• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The compatibly large nonlinear optical effect and high laser-induced damage threshold in a thiophosphate CsInP2S7 constructed with[P2S7]4- and [InS6]9-

    2024-04-06 06:21:14MengjiaLuoXiaohuiLiXingxingJiangZheshuaiLinZhengyangZhou
    Chinese Chemical Letters 2024年1期

    Mengjia Luo ,Xiaohui Li ,Xingxing Jiang ,Zheshuai Lin ,Zhengyang Zhou

    a Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials,Nanchang Institute of Technology,Nanchang 330099,China

    b Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China

    c Functional Crystals Lab,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    d Institute of Experimental Physics,Free University Berlin,Berlin D-14195,Germany

    Keywords: Infrared nonlinear optics materials A novel thiophosphate Structure design Structure-activity relationship High laser-induced damage threshold

    ABSTRACT It is challenging to cooperatively improve the nonlinear optical (NLO) efficiency and the laser-induced damage threshold (LIDT).This work reports a novel IR NLO materials CsInP2S7 (CIPS) designed by combination the strategies of alkali metals substitution and microscopic NLO units PS4 introduction based on AgGaS2.CIPS was composed of strongly distorted [InS6]9- octahedra and [P2S7]4- dimers constructed by corner-sharing [PS4]3-,which increase the NLO efficiency and decrease thermal expansion anisotropy simultaneously.Compared with AgGaS2,CIPS exhibited strong phase matchable NLO response ca. 1.1×AGS@2.1 μm,high LIDT ca. 20.8×AgGaS2,and IR transparency up to 15.3 μm.Structural analysis and theoretical investigation confirmed that large SHG effect and ultrahigh LIDT of CIPS originated from the synergistic contribution of [InS6]9- octahedra and [P2S7]4- dimers.These results indicate that CIPS is a promising NLO candidate in the mid-IR region,and this study provides a new approach for developing potential NLO-LIDT compatible materials.

    To release medical diagnostics,atmospheric detection,laser guidance and laser telecommunications,coherent tunable lasers in the mid-IR region (2–20 μm) are very necessary [1,2].Infrared nonlinear optical (IR NLO) materials can convert near IR light to mid-IR bandviafrequency down-conversion,which play important roles in solid state laser technology [3].However,the commercially available middle-IR (MIR) NLO crystals are relatively rare.Notably,AgGaS2(AGS),AgGaSe2and ZnGeP2,featuring large NLO coeffi-cients,are the only available commercial IR NLO materials [4–6].Nonetheless,they still suffer from intrinsic defects such as harmful two-photon absorption (TPA) of ZnGeP2and low laser-induced damage thresholds (LIDTs) of AGS and AgGaSe2,which severely limit their high-power laser applications.As a result,they cannot achieve a good balance between large second-harmonic generation(SHG) and high LIDT.Therefore,systematic explorations of new IR NLO materials to realize NLO-LIDT compatible have become a research hot-spot.

    Alkali-metal possess high electro-positivity and large ionic radius.When alkali-metal was introduced into a compound,the band gap and local structure distortion of this compound will increase [7,8].Therefore,alkali-metal atoms substitution is a common regulation strategy for IR NLO materials to increase properties,such as Rb10Zn4Sn4S17(NLO response: 0.7×AGS;LIDT:5×AGS) [9].In addition,introduction of NLO active units or complex coordinated functional groups is a good strategy to discover new materials whose NLO efficiencies and LIDTs are balanced [10–19].Among numerous active units,PS4has short P-S bond length and small volume,and PS4units can form other active NLO units such as edge-sharing P2S6[20].Moreover,thiophosphates possess wide IR transparency ranges,such as Hg3P2S8(NLO response: 4.2×AGS@2.09 μm,optical transmitting range: 0.45–16.7 μm),Eu2P2S6(0.9×AGS@2.1 μm,0.49–15.4 μm),AgGa2PS6(1×AGS@2.1 μm,0.60–16.7 μm),thus attracting extensive attention [13,21,22].

    In this work,a new compound CsInP2S7(CIPS) was obtained by combination the strategies of alkali metals substitution and microscopic NLO units PS4introduction based on AgGaS2.Ag+was replaced by Cs+cation and PS4unit was introduced to replace S site.In order to maintain structural stability,In3+cation with flexible coordination number (4,6,and 8) was introduced to coordinate with S atoms of [PS4]3-(Fig.1a).The CIPS exhibits a wide optical transmittance in the range of 0.414–15.3 μm,strong phasematchable NLO responseca.1.1×AGS@2.1 μm,and high LIDTca.20.8×AGS.Through the structural analysis and first-principles calculations,the origin of optical properties from cooperation of the[InS6]9-and [P2S7]4-groups was revealed.It was proposed that alkali metals substitution combined with microscopic NLO units introduction based on known mother materials could be a new method for materials design,which could maintain the original structural framework with large effects and modulate the LIDT performance.

    Fig.1.(a) Schematic diagram of the structural evolution from AgGaS2 to CsInP2S7.(b) 2D [InP2S7]- anionic framework of CIPS,Cs+ cations are filled in the interlayer space.(c) [InP2S11]9- ring in red circle and layer in the ab plane.

    Light yellow plate-like crystals of CIPS were obtained through solid-state reaction with mixture containing In,P2S5,S,and CsCl at 1223 K (see detailed description in Supporting information).The powder X-ray diffraction (PXRD) pattern matches well with the calculated results based on single-crystal XRD analysis (Fig.S1 in Supporting information).The corresponding crystallographic data are summarized in Tables S1–S3 (Supporting information).Energy dispersive spectroscopy (EDS) analysis confirms the presence of Cs,In,P,and S elements with the approximate molar ratio of 1:1:2.02:6.97 (Fig.S2 in Supporting information),which is consistent with the single-crystal XRD analysis.

    CIPS crystallizes in the Non centrosymmetric monoclinic space groupC2 (No.5) and features a 2D [InP2S7]-layer with Cs+cations filled in the interlayer space (Fig.1b).The [InS6]9-octahedra and the [P2S7]4-dimers share S2 atoms to form [InP2S11]9-rings (Fig.1c).The [InP2S11]9-rings connected to another oneviaedge-sharing and then form the 2D [InP2S7]-anionic framework.To maintain charge balance,Cs+cations get filled in the interlayer space.The In-S bond lengths in the [InS6]9-polyhedra range from 2.587(3) ?A to 2.686(3) ?A (Fig.S3a in Supporting information),which are in accordance with CuInP2S6[23].The P-S bond lengths in [P2S7]4-dimers,ranging from 2.007(5) ?A to 2.142(3) ?A (Fig.S3b in Supporting information),are close to those in SnPS3,Zn3P2S8[24,25].The distances between Cs and S in [CsS10]19-polyhedra range from 3.533(3) ?A to 4.062(3) ?A (Fig.S3c in Supporting information),comparable to those in CsVP2S7[26].

    Details of the structure evolution from AGS to CIPS were shown in Fig.S4 (Supporting information).The red-line circled part (A)and blue-line circled part (B) in the structure of CIPS correspond to an infinitely extended [InP2] layer and [CsInP3] layer (Figs.S4b and c),which is highly similar with the red-line circled part (A?)and blue-line circled part (B?) in the structure of AGS,respectively(Figs.S4e and f).Compared with the two isolated four-connected S atoms in AGS,the PS4units in CIPS are linked to form [P2S7]4-dimers due to the introduction of the strongly distorted [InS6]9-octahedron,which makes CIPS with alkali metal inherit the effective framework from AGS,and still brings about the effective superposition of microscopic second-order nonlinear susceptibility.

    The Rietveld refinement against the PXRD patterns of the samples used for SHG response evaluation on dry powder reveals that almost no impurity is involved,and this confirms that the measured result is intrinsic property of CIPS (Fig.2a).According to the TG-DTA result,CIPS starts to lose weight significantly at around 192°C,corresponding to the decomposition (Fig.S5 in Supporting information).CIPS exhibits typical phase-matching behavior,i.e.,a tendency to increase gradually to platform of SHG intensities with the increase in particle size (Fig.2b).The SHG response of pure polycrystalline dry CIPS powder (Fig.2c) was measured using a Qswitch laser (2.1 μm),and AGS was used as the Ref.[27].Moreover,the SHG efficiency of CIPS is ~1.1×AGS at the largest particle size range of 200–250 μm.Such SHG responses are moderate compared with other promising IR-NLO chalcogenides,including LiZnPS4(0.8×AGS),Sn7Br10S2(1.5×AGS),and LaBS3(1.2×AGS)[28–30].Hitherto,some thiophosphates (Table S4 in Supporting information) with good NLO performances were studied.However,most of them are formed with [PS4]3-units and [P2S6]4-dimers,except for Rb2Ga2P2S9(0.1×AGS) with [P2S7]4-dimers [31].

    Fig.2.(a) Rietveld refinement for the powder X-ray diffraction pattern of CIPS.(b) SHG signals of CIPS and AGS for particle sizes of 200–250 μm.(c) The size-dependent SHG responses of CIPS and AGS when irradiated by a 2.1 μm laser.(d) UV–vis–NIR diffuse reflectance spectra and FT-IR spectra for CIPS.

    The experimentalEgof CIPS was deduced from the UV–vis–NIR transmittance spectrum to be 3.0 eV (Fig.2d),larger than that of the commercial AGS (2.56 eV) and enough to get away from the drawback of TPA (2.33 eV,532 nm).The IR cutoff edge of CIPS was verified by IR transmittance spectra,and it was measured to be about 15.3 μm,which covers two atmospheric windows of 3–5 and 8–12 μm.Several absorption peaks are present at 8–11 μm in the IR transmittance spectra,which is possibly caused by multi-phonon absorption and the similar phenomenon is also found in Hg3P2S8and CuZnPS4.Therefore,CIPS shows a transparency of 0.414–15.3 μm,superior to that of the commercial mid-IR NLO crystals of AGS (0.48–11.4 μm) and similar to the other reported thiophosphates,such as CuHgPS4(0.54–16.7 μm)and CuZnPS4(0.43–16.5 μm) [21,32,33].

    Corresponding to the larger band gap,the LIDT is always higher.Through the evaluation of LIDT,CIPS shows 20.8 times higher LIDT than AGS (Table S5 in Supporting information),which is consistent with the general observation that theEgand LIDT are somewhat positively correlated.Apart from the influence of band gap,materials with a smaller thermal expansion anisotropy (TEA) could suffer greater thermal shock due to the temperature increase under laser irradiation and exhibits higher LIDT [34].Fig.3a shows the unit-cell variations in parameters of CIPS as a function of temperature byin situPXRD characterization in the range of 293–473 K.Based on these data,the TEA of CIPS (0.84) is smaller than that of AGS (1.60) (Table 1).According to the above-mentioned structural analysis,the two S sites in AGS are isolated without interaction,so that AGS exhibits negative thermal expansion (NTE) behaviors alongcdirection.However,in CIPS,the S sites are replaced with two [PS4]3-units linked with S to form [P2S7]4-dimers and possesses the interaction alongadirection,which prevents CIPS to have NTE capability and reduces the TEA of CIPS,leading to significant increase in LIDT value.The LIDT of CIPS is better than or comparable with those of the recently reported distinguished IR-NLO chalcogenides,such as SnI4·(S8)2(16.4×AGS),Ga2Se3(16.7×AGS),and Na2Ga2GeS6(18.1×AGS) [35–37].Such an ultrahigh LIDT indicates that CIPS may undergo high-power laser radiation and may offer potential application prospects in the laser frequency conversion system.Overall,comparison among NLO thiophosphates (Fig.3b) indicates that CIPS is a promising IR NLO candidate.

    Table 1 Thermal expansion coefficients αL (× 10–5 K-1) of the a, b,and c axis,and the thermal expansion anisotropy.

    Fig.3.(a) Comparison of LIDT among NLO thiophosphates.(b) Temperature-dependent lattice parameters of CIPS.

    To better understanding the relationships between structure and property of CIPS,first-principles theoretical calculations,including electronic structure,density of states (DOSs),and optical property were performed.CIPS is an indirect band gap semiconductor with a band gap of 2.01 eV based on theoretical calculation result (Fig.4a).The simulated value is slightly smaller than that of the measured value (3.0 eV) originating from the intrinsic drawbacks of the PBE functional.Fig.4b exhibits the total density of state (TDOS) and the partial density of state (PDOS) curves.The upper region of valence bands (VBs) is primarily derived from P 3p,S 3p,and In 4p orbitals,while the bottom part of conduction bands (CBs) mainly consists of P 3s3p,S 3p,and In 4s orbitals.It indicates the existence of strong covalent interactions among In,P,and S atoms.This result reveals that the electronic states close to the Fermi level are mainly contributed by [InS6]9-and [P2S7]4-units.The optical property of a crystal principally arises from the electron transition across the forbidden bands,as a result,the SHG efficiency mainly originates from synergistic interactions between[InS6]9-and disordered [P2S7]4-units.

    Fig.4.Theoretical calculation results for CIPS.(a) Band structure.(b) The TDOS and PDOS of CIPS.(c) SHG-density maps of CIPS.(d) Calculated birefringence curve.

    CIPS crystallizes in theC2 space group and exhibits four (χ14,χ21,χ22,andχ23) independent non-zero SHG tensors according to the Kleinman’s symmetry rule.The SHG tensorsχ14,χ21,χ22andχ23were calculated to be 16.43,20.19,16.89,and -4.74 pm/V,respectively,which agree well with the results of SHG measurement.To unveil the main contribution in generating the SHG effect,the SHG-density analysis was conducted.Fig.4c and Fig.S6 (Supporting information) exhibit that SHG-weighted electronic clouds are mostly localized on [InS6]9-and [P2S7]4-units,while no SHG density occurs around Cs+cations.It confirms that the SHG response originates from the [InS6]9-and [P2S7]4-units,matching the conclusion of electronic structure analysis.The birefringence indexΔnof CIPS are 0.10@1064 nm and 0.094@2100 nm (Fig.4d),which meets the requirements of moderate birefringenceΔn(~0.03–0.10) [39].Noteworthy,this moderateΔncould achieve its phase matching capacity in the mid-IR region,which is consistent with the experimental results.

    Simultaneously,the structure of CIPS (1.1×AGS) is comparable with that of Rb2Ga2P2S9(0.1×AGS),which also contains [P2S7]4-dimers,thus it can be used to better comprehend the role of geometry distortion of [InS6]9-and [P2S7]4-dimers to improve NLO properties.Herein,it is observed that the basic unit of Rb2Ga2P2S9is a derivative adamantane-like [Ga2P2S10]4-cluster,which is the combination of two [GaS4]5-tetrahedron and [P2S7]4-dimer (Fig.S7 in Supporting information).It is found that [P2S7]4-dimers adopt a highly twisted conformation in the CIPS (29.347°) due to the increase in coordination of In3+inducing the torsion of [PS4]3-unit (Fig.S8 in Supporting information).The large calculated dipole moments of [InS6]9-octahedra and [PS4]3-tetrahedral in CIPS also prove the strong geometry distortion (Table S6 in Supporting information).Combination of theoretical calculations and structure analysis shows that the coupling of strong distortion [InS6]9-octahedron and highly twisted [P2S7]4-dimers in CIPS significantly contributes to SHG response.It is similar with the situation that the more distorted [P2O7]4-dimers in the high-temperature phase of RbNaMgP2O7exhibit larger SHG response than that in the lowtemperature phase [40].

    In summary,CIPS was obtained through high-temperature solid-state method.CIPS is a potential NLO material with balanced performance in the MIR region,which is well verified by the experimental results,including a strong phase-matchable SHG response of 1.1×AGS,and large laser-induced damage threshold of 20.8×AGS.Structural analysis and theoretical calculations results show that the coupling of [InS6]9-octahedra and [P2S7]4-dimers make a synergistic contribution to the superior NLO performance.Alkali-metal ion Cs+enlarge the band gap and the interaction between [InS6]9-and [P2S7]4-reduce the TEA,which leads to the large LIDTs.This study coupled multiple strategies and design a potential high-performance thiophosphates CIPS,which provide new means for the design of NLO-LIDT compatible materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was financially supported by the Natural Science Foundation of China (No.22105218).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.109108.

    舔av片在线| 男女边摸边吃奶| 国产午夜福利久久久久久| 欧美日韩综合久久久久久| 白带黄色成豆腐渣| 一区二区三区高清视频在线| 久久99热这里只有精品18| 色吧在线观看| 亚洲一级一片aⅴ在线观看| 亚洲18禁久久av| 久久综合国产亚洲精品| 久久精品久久精品一区二区三区| 性插视频无遮挡在线免费观看| 中文乱码字字幕精品一区二区三区 | 最近中文字幕高清免费大全6| 亚洲精品久久午夜乱码| 蜜桃亚洲精品一区二区三区| 内射极品少妇av片p| 午夜日本视频在线| 一级二级三级毛片免费看| 午夜爱爱视频在线播放| 日韩一区二区视频免费看| 成年女人看的毛片在线观看| 一级毛片 在线播放| 国产精品久久视频播放| 男女那种视频在线观看| 国产女主播在线喷水免费视频网站 | 一级黄片播放器| 成年女人在线观看亚洲视频 | 亚洲欧美成人综合另类久久久| 日本免费a在线| a级毛色黄片| 一级毛片aaaaaa免费看小| 一级毛片黄色毛片免费观看视频| 日日撸夜夜添| 亚洲精品日本国产第一区| 国产色爽女视频免费观看| 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| 亚洲欧美清纯卡通| 精品国内亚洲2022精品成人| 国产乱人视频| 欧美一区二区亚洲| 成人二区视频| 精品少妇黑人巨大在线播放| 国产伦精品一区二区三区视频9| 亚洲aⅴ乱码一区二区在线播放| 免费看日本二区| 不卡视频在线观看欧美| 日韩中字成人| 一级毛片我不卡| 亚洲国产精品国产精品| 国产午夜福利久久久久久| 国产成年人精品一区二区| 亚洲综合精品二区| 欧美潮喷喷水| 2021天堂中文幕一二区在线观| 丰满乱子伦码专区| 国产单亲对白刺激| 三级经典国产精品| 国产精品久久久久久精品电影| 国产精品久久视频播放| 午夜久久久久精精品| 精品不卡国产一区二区三区| 又粗又硬又长又爽又黄的视频| 毛片女人毛片| 午夜免费男女啪啪视频观看| 国产亚洲5aaaaa淫片| or卡值多少钱| 亚洲国产成人一精品久久久| 欧美日韩一区二区视频在线观看视频在线 | 欧美日韩一区二区视频在线观看视频在线 | 国产淫片久久久久久久久| 国产中年淑女户外野战色| 国产在线男女| av免费观看日本| 免费观看性生交大片5| 国产单亲对白刺激| av福利片在线观看| 一级片'在线观看视频| 国产片特级美女逼逼视频| 成年女人在线观看亚洲视频 | 亚洲av成人av| 免费在线观看成人毛片| 国产成人精品福利久久| 黑人高潮一二区| 麻豆成人午夜福利视频| 欧美+日韩+精品| 亚洲精品日韩av片在线观看| 午夜老司机福利剧场| 免费黄频网站在线观看国产| 成人毛片60女人毛片免费| 高清av免费在线| 熟女人妻精品中文字幕| 一个人看视频在线观看www免费| 国产一区二区在线观看日韩| 99久久精品国产国产毛片| 精品国内亚洲2022精品成人| 久久久午夜欧美精品| 18禁在线播放成人免费| 精品亚洲乱码少妇综合久久| 永久免费av网站大全| 男女边吃奶边做爰视频| 中文字幕制服av| 亚洲成色77777| 99热网站在线观看| 97精品久久久久久久久久精品| 亚洲精华国产精华液的使用体验| 成人国产麻豆网| 大片免费播放器 马上看| 中文在线观看免费www的网站| 日本-黄色视频高清免费观看| 久久久国产一区二区| 国产黄色视频一区二区在线观看| 久久鲁丝午夜福利片| 婷婷六月久久综合丁香| 国产精品熟女久久久久浪| 久久精品熟女亚洲av麻豆精品 | 18禁在线无遮挡免费观看视频| 国产在视频线在精品| 午夜福利在线观看免费完整高清在| 高清av免费在线| 国产乱来视频区| 久久久久国产网址| 一边亲一边摸免费视频| 99热全是精品| 免费大片黄手机在线观看| 精品一区二区免费观看| 精品欧美国产一区二区三| 赤兔流量卡办理| 中文欧美无线码| 一个人观看的视频www高清免费观看| 精品久久久久久久久久久久久| 免费观看av网站的网址| 欧美一区二区亚洲| 久久久久久久亚洲中文字幕| 黄片无遮挡物在线观看| 搡老乐熟女国产| 大香蕉97超碰在线| 久久99热6这里只有精品| av黄色大香蕉| 一个人看的www免费观看视频| 国产永久视频网站| 欧美精品国产亚洲| 久99久视频精品免费| 精品久久久噜噜| 国产高潮美女av| 丰满乱子伦码专区| 三级毛片av免费| 免费人成在线观看视频色| 我的老师免费观看完整版| 777米奇影视久久| 性色avwww在线观看| 日韩欧美国产在线观看| 亚洲成色77777| 亚洲美女视频黄频| 毛片一级片免费看久久久久| 国产精品久久久久久久久免| av在线亚洲专区| 亚洲欧美日韩无卡精品| 久久99热这里只频精品6学生| 久久人人爽人人片av| 最近最新中文字幕大全电影3| 亚洲无线观看免费| 午夜福利网站1000一区二区三区| 99久久中文字幕三级久久日本| 在线观看免费高清a一片| 女人被狂操c到高潮| 亚洲色图av天堂| 五月玫瑰六月丁香| 99热这里只有精品一区| 久久久亚洲精品成人影院| 日本爱情动作片www.在线观看| 精品人妻一区二区三区麻豆| av播播在线观看一区| 精品久久久久久久末码| 国产精品不卡视频一区二区| 精品久久久久久电影网| 成人鲁丝片一二三区免费| 大陆偷拍与自拍| 精品一区在线观看国产| 蜜桃久久精品国产亚洲av| 国产精品一区二区性色av| 免费大片18禁| 日韩视频在线欧美| 亚洲怡红院男人天堂| 久99久视频精品免费| 欧美激情久久久久久爽电影| a级毛片免费高清观看在线播放| 精品久久久久久成人av| 午夜福利高清视频| 女人十人毛片免费观看3o分钟| 国产精品麻豆人妻色哟哟久久 | 亚洲精品中文字幕在线视频 | 国精品久久久久久国模美| 国产高清三级在线| 最新中文字幕久久久久| 97精品久久久久久久久久精品| 国产白丝娇喘喷水9色精品| 亚洲av成人av| 亚洲精品一区蜜桃| 日本色播在线视频| 少妇人妻精品综合一区二区| 亚洲电影在线观看av| 美女xxoo啪啪120秒动态图| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 亚洲高清免费不卡视频| 欧美激情国产日韩精品一区| 免费高清在线观看视频在线观看| 在线观看免费高清a一片| a级一级毛片免费在线观看| 久久久久精品久久久久真实原创| 简卡轻食公司| 亚洲经典国产精华液单| 偷拍熟女少妇极品色| 男女那种视频在线观看| 免费播放大片免费观看视频在线观看| 麻豆乱淫一区二区| 国产精品一区二区性色av| 啦啦啦中文免费视频观看日本| 一级爰片在线观看| 国产伦精品一区二区三区视频9| 少妇人妻精品综合一区二区| 国产白丝娇喘喷水9色精品| 色综合站精品国产| 天堂网av新在线| 3wmmmm亚洲av在线观看| 久久精品国产亚洲网站| 永久免费av网站大全| 国产免费视频播放在线视频 | 91久久精品国产一区二区成人| 天堂av国产一区二区熟女人妻| 草草在线视频免费看| 非洲黑人性xxxx精品又粗又长| 欧美日韩综合久久久久久| 免费大片18禁| 国产成人午夜福利电影在线观看| 亚洲av成人av| 久久久a久久爽久久v久久| 黄片无遮挡物在线观看| 毛片一级片免费看久久久久| 天堂影院成人在线观看| 亚洲在久久综合| av在线观看视频网站免费| av卡一久久| 国产亚洲精品av在线| 亚洲一级一片aⅴ在线观看| 蜜桃亚洲精品一区二区三区| 国产av在哪里看| 亚洲最大成人手机在线| 黄色配什么色好看| 免费大片18禁| 国产精品不卡视频一区二区| 国产一区二区亚洲精品在线观看| 国产一区有黄有色的免费视频 | 亚洲成人久久爱视频| 老司机影院毛片| 亚洲av一区综合| 免费观看精品视频网站| 亚州av有码| 欧美 日韩 精品 国产| 在线观看av片永久免费下载| 亚洲va在线va天堂va国产| 亚洲,欧美,日韩| 色哟哟·www| 极品少妇高潮喷水抽搐| 日韩伦理黄色片| 三级国产精品片| 成人毛片60女人毛片免费| 大片免费播放器 马上看| 国产伦在线观看视频一区| 国产黄a三级三级三级人| 又爽又黄a免费视频| 免费观看a级毛片全部| 精品人妻熟女av久视频| 国内精品美女久久久久久| 日韩av在线大香蕉| 看免费成人av毛片| 成人特级av手机在线观看| 国产精品麻豆人妻色哟哟久久 | 欧美潮喷喷水| 亚洲自偷自拍三级| av在线老鸭窝| 亚洲av男天堂| 久久久久久久久久久丰满| 亚洲欧美精品专区久久| 国产人妻一区二区三区在| 在线a可以看的网站| 日本爱情动作片www.在线观看| 国产午夜精品一二区理论片| 久久久久久久午夜电影| 久久这里有精品视频免费| 国产精品一及| 国产大屁股一区二区在线视频| 少妇被粗大猛烈的视频| 国产精品伦人一区二区| 自拍偷自拍亚洲精品老妇| 国产老妇伦熟女老妇高清| 色网站视频免费| 亚洲aⅴ乱码一区二区在线播放| 久久久久免费精品人妻一区二区| 亚洲精品国产成人久久av| 精品一区二区三卡| 又粗又硬又长又爽又黄的视频| 精品久久久久久久久久久久久| 少妇被粗大猛烈的视频| 中文字幕制服av| 国产一区二区三区av在线| 99热6这里只有精品| 国产高潮美女av| 国产亚洲av嫩草精品影院| 波野结衣二区三区在线| 久久午夜福利片| 黄色一级大片看看| 成人午夜高清在线视频| 亚洲最大成人中文| 一区二区三区四区激情视频| 黄色配什么色好看| 69av精品久久久久久| 熟妇人妻久久中文字幕3abv| 成人特级av手机在线观看| 精品国内亚洲2022精品成人| 国产成人福利小说| 80岁老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| av在线老鸭窝| 精品午夜福利在线看| 国产亚洲av片在线观看秒播厂 | 亚洲精品中文字幕在线视频 | 麻豆成人午夜福利视频| av.在线天堂| 欧美日韩国产mv在线观看视频 | 久久久久久久久久成人| 日本av手机在线免费观看| 人妻一区二区av| 舔av片在线| 午夜免费男女啪啪视频观看| 搡老乐熟女国产| 国产在线男女| 嫩草影院精品99| 国产午夜精品一二区理论片| 激情 狠狠 欧美| 免费观看精品视频网站| 男女边吃奶边做爰视频| 国产精品人妻久久久久久| 色综合站精品国产| 在线播放无遮挡| 久久久精品94久久精品| 日韩一区二区视频免费看| 一边亲一边摸免费视频| 波多野结衣巨乳人妻| 亚洲国产欧美人成| 人人妻人人看人人澡| 夫妻午夜视频| 国产又色又爽无遮挡免| 超碰av人人做人人爽久久| 国产成人一区二区在线| 91在线精品国自产拍蜜月| 亚洲性久久影院| 狂野欧美激情性xxxx在线观看| 一级毛片aaaaaa免费看小| 床上黄色一级片| 美女被艹到高潮喷水动态| 国产黄a三级三级三级人| 精品国内亚洲2022精品成人| 色综合站精品国产| 尾随美女入室| 一夜夜www| 国产成人freesex在线| 国产综合精华液| 亚洲,欧美,日韩| 观看美女的网站| 久久精品国产亚洲av涩爱| 国产黄色小视频在线观看| 精品少妇黑人巨大在线播放| 亚洲国产精品成人综合色| 网址你懂的国产日韩在线| 欧美成人a在线观看| 国产精品一区二区在线观看99 | 少妇熟女aⅴ在线视频| 91在线精品国自产拍蜜月| 国内精品一区二区在线观看| 亚洲精品影视一区二区三区av| 网址你懂的国产日韩在线| 大片免费播放器 马上看| 成人欧美大片| 欧美另类一区| 91狼人影院| 美女xxoo啪啪120秒动态图| 欧美+日韩+精品| 国产黄片视频在线免费观看| 亚洲人成网站在线观看播放| 深爱激情五月婷婷| 色综合色国产| 亚洲精品久久午夜乱码| 看黄色毛片网站| 日本猛色少妇xxxxx猛交久久| 成人综合一区亚洲| 日日撸夜夜添| 成年av动漫网址| 99久久精品热视频| 十八禁国产超污无遮挡网站| 亚洲欧洲日产国产| 亚洲精品一二三| 舔av片在线| 99re6热这里在线精品视频| 日本av手机在线免费观看| 大香蕉久久网| 亚洲精品国产av成人精品| 国内精品美女久久久久久| 国产精品一区www在线观看| 日韩人妻高清精品专区| 啦啦啦啦在线视频资源| 又大又黄又爽视频免费| 亚洲天堂国产精品一区在线| 亚洲av成人av| 日韩成人伦理影院| 日日摸夜夜添夜夜爱| 久久久久久久久久人人人人人人| 午夜精品在线福利| 男女边摸边吃奶| 日本黄色片子视频| 久久精品夜夜夜夜夜久久蜜豆| 别揉我奶头 嗯啊视频| 搡女人真爽免费视频火全软件| 久久精品国产鲁丝片午夜精品| 免费不卡的大黄色大毛片视频在线观看 | 日本-黄色视频高清免费观看| 一级毛片我不卡| 精品酒店卫生间| 欧美性感艳星| 中文字幕久久专区| 亚洲国产精品sss在线观看| 中文字幕制服av| 亚洲伊人久久精品综合| 久久精品熟女亚洲av麻豆精品 | 国产色婷婷99| or卡值多少钱| 伦理电影大哥的女人| 97热精品久久久久久| av在线蜜桃| 久久人人爽人人片av| 哪个播放器可以免费观看大片| 久久精品国产亚洲av天美| 在线免费观看的www视频| 日韩视频在线欧美| 久久综合国产亚洲精品| 免费av不卡在线播放| 一本一本综合久久| 免费看a级黄色片| 中文字幕免费在线视频6| 最近最新中文字幕免费大全7| 联通29元200g的流量卡| 超碰av人人做人人爽久久| 看十八女毛片水多多多| 好男人在线观看高清免费视频| 日日啪夜夜撸| 欧美成人午夜免费资源| 2018国产大陆天天弄谢| 色5月婷婷丁香| 国产精品久久久久久av不卡| 永久免费av网站大全| 国产视频内射| 亚洲怡红院男人天堂| 成人综合一区亚洲| 综合色丁香网| 人体艺术视频欧美日本| 午夜激情欧美在线| 男女下面进入的视频免费午夜| 中文字幕人妻熟人妻熟丝袜美| 亚洲最大成人av| 亚洲在久久综合| 一区二区三区免费毛片| 久久热精品热| 国产69精品久久久久777片| 国内揄拍国产精品人妻在线| 国产日韩欧美在线精品| 免费看美女性在线毛片视频| 欧美最新免费一区二区三区| 熟女人妻精品中文字幕| 少妇被粗大猛烈的视频| 国产色婷婷99| 一夜夜www| 国产有黄有色有爽视频| 国产中年淑女户外野战色| 欧美bdsm另类| 大又大粗又爽又黄少妇毛片口| 国产精品女同一区二区软件| 最近中文字幕2019免费版| 国产精品久久久久久精品电影小说 | 好男人在线观看高清免费视频| 日本黄大片高清| 97精品久久久久久久久久精品| eeuss影院久久| 日本三级黄在线观看| 热99在线观看视频| 国产乱人偷精品视频| 国产一区二区亚洲精品在线观看| 特级一级黄色大片| 天美传媒精品一区二区| 国产一区二区三区综合在线观看 | 欧美日韩视频高清一区二区三区二| 欧美最新免费一区二区三区| 亚洲人与动物交配视频| 亚洲欧美成人综合另类久久久| 精品国内亚洲2022精品成人| 最近中文字幕高清免费大全6| av.在线天堂| 韩国高清视频一区二区三区| 久久久久久久久大av| 国产在线男女| 六月丁香七月| 日韩精品青青久久久久久| 中文字幕免费在线视频6| 国产亚洲91精品色在线| 国产伦在线观看视频一区| 性色avwww在线观看| 汤姆久久久久久久影院中文字幕 | 精华霜和精华液先用哪个| 久久久久久久亚洲中文字幕| 综合色丁香网| 日本黄大片高清| 免费看日本二区| 国产精品人妻久久久影院| 亚洲,欧美,日韩| 99久久精品国产国产毛片| av播播在线观看一区| 免费黄频网站在线观看国产| 免费看美女性在线毛片视频| 精品熟女少妇av免费看| 国产单亲对白刺激| 777米奇影视久久| 日本熟妇午夜| 一本一本综合久久| eeuss影院久久| 成年女人在线观看亚洲视频 | 别揉我奶头 嗯啊视频| 97在线视频观看| 亚洲成色77777| 亚洲精品第二区| 久久久成人免费电影| 免费看不卡的av| 一区二区三区免费毛片| 国产av在哪里看| 观看免费一级毛片| 偷拍熟女少妇极品色| 夜夜看夜夜爽夜夜摸| 日本黄色片子视频| av又黄又爽大尺度在线免费看| 国产伦在线观看视频一区| 毛片女人毛片| 亚洲精品成人久久久久久| 亚洲三级黄色毛片| 在线观看免费高清a一片| 亚洲激情五月婷婷啪啪| 中文字幕人妻熟人妻熟丝袜美| 99九九线精品视频在线观看视频| 亚洲电影在线观看av| 久久草成人影院| 九色成人免费人妻av| 色综合色国产| 国产中年淑女户外野战色| 日日撸夜夜添| 欧美人与善性xxx| 在线 av 中文字幕| 成人国产麻豆网| 国产精品人妻久久久久久| 亚洲va在线va天堂va国产| 深夜a级毛片| 啦啦啦韩国在线观看视频| 亚洲欧美日韩卡通动漫| 日韩av在线免费看完整版不卡| 极品少妇高潮喷水抽搐| 一个人免费在线观看电影| av在线蜜桃| 欧美成人午夜免费资源| 国产精品精品国产色婷婷| 寂寞人妻少妇视频99o| 精品99又大又爽又粗少妇毛片| 久久久久久久午夜电影| 熟女电影av网| 久热久热在线精品观看| 男女边吃奶边做爰视频| 欧美区成人在线视频| 日本黄色片子视频| 天堂√8在线中文| 99久久九九国产精品国产免费| 在线免费观看不下载黄p国产| 我的女老师完整版在线观看| 亚洲在久久综合| 国产精品美女特级片免费视频播放器| 99热网站在线观看| 一个人看视频在线观看www免费| 能在线免费观看的黄片| 亚洲av.av天堂| 国产探花极品一区二区| 日韩 亚洲 欧美在线| 菩萨蛮人人尽说江南好唐韦庄| 国产伦一二天堂av在线观看| 日本欧美国产在线视频| 成人国产麻豆网| av在线亚洲专区| 久久久久精品性色| 亚洲av男天堂| 久久久久国产网址| 久久久久性生活片| 又粗又硬又长又爽又黄的视频| 一个人看视频在线观看www免费| 国模一区二区三区四区视频| 在线观看av片永久免费下载| 中文字幕制服av| 2018国产大陆天天弄谢| 日韩,欧美,国产一区二区三区| 一本一本综合久久|