国产亚洲二区| 欧美一区二区亚洲| 国产精品99久久久久久久久| 两个人视频免费观看高清| 一个人看视频在线观看www免费| 99九九线精品视频在线观看视频| 色5月婷婷丁香| 国产精品女同一区二区软件| 亚洲性久久影院| a级毛片免费高清观看在线播放| a级一级毛片免费在线观看| 国产黄a三级三级三级人| 国产色婷婷99| 日韩强制内射视频| 99热精品在线国产| 九九热线精品视视频播放| 久久亚洲国产成人精品v| 久久久久久大精品| 国产伦一二天堂av在线观看| 亚洲国产精品成人综合色| 亚洲经典国产精华液单| 日韩高清综合在线| 日本-黄色视频高清免费观看| 久久国内精品自在自线图片| 国产爱豆传媒在线观看| 成人性生交大片免费视频hd| 久久久午夜欧美精品| a级毛色黄片| 日本与韩国留学比较| 午夜激情欧美在线| 国产精品无大码| 校园春色视频在线观看| 精品一区二区免费观看| 成人美女网站在线观看视频| 中文精品一卡2卡3卡4更新| 国产又黄又爽又无遮挡在线| 男女边吃奶边做爰视频| 波多野结衣巨乳人妻| 舔av片在线| 天天一区二区日本电影三级| 一级毛片久久久久久久久女| 大香蕉久久网| 午夜福利视频1000在线观看| 一区二区三区高清视频在线| 美女高潮的动态| 亚洲欧美日韩无卡精品| 欧美成人免费av一区二区三区| 日韩在线高清观看一区二区三区| 天堂√8在线中文| 亚洲av中文字字幕乱码综合| 舔av片在线| 熟妇人妻久久中文字幕3abv| 国产成人a∨麻豆精品| 成人特级黄色片久久久久久久| 老司机影院成人| 大型黄色视频在线免费观看| 久久精品久久久久久久性| 日本与韩国留学比较| 国产91av在线免费观看| 亚洲一级一片aⅴ在线观看| 亚洲三级黄色毛片| 久久综合国产亚洲精品| 久久久久久久久久久免费av| 久久久久九九精品影院| 日韩一本色道免费dvd| 夜夜夜夜夜久久久久| 一区福利在线观看| 日本一本二区三区精品| 亚洲av免费在线观看| 亚洲精品乱码久久久v下载方式| 亚洲欧美精品自产自拍| 亚洲无线观看免费| 一级毛片电影观看 | 亚洲欧美精品综合久久99| 99久久九九国产精品国产免费| 深夜a级毛片| 日本欧美国产在线视频| 日韩成人伦理影院| 亚洲av成人av| 欧美另类亚洲清纯唯美| 中文字幕av成人在线电影| 日本爱情动作片www.在线观看| 日本三级黄在线观看| 熟女电影av网| 麻豆国产97在线/欧美| 非洲黑人性xxxx精品又粗又长| 日韩国内少妇激情av| 亚洲一级一片aⅴ在线观看| 免费看av在线观看网站| 久久精品91蜜桃| 搡老妇女老女人老熟妇| 国产高清三级在线| 亚洲欧美精品专区久久| 最后的刺客免费高清国语| 看片在线看免费视频| 午夜a级毛片| 51国产日韩欧美| 三级经典国产精品| 一边亲一边摸免费视频| 国产综合懂色| 丰满人妻一区二区三区视频av| 日本一本二区三区精品| 美女黄网站色视频| 日本一本二区三区精品| 又粗又硬又长又爽又黄的视频 | 寂寞人妻少妇视频99o| 日本一二三区视频观看| 国产熟女欧美一区二区| 日本一二三区视频观看| av.在线天堂| 成人av在线播放网站| 男人舔奶头视频| 午夜激情欧美在线| 国产男人的电影天堂91| 最好的美女福利视频网| 男人和女人高潮做爰伦理| 国产精品一区二区在线观看99 | 国产成人一区二区在线| 夜夜爽天天搞| 寂寞人妻少妇视频99o| 国产视频内射| 男女做爰动态图高潮gif福利片| 国产精品电影一区二区三区| 狠狠狠狠99中文字幕| 熟女电影av网| 日韩一区二区三区影片| 国产精品免费一区二区三区在线| 18+在线观看网站| 69av精品久久久久久| 永久网站在线| 国产精品伦人一区二区| 看非洲黑人一级黄片| 色尼玛亚洲综合影院| 久久婷婷人人爽人人干人人爱| 国内久久婷婷六月综合欲色啪| 亚洲综合色惰| 国产精品电影一区二区三区| 国产三级在线视频| 精品久久久久久久久亚洲| 亚洲精品粉嫩美女一区| 成人二区视频| 99久久久亚洲精品蜜臀av| 一级毛片久久久久久久久女| 高清在线视频一区二区三区 | 69人妻影院| 精品久久久久久久人妻蜜臀av| 高清日韩中文字幕在线| 夜夜夜夜夜久久久久| 永久网站在线| 国模一区二区三区四区视频| 天天一区二区日本电影三级| 日韩强制内射视频| 天堂网av新在线| avwww免费| 亚洲成a人片在线一区二区| 日本免费一区二区三区高清不卡| 一个人观看的视频www高清免费观看| av在线亚洲专区| 亚洲熟妇中文字幕五十中出| 一本精品99久久精品77| 26uuu在线亚洲综合色| 少妇熟女欧美另类| 插逼视频在线观看| 综合色丁香网| 看片在线看免费视频| 国产高清视频在线观看网站| 日本在线视频免费播放| 中文字幕av成人在线电影| 99riav亚洲国产免费| 国产精品99久久久久久久久| 日本免费a在线| 中文资源天堂在线| 青青草视频在线视频观看| 看免费成人av毛片| 能在线免费看毛片的网站| 天堂中文最新版在线下载 | 一个人观看的视频www高清免费观看| 成人毛片a级毛片在线播放| 一卡2卡三卡四卡精品乱码亚洲| 变态另类丝袜制服| 免费无遮挡裸体视频| 久久人人爽人人片av| 99久久精品热视频| 国产成人一区二区在线| 亚洲四区av| 成人三级黄色视频| 大又大粗又爽又黄少妇毛片口| 少妇猛男粗大的猛烈进出视频 | 欧美色欧美亚洲另类二区| 色综合亚洲欧美另类图片| 国产亚洲精品av在线| 午夜福利视频1000在线观看| 亚洲精品日韩av片在线观看| 联通29元200g的流量卡| 丝袜美腿在线中文| 午夜福利在线在线| 真实男女啪啪啪动态图| 岛国在线免费视频观看| 中文字幕av成人在线电影| 国产又黄又爽又无遮挡在线| 午夜亚洲福利在线播放|