• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Silicon quantum dots-based fluorescent sensor for the detection of cobalt with high sensitivity and selectivity

    2024-04-06 06:21:08EtihjMohmmedSullmKhlidMohmmedAdmJunjunLiuHongliChenJinxiXio
    Chinese Chemical Letters 2024年1期

    Etihj Mohmmed Sullm ,Khlid Mohmmed Adm ,Junjun Liu ,Hongli Chen,? ,Jinxi Xio,?

    a State Key Laboratory of Applied Organic Chemistry,College of Chemistry and Chemical Engineering,Lanzhou University,Lanzhou 730000,China

    b Department of Chemistry,Faculty of Education,University of Kordofan,El Obeid 51111,Sudan

    Keywords: Silicon quantum dots Fluorescence Poly(vinylpyrrolidine) Test paper Cobalt detection

    ABSTRACT Fluorescent silicon quantum dots (Si QDs) were hydrothermally synthesized from a mixture of 3(2-aminoethylamino) propyl (dimethoxymethylsilane) (AEAPDMMS) and poly(vinylpyrrolidine) (PVP).The resulting Si QDs exhibited good water solubility and high stability.Under the optimized conditions,the probe revealed an excellent linear fluorescence quenching effect on Co2+ ranging from 1 μmol/L to 120 μmol/L with a limit of detection of 0.37 μmol/L (based on 3 s/k).The quenching mechanism was studied,showing that static quenching (SQE) causes the main effect.Furthermore,the test paper based on Si QDs was prepared,which is cost-effective,high sensitivity,good selectivity,easy to use and show excellent anti-interference capability.This method was applied to analyze the content of Co2+ in environmental water samples with satisfying results.

    Heavy metals found in groundwater are difficult to decompose and thus accumulate in living organisms,causing a threat to the environment and human health [1,2].Cobalt (Co2+) is a physiologically essential mineral,albeit required in very low amounts,which plays an important role in DNA biosynthesis as an essential component of vitamin B12 [3,4].In particular,cobalt deficiency inhibits erythropoiesis and myelin synthesis and causes anemia and dementia [5–9].However,excessive cobalt intake can cause asthma,convulsions,bone defects,stomach disorders,vasodilatation,carcinogenesis,paralysis,and heart disease [1,5,10,11].The World Health Organization (WHO) recommends the maximum limit of cobalt in drinking water is 1.7 μmol/L [12].Therefore,it is necessary to design and develop an analytical technique characterized by simplicity and selectivity to detect Co2+to preserve human health and the environment’s safety [1,13].To date,the existing methods for determining Co2+,such as liquid chromatography,electrochemical,and atomic absorption spectrometry,have been reported [2,14-16].Unfortunately,the relatively complex procedures,costly tests,and tedious sample processing limit these analytical methods.Therefore,it is critical to establish a rapid and facile approach to detect Co2+under low concentrations.

    Recently,various fluorescent nanomaterials have been utilized as nanoprobes for Co2+detection with high selectivity and sensitivity.For instance,MTPT-capped CdS QDs was developed for Co2+fluorescence analysis [17].Some single element-based dots,including carbon [18],phosphorus [19],and sulfur QDs [1] were also used for Co2+detection.Moreover,functionalized carbon dots [20],nitrogen and sulfur co-doped graphene quantum dots [21],and carbon dots prepared using flax straw as carbon source [6] were developed to sense Co2+.However,these fluorometric chemosensors had some inherent issues,such as the weak water solubility,potential toxicity and low sensitivity,may hinder their actual applications.Therefore,searching for more effective materials for fluorometric detection of Co2+with high sensitivity,superior selectivity,outstanding visual ability and excellent portability is important and urgent.

    Interestingly,among various detection methods,fluorescent silicon (Si) QDs sensing to detect Co2+exhibits some advantages over other technologies,such as simplicity,high sensitivity,short response time,low instrumentation cost and nontoxic.Further,it can provide and facilitate the naked-eye detection in an uncomplicated manner.Additionally,the sensitivity and selectivity are dependent on the affinity between the active groups on the surface of the Si QDs and the target metal ion [22–24].Moreover,Si QDs smaller than 10 nm are promising fluorescent nanomaterials with environmental friendliness,high photostability,and remarkable biocompatibility,which have received extensive attentions in multiplex sensing,drug delivery,disease diagnosis,bioimaging and other fields [25–28].Extensive industry knowledge and investment in silicon-based technologies make it an ideal replacement for other quantum dot materials [29,30].

    In this work,Si QDs have been synthesized by a one-step hydrothermal method using polyvinylpyrrolidone (PVP) and 3(2-aminoethylamino) propyl (dimethoxymethylsilane) (AEAPDMMS)as the reductant and silicon source,respectively.Under excited at 370 nm,the synthesized Si QDs exhibited a bright blue fluorescence.The fabrication of the fluorescent sensing platform was characterized by good thermal and optical stability and water solubility based on the prepared Si QDs.It is found that the FL intensity of Si QDs was rapidly and selectively quenched with Co2+addition (Scheme 1).The proposed fluorescent method was successfully applied for detecting Co2+in water samples with satisfactory results.Further,a visual method has been developed by the test paper based on Si QDs,which is fast,economical,and showing excellent anti-interference capability.

    Scheme 1.Schematic representation of hydrothermal preparation of novel fluorescent silicon quantum dots for Co2+ detection.

    As illustrated in Scheme 1,AEAPDMMS was chosen as Si source and PVP as reducing reagent in this work.By using a one-step hydrothermal method,Si QDs were obtainedviamixing AEAPDMMS and PVP and stirring in an oil bath.In this process,AEAPDMMS to PVP ratio,reaction temperature and time are the important parameters on the fluorescence (FL) intensity.As shown in Figs.S1A and B (Supporting information),the FL intensity was highest as reaction in a row for 2 h at 100°C.Furthermore,the amount of PVP was optimized with the volume of AEAPDMMS fixed at 1.0 mL.As presented in Fig.S1C (Supporting information),the FL intensity increased with increasing the amount of PVP up to 1 g and then decreased slightly.Therefore,the optimal parameters are as follows: reaction time of 2 h,reaction temperature of 100°C and AEAPDMMS/PVP ratio of 1.0 mL/1.0 g.

    The morphology of the as-synthesized Si QDs was shown in TEM image (Fig.S2A in Supporting information),which appeared spherical with good mono-dispersibility ranging from 2.5 nm to 7.3 nm,while the medial diameter was around 4.1 nm (Fig.S2B in Supporting information).Fig.S3 (Supporting information) presented the FT-IR spectrum of Si QDs.The peaks at 1020 and 934 cm-1were assigned to Si-C and Si-O stretching vibrations,respectively [31].The signal at 742 cm-1was pertained to the wagging vibration of secondary amine N–H [27,32,33].The unsaturated bending vibration and stretching vibration absorption peaks at 2950 and 1465 cm-1belonged to the C–H bond [33,34].The FT-IR spectrum of Si QDs clarified broad N–H and O–H stretching peaks at 3445 cm-1[35,36],indicating that the surface of Si QDs is mostly plated with amino and hydroxyl groups,which means Si QDs have excellent water solubility.Furthermore,the other peaks can be attributed to the stretching vibration of the C=O bond at 1677 cm-1[31] and the C–N bond at 1289 cm-1[37].

    XPS spectra illustrated the chemical bonding and surface constitutes of the Si QDs (Fig.1).The five significant peaks at 102.98,152.87,284.05,399.80 and 531.20 eV are assigned to Si 2p,Si 2s,C 1s,N 1s and O 1s,respectively (Fig.1A) [33].Furthermore,four peaks are observed at 284.35 eV,284.94 eV,285.77 eV,and 287.56 eV in the C 1s spectrum (Fig.1B),indicating the presence of C–Si,C–C/C=C,C–N and C=O bonds on the surface of Si QDs[36].Meanwhile,the O 1s spectrum (Fig.1C) shows three peaks at 530.82 eV,531.48 eV,and 532.13 eV,which can be assigned to Si–O and C–OH/C–O–C groups,respectively [32,38,39].The peaks at 399.05 eV,399.50 eV and 400.00 eV in the high-resolution N 1s spectrum (Fig.1D) indicate that nitrogen exists mainly in the form of N-Si,C–N–C and Si–N–O groups [40].High-resolution Si 2p XPS spectrum of the Si QDs (Fig.1E) show three peaks centered at 101.24 eV,101.75 eV,and 102.30 eV,which could be belonged to the Si-C,Si-N,and Si-O,respectively [34].Besides,the optical properties of the Si QDs were confirmed by UV–vis absorption and fluorescence spectra (Fig.1F).As shown in Fig.1F,the typical absorption bands appeared at about 285 nm and 342 nm corresponding to theπ-π?transition for C=C andn-π?transition for C=O or C–N,respectively [41,42].And the aqueous solution of Si QDs emitted bright blue fluorescence under UV light (365 nm) and colorless under sunlight.From Fig.S4 (Supporting information),370 nm was adopted as the optimum excitation wavelength for the further experiments due to the strongest fluorescent emission at 435 nm.The synthesized Si QDs showed absolute quantum yield 2.36% obtained by Edinburgh FLS920.The above results strongly support that the N–H and O–H functional groups are on the surface of Si QDs,guaranteeing the excellent water solubility and enhancing the application as luminescent sensors in aqueous solution.

    Fig.1.High resolution XPS spectra of Si QDs: (A) Full range,(B) C 1s,(C) O 1s,(D) N 1s and (E) Si 2p,respectively.(F) FL excitation (1) and emission (2) spectra and UV–vis absorption spectrum (3) of Si QDs,the inset photographs are Si QDs solutions under visible light and UV light illumination.

    The stability investigation of Si QDs is significant for its wide application.As shown in Fig.2A,the fluorescence activities were stable with pH ranging from 4 to 10,indicating that the solution acidity did not influence the fluorescence intensity of Si QDs,and the Si QDs sensor could efficiently detect Co2+in a wide pH range.As shown in Fig.2B,it appeared utterly stable after exposing the Si QDs sensor to light illumination for one hour.Moreover,when the temperature increased from 25°C to 85°C,the FL intensity of the Si QDs remained unchanged (Fig.2C).The stability of Si QDs was also assessed in an ionic medium,where the fluorescence intensity of the Si QDs remained the same in the concentrations range of NaCl from 0 to 120 mmol/L (Fig.2D).Therefore,the sensor Si QDs showed high stability,and could be used in different practical applications.

    Fig.2.(A) Influence of pH on the fluorescence spectra of Si QDs in response to Co2+ in aqueous buffered solution.(B) FL intensity of Si QDs as function of time.(C) Normalized FL intensity of Si QDs after incubation at different temperature for 4 min.(D) Normalized FL intensity of the Si QDs in 10 mmol/L PBS (pH 7.4) with different concentrations of NaCl.Error bars stand for the standard deviation of three independent experiment. λex=370 nm, λem=435 nm.

    The response time of the fluorescent sensing was investigated.As shown in Fig.3A,when the Si QDs and Co2+solutions were mixed,the fluorescence quenched very fast and reached a plateau within 30 s,indicating that the probe can detect Co2+quickly.Fig.3B shows the fluorescence spectra of Si QDs in the presence of different concentrations of Co2+in PBS buffer solution (pH 7.4).As illustrated in Fig.3B,the bright blue fluorescence emitted from the Si QDs solution can be effectively quenched with an increasing concentration of Co2+.Further,as seen in Fig.S5 (Supporting information),there is a continuous shift trend in the CIE coordinates from (0.159,0.104) to (0.165,0.128) in the blue gamut with the increase of Co2+concentration,verifying the corresponding fluorescence color changes.Fig.3C shows the quenching efficiency (F/F0)has an excellent linear relationship with Co2+concentration in the range of 1–120 μmol/L (R2=0.996) with a limit of detection (LOD)of 0.37 μmol/L (based on 3 s/k,wheresis the standard deviation of the blank solution andkis the slope of the calibration curve).Although Si QDs show a moderate linear range and sensitivity for Co2+detection compared with some previous Co2+probes (Table S1 in Supporting information),they are easy to fabricate and have advantages in comprehensive ability.

    Fig.3.(A) Time-dependent interaction between Si QDs and Co2+ (190 μmol/L) at room temperature.(B) Fluorescence intensity of Si QDs upon addition of various concentrations of Co2+ (from top to bottom,0,1,5,10,20,40,60,80,100,120,150,170,180 and 190 μmol/L respectively) in 10 mmol/L PBS solution (pH 7.4).(C)Calibration curve for Si QDs with increasing concentration of Co2+ (1–120 μmol/L).(D) F/F0 response of the Si QDs to other kinds of cations (380 μmol/L) in the absence (black bars) or presence (red bars) of 190 μmol/L Co2+. λex=370 nm.Error bars stand for the standard deviation of three independent experiments.

    High selectivity for analytes from potentially competing species is an important feature of probes.To explore the selectivity of Si QDs for Co2+,the effects of cations (Na+,K+,Li+,Ca2+,Mg2+,Mn2+,Ni2+,Zn2+,Hg2+,Cu2+,Fe2+and Al3+),anions (F-,Cl-,Br-,I-,CN-,SCN-,ClO4-,HSO4-,CO32-,and H2PO4-),and some molecules (catechol,glutathione,methionine,glucose,cysteine,hydroquinone,histidine,valine and arginine) were investigated.The emitted fluorescence of Si QDs solution was quenched upon addition of Co2+(190 μmol/L) (Fig.3D,Fig.S6 in Supporting information).However,upon addition of interfering metal ions,theF/F0ratio (FandF0are fluorescence intensities of Si QDs in the presence and absence of the target,respectively) is approximately close to 1,indicating a selective response of Si QDs to Co2+.Moreover,the anti-interference performance of the sensing system was also evaluated,as shown in Fig.3D and Fig.S7 (Supporting information);Si QDs did not show a significant fluorescence response to any interference other than Co2+.These results indicate that the detection system has excellent selectivity and a strong tolerance to Co2+.

    To investigate the fast,convenient and economical detection of Co2+,a facile and visual method was developed by Si QDs-based test paper.Under UV irradiation of 365 nm,the entire test paper showed bright-blue fluorescence (Fig.4A-a).A series of test papers based on Si QDs for different concentrations of Co2+from 0 to 80 μmol/L were displayed in Fig.4A-b.The fluorescence of the Si QDs paper sensor was quenched under the UV lamp and the color changes could be easily distinguished with naked eyes related to those concentrations of Co2+.The selectivity of paper sensor was also tested for the detection of various other ions (i.e.,Al3+,Fe2+,Cu2+,Hg2+,Mn2+,Mg2+,Zn2+,Ca2+,Ni2+,Li+,Na+,K+,F-,Cl-,Br-,I-,CN-,SCN-,ClO4-,HSO4-,CO32-,H2PO4-) under the same conditions (Fig.S8 in Supporting information).As shown in Fig.4Ac,no obvious fluorescence quenching was observed in the presence of other interfering metal ions.Meanwhile,the anti-interference performance of the paper sensor was also evaluated by dipping a mixture consisting of other 12 metal ions and Co2+with different concentrations into the sensing system.A remarkable fluorescence quenching appeared with the increase of Co2+concentration (Fig.4A-d),which was basically consistent with the result in the absence of the interfering ions (Fig.4A-b).

    Fig.4.The Si QDs-based paper sensor for visual detection of Co2+.(A) Photographs of test paper staining with the Si QDs under UV irradiation of 365 nm: (a) only Si QDs;(b) with different concentrations of Co2+ (from 1 to 12 are 0.1,0.5,1,5,10,20,30,40,50,60,70 and 80 μmol/L);(c) with different interfering metal ions(80 μmol/L,from 1 to 12: Na+,K+ Li+,Ca2+,Mg2+,Mn2+,Ni2+,Zn2+,Hg2+,Cu2+,Fe2+ and Al3+);(d) with the mixture of other 12 interfering metal ions (80 μmol/L)and Co2+ with different concentrations (from 1 to 12 are 0.1,0.5,1,5,10,20,30,40,50,60,70 and 80 μmol/L).(B) The 3D models of the images in part A.

    In addition,three-dimensional (3D) models of the corresponding responsive field were used to obtain quantitative fluorescence intensity by ImageJ software (Fig.4B),reflecting the color change of the test paper more intuitively.Moreover,it was seen that each chromaticity was uniform over a whole piece of test paper due to the homogeneous distribution.Significantly,the chromatic density of the test paper gradually increased with the increasing cobalt concentration,and it appeared deepest at 80 μmol/L.The brightblue test paper exhibited a dosage-sensitive color response with a discernable scale as low as 1 μmol/L with the observation of naked eye.

    To evaluate the feasibility and reliability of this proposed method,the probe Si QDs was applied to determine Co2+in Yellow River water and tap water samples.The emission spectrum for Co2+determination was recorded at an excitation wavelength of 370 nm.Standard additional methods were used to verify the accuracy of the method,and the recoveries were determined by adding 10,20 and 30 μmol/L Co2+.As shown in Table 1 and Fig.S9 in Supporting information,the average recoveries of Co2+reached 97.9%–103%.

    Table 1 Detection of Co2+ in environmental water samples.

    Thus,the accuracy and precision of this proposed approach are satisfactory,indicating that the probe can be applied to detect Co2+in environmental water samples.Moreover,the Si QDs-based test paper was applied to the detection of Co2+in river water and tap water samples (Fig.S10 in Supporting information),indicating it is a simple and economical sensing platform for rapid and visual determination of Co2+.

    Fluorescence quenching can be from fluorescence resonance energy transfer (FRET) or inner filter effect (IFE) when there is an overlap between the luminescent substance’s emission or excitation spectra and the quencher’s UV–vis absorption spectrum[43,44].In our work,there is no noticeable overlap between the absorption spectrum of Co2+and the FL excitation/emission spectra of Si QDs (Fig.5A),meaning no FRET or IFE mechanism.Static quenching effect (SQE) or dynamic quenching effect (DQE)is also an important mechanism of FL quenching.Generally,for SQE,a stable compound is formed between the fluorophore and other molecules [12];for DQE,the collision happens between the quencher and the fluorophore during the return of the luminescent substance to the ground state [39].Furthermore,SQE and DQE fit into the Stern-Volmer equation (Eq.1) [45].

    Fig.5.(A) FL excitation spectrum (black) and emission spectrum (red) of Si QDs,and UV–vis absorption spectrum of Co2+ (blue).(B) Stern-Volmer plot of Si QDs solution upon the addition of different concentrations of Co2+ (5,10,15,20 and 25 μmol/L).

    whereKqis the FL quenching rate constant which reflects the effects of inter-diffusion and inter-collision in this system.FandF0refer to the steady-state FL intensities of the fluorophore in the presence and absence of quencher.Ksvis the Stern-Volmer quenching constant.[C] is the concentration of the quencher.τ0refers to the average lifetime of the fluorophore in the absence of quencher.Conforming to Eq.1,Kqvalues were calculated as 3.40×1012,2.99×1012and 2.07×1012L mol-1s-1,with their corresponding temperatures at 298,303 and 308 K (Table S2 in Supporting information).When the plot ofF0/F versus[C] in a certain concentration range gives an ascending curvature,the quenching could be assigned to a single static or dynamic [12].

    The average FL lifetime of the prepared Si QDs in our work is 5.19 ns (Table S3 in Supporting information).The FL lifetime of Si QDs in the presence of different concentrations of Co2+was studied for an in-depth investigation of which mechanism is responsible for the FL quenching.As observed in Fig.S11 and Table S3 (Supporting information),the FL lifetime of Si QDs did not change in the presence and absence of Co2+.This suggests that the FL of Si QDs was statically quenched by Co2+[46].Moreover,as observed in Fig.5B,the linear relationship between Co2+concentrations (5,10,15,20 and 25 μmol/L) andF0/Fis good.In addition,as shown in Table S2 (Supporting information),theKqandKsv(slope) values decrease with increasing temperature.AllKqvalues were much larger than the maximum dynamicKq(2.0×1010L mol-1s-1).Thus,it is further suspected that the quenching is caused by SQE [39].Not surprisingly,mixing Si QDs and Co2+led to an obvious peak at 350–400 nm appearing in the UV–vis absorption spectra compared to the overlay curve (red dotted curve) in Fig.S12 (Supporting information),illustrating that the affinity and the H-bonding interactions between the active groups on the surface of the Si QDs and Co2+may be responsible for the fluorescence quenching [22].Therefore,the above results confirm that the FL deletions are mainly caused by SQE rather than DQE[12].

    In this work,we have developed a rapid and facile one-pot method to synthesize Si QDs with high stability under a broad range of chemical conditions and described a sensitive and selective Si QDs-based fluorescence method to detect Co2+in an aqueous medium.The detection limit for Co2+was 0.37 μmol/L based on 3σ/slope with a linear range from 1 μmol/L to 120 μmol/L.The static quenching effect is mainly responsible for the fluorescence quenching of the Si QDs by Co2+.Meanwhile,the high selectivity and sensitivity can ensure Si QDs as a realistic nanoprobe for quantifying Co2+in real water samples with good recoveries.Additionally,we have prepared test papers based on Si QDs,which are costeffective,easy-to-use and show excellent anti-interference ability,and can detect Co2+in water samples quickly and efficiently.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

    Acknowledgments

    The authors are grateful for financial support from the National Natural Science Foundation of China (Nos.21874060,22074057 and 21775059).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108476.

    国产亚洲精品综合一区在线观看 | 真人做人爱边吃奶动态| 看片在线看免费视频| 日韩欧美在线乱码| 在线国产一区二区在线| 国产精品98久久久久久宅男小说| 久久久久久免费高清国产稀缺| 不卡一级毛片| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品在线观看二区| 亚洲美女视频黄频| 国产av不卡久久| 亚洲中文av在线| 国产精品,欧美在线| 九色成人免费人妻av| 国产一区二区三区在线臀色熟女| 男女视频在线观看网站免费 | 国产亚洲精品一区二区www| 成人高潮视频无遮挡免费网站| 亚洲专区国产一区二区| 国产精品99久久99久久久不卡| 中文亚洲av片在线观看爽| 亚洲一区二区三区色噜噜| 国产三级中文精品| 国产欧美日韩一区二区三| 国产91精品成人一区二区三区| 九色成人免费人妻av| 久久久久久久久久黄片| 国产成年人精品一区二区| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| www.精华液| 亚洲成人久久爱视频| 一个人观看的视频www高清免费观看 | 国产精品美女特级片免费视频播放器 | 又大又爽又粗| 亚洲精品粉嫩美女一区| 一a级毛片在线观看| 亚洲国产精品999在线| 男人舔奶头视频| 亚洲欧美精品综合一区二区三区| 无限看片的www在线观看| 成人欧美大片| 高潮久久久久久久久久久不卡| 老司机午夜十八禁免费视频| 真人一进一出gif抽搐免费| 色综合亚洲欧美另类图片| www.自偷自拍.com| 色老头精品视频在线观看| 中文字幕最新亚洲高清| xxxwww97欧美| 免费在线观看黄色视频的| 久久午夜亚洲精品久久| 午夜福利在线观看吧| 黄频高清免费视频| 国产精品av久久久久免费| 天堂动漫精品| 日韩欧美三级三区| 少妇被粗大的猛进出69影院| 国内揄拍国产精品人妻在线| 国产av不卡久久| 亚洲欧美一区二区三区黑人| 18禁裸乳无遮挡免费网站照片| 三级毛片av免费| 国产av一区在线观看免费| 国产精品野战在线观看| 欧美丝袜亚洲另类 | 最近最新中文字幕大全免费视频| 女生性感内裤真人,穿戴方法视频| 97人妻精品一区二区三区麻豆| 身体一侧抽搐| 色综合婷婷激情| 亚洲国产中文字幕在线视频| 久久午夜亚洲精品久久| 亚洲成av人片免费观看| 日本 欧美在线| 18禁美女被吸乳视频| 国产av不卡久久| 两个人免费观看高清视频| 51午夜福利影视在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 国产男靠女视频免费网站| 老熟妇仑乱视频hdxx| 人妻夜夜爽99麻豆av| 色哟哟哟哟哟哟| 久久香蕉精品热| 国产精品一区二区精品视频观看| 波多野结衣巨乳人妻| 日韩欧美在线乱码| netflix在线观看网站| 亚洲 欧美一区二区三区| 亚洲在线自拍视频| 高潮久久久久久久久久久不卡| 精品国产乱子伦一区二区三区| 九色国产91popny在线| 国产aⅴ精品一区二区三区波| 伦理电影免费视频| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久久久久久久久| 校园春色视频在线观看| 无人区码免费观看不卡| 亚洲人与动物交配视频| 精品无人区乱码1区二区| 最近最新中文字幕大全免费视频| 19禁男女啪啪无遮挡网站| 国产高清视频在线观看网站| 色噜噜av男人的天堂激情| 一级a爱片免费观看的视频| 999精品在线视频| 亚洲成人久久性| av福利片在线观看| 久热爱精品视频在线9| 午夜激情av网站| 精品国产乱子伦一区二区三区| 两个人看的免费小视频| 日韩欧美国产在线观看| 日韩欧美国产在线观看| 免费在线观看成人毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久蜜臀av无| 99久久综合精品五月天人人| 欧美另类亚洲清纯唯美| 少妇裸体淫交视频免费看高清 | 日韩精品免费视频一区二区三区| 亚洲精品久久成人aⅴ小说| 99久久精品热视频| 免费在线观看完整版高清| 老鸭窝网址在线观看| 成人av在线播放网站| 久久精品国产99精品国产亚洲性色| 亚洲第一电影网av| 欧美在线一区亚洲| 久久久久久大精品| АⅤ资源中文在线天堂| 午夜免费观看网址| 精品一区二区三区视频在线观看免费| 在线十欧美十亚洲十日本专区| 亚洲午夜理论影院| 啦啦啦观看免费观看视频高清| 又爽又黄无遮挡网站| 99在线视频只有这里精品首页| 午夜精品久久久久久毛片777| 亚洲成av人片免费观看| 久久久国产成人免费| 18禁黄网站禁片午夜丰满| e午夜精品久久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 啦啦啦韩国在线观看视频| 精品国内亚洲2022精品成人| 亚洲精品av麻豆狂野| 久久热在线av| 国产久久久一区二区三区| 欧美大码av| 最近最新中文字幕大全电影3| 亚洲国产精品久久男人天堂| 级片在线观看| 精品一区二区三区av网在线观看| 91老司机精品| www.熟女人妻精品国产| 在线播放国产精品三级| 亚洲国产精品久久男人天堂| 欧美日韩亚洲国产一区二区在线观看| 制服诱惑二区| 国产精品 国内视频| 露出奶头的视频| 亚洲国产欧美人成| 一二三四社区在线视频社区8| 亚洲激情在线av| 婷婷精品国产亚洲av| 欧美日韩瑟瑟在线播放| 欧美一级a爱片免费观看看 | 日韩欧美国产一区二区入口| 国产精品久久久人人做人人爽| 搡老妇女老女人老熟妇| 精品熟女少妇八av免费久了| 精品久久久久久久久久免费视频| 一二三四在线观看免费中文在| 久久欧美精品欧美久久欧美| 亚洲激情在线av| 俄罗斯特黄特色一大片| 欧美乱妇无乱码| 国内久久婷婷六月综合欲色啪| 性欧美人与动物交配| 亚洲欧美精品综合久久99| 国产激情偷乱视频一区二区| 国产精品久久久久久久电影 | 免费一级毛片在线播放高清视频| 亚洲熟女毛片儿| 18禁黄网站禁片免费观看直播| videosex国产| 国产欧美日韩一区二区精品| 国产成人啪精品午夜网站| 亚洲午夜理论影院| 久久婷婷成人综合色麻豆| 亚洲美女视频黄频| 欧美日韩乱码在线| 18禁黄网站禁片午夜丰满| 午夜久久久久精精品| 亚洲最大成人中文| 欧美又色又爽又黄视频| 哪里可以看免费的av片| 久久精品91无色码中文字幕| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| 99久久久亚洲精品蜜臀av| 一区福利在线观看| 听说在线观看完整版免费高清| 久久性视频一级片| 亚洲男人的天堂狠狠| 成人高潮视频无遮挡免费网站| 午夜福利在线在线| 亚洲精品国产精品久久久不卡| 俺也久久电影网| 国内久久婷婷六月综合欲色啪| 不卡av一区二区三区| 97碰自拍视频| 99精品欧美一区二区三区四区| a级毛片在线看网站| 国产成人啪精品午夜网站| 老司机深夜福利视频在线观看| 国产高清视频在线播放一区| 亚洲激情在线av| 久久精品成人免费网站| 午夜福利成人在线免费观看| 丁香六月欧美| 每晚都被弄得嗷嗷叫到高潮| 99精品欧美一区二区三区四区| 日韩高清综合在线| 伦理电影免费视频| 免费无遮挡裸体视频| 亚洲成人精品中文字幕电影| 嫩草影院精品99| x7x7x7水蜜桃| 免费一级毛片在线播放高清视频| 亚洲国产高清在线一区二区三| 国产蜜桃级精品一区二区三区| 亚洲一码二码三码区别大吗| 午夜老司机福利片| 国产av一区在线观看免费| 欧美精品亚洲一区二区| 午夜a级毛片| 18禁美女被吸乳视频| 久久午夜亚洲精品久久| 亚洲人成网站高清观看| 在线观看66精品国产| 日韩成人在线观看一区二区三区| 少妇裸体淫交视频免费看高清 | 国产免费男女视频| 神马国产精品三级电影在线观看 | 国产激情偷乱视频一区二区| 午夜福利高清视频| 国产精品,欧美在线| 十八禁人妻一区二区| 日本一本二区三区精品| 亚洲熟女毛片儿| 天堂√8在线中文| 禁无遮挡网站| 中文字幕久久专区| 久久欧美精品欧美久久欧美| 亚洲性夜色夜夜综合| 脱女人内裤的视频| 国产精品免费视频内射| 一a级毛片在线观看| 欧美成人性av电影在线观看| 欧美极品一区二区三区四区| 久热爱精品视频在线9| 天堂动漫精品| 精品一区二区三区四区五区乱码| 亚洲 欧美一区二区三区| 亚洲专区中文字幕在线| 亚洲中文av在线| 亚洲免费av在线视频| 欧美激情久久久久久爽电影| 国产免费av片在线观看野外av| 嫁个100分男人电影在线观看| 国产成人一区二区三区免费视频网站| xxx96com| 久久婷婷成人综合色麻豆| 国产午夜精品久久久久久| 99久久精品国产亚洲精品| 久久久久免费精品人妻一区二区| 亚洲乱码一区二区免费版| 久久香蕉精品热| 国产精品久久久av美女十八| 麻豆国产97在线/欧美 | 亚洲人成网站高清观看| 成人av一区二区三区在线看| 亚洲熟妇中文字幕五十中出| 国产熟女午夜一区二区三区| 99精品在免费线老司机午夜| 久久久久久人人人人人| 亚洲,欧美精品.| 国产精华一区二区三区| 午夜精品一区二区三区免费看| 日韩欧美 国产精品| 99在线人妻在线中文字幕| 99精品久久久久人妻精品| 亚洲av中文字字幕乱码综合| 国产精品综合久久久久久久免费| 国产精品一区二区三区四区久久| 俺也久久电影网| 欧美另类亚洲清纯唯美| 国产精品亚洲一级av第二区| 国产欧美日韩一区二区三| 一级作爱视频免费观看| 一级毛片精品| 天天躁夜夜躁狠狠躁躁| 国产精品爽爽va在线观看网站| 国产69精品久久久久777片 | 免费无遮挡裸体视频| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久人妻精品电影| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美精品综合一区二区三区| 久久天堂一区二区三区四区| 在线观看午夜福利视频| 亚洲天堂国产精品一区在线| 精品少妇一区二区三区视频日本电影| 在线永久观看黄色视频| 午夜福利在线观看吧| 精品一区二区三区av网在线观看| 三级国产精品欧美在线观看 | 欧美日韩亚洲综合一区二区三区_| 女警被强在线播放| 看黄色毛片网站| 无遮挡黄片免费观看| 欧美zozozo另类| 免费看日本二区| 久久国产精品影院| 亚洲熟妇中文字幕五十中出| 99久久国产精品久久久| 久久精品亚洲精品国产色婷小说| 亚洲片人在线观看| 一个人观看的视频www高清免费观看 | 久久久国产欧美日韩av| 亚洲一码二码三码区别大吗| 久久久久精品国产欧美久久久| 999久久久国产精品视频| 中文字幕熟女人妻在线| 欧美3d第一页| 免费无遮挡裸体视频| 免费高清视频大片| 一进一出抽搐动态| 欧美精品啪啪一区二区三区| 日本 av在线| 禁无遮挡网站| 91在线观看av| 99re在线观看精品视频| 亚洲五月婷婷丁香| 91老司机精品| 久久人人精品亚洲av| 1024视频免费在线观看| 免费观看精品视频网站| 大型黄色视频在线免费观看| 大型av网站在线播放| 99热这里只有是精品50| 我的老师免费观看完整版| 最近最新中文字幕大全免费视频| 欧美国产日韩亚洲一区| 免费在线观看影片大全网站| 制服丝袜大香蕉在线| √禁漫天堂资源中文www| 大型黄色视频在线免费观看| 免费人成视频x8x8入口观看| 成人一区二区视频在线观看| 亚洲精品一区av在线观看| 成年人黄色毛片网站| 无限看片的www在线观看| 国产成年人精品一区二区| 免费看日本二区| 999精品在线视频| 久久人妻福利社区极品人妻图片| 国产片内射在线| 亚洲乱码一区二区免费版| 精品欧美国产一区二区三| 少妇熟女aⅴ在线视频| 黄色视频不卡| 亚洲国产中文字幕在线视频| 欧美又色又爽又黄视频| 丝袜人妻中文字幕| 免费一级毛片在线播放高清视频| 草草在线视频免费看| 国产亚洲欧美98| 精品一区二区三区视频在线观看免费| 亚洲精品色激情综合| 久久久久久亚洲精品国产蜜桃av| av福利片在线观看| 少妇裸体淫交视频免费看高清 | 日韩欧美 国产精品| 欧美zozozo另类| 丁香六月欧美| 欧美午夜高清在线| 国产区一区二久久| 欧美日韩黄片免| 中亚洲国语对白在线视频| 九色国产91popny在线| 男女下面进入的视频免费午夜| 国产成人av教育| 99热这里只有是精品50| 97碰自拍视频| 亚洲黑人精品在线| 国产高清videossex| 精品电影一区二区在线| 啪啪无遮挡十八禁网站| 女警被强在线播放| www.熟女人妻精品国产| 97超级碰碰碰精品色视频在线观看| 中文字幕最新亚洲高清| 老司机在亚洲福利影院| 蜜桃久久精品国产亚洲av| 不卡av一区二区三区| 九色成人免费人妻av| 精品久久久久久久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 两个人免费观看高清视频| 亚洲人成伊人成综合网2020| 久久精品91蜜桃| 国产精品久久久久久人妻精品电影| 国产av一区在线观看免费| 欧美乱码精品一区二区三区| 日本精品一区二区三区蜜桃| 黄片大片在线免费观看| 亚洲最大成人中文| 琪琪午夜伦伦电影理论片6080| 久久久国产成人免费| 日本黄大片高清| www.www免费av| 日日摸夜夜添夜夜添小说| www.999成人在线观看| 女人被狂操c到高潮| 国语自产精品视频在线第100页| 午夜福利免费观看在线| 中出人妻视频一区二区| 午夜两性在线视频| 男女视频在线观看网站免费 | 两个人看的免费小视频| 婷婷六月久久综合丁香| 97超级碰碰碰精品色视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 波多野结衣高清作品| 国产亚洲欧美98| 国产精品免费视频内射| 久久精品国产亚洲av高清一级| 国产亚洲精品av在线| 亚洲国产欧美人成| 在线观看免费午夜福利视频| 麻豆一二三区av精品| 在线免费观看的www视频| 国产成人av教育| 夜夜看夜夜爽夜夜摸| 久久久久久大精品| 精品国产乱子伦一区二区三区| 国产成年人精品一区二区| www国产在线视频色| 久久香蕉精品热| 99久久无色码亚洲精品果冻| 熟妇人妻久久中文字幕3abv| 国产av一区二区精品久久| 精品欧美一区二区三区在线| 777久久人妻少妇嫩草av网站| 久久婷婷人人爽人人干人人爱| 亚洲一区高清亚洲精品| 亚洲国产高清在线一区二区三| 国产高清视频在线观看网站| 老司机福利观看| 99久久久亚洲精品蜜臀av| 男女之事视频高清在线观看| 亚洲国产日韩欧美精品在线观看 | 免费在线观看影片大全网站| 日本一本二区三区精品| 国产精品久久久久久精品电影| 日韩有码中文字幕| 特级一级黄色大片| 舔av片在线| 日日摸夜夜添夜夜添小说| 欧美黄色片欧美黄色片| www国产在线视频色| 村上凉子中文字幕在线| 久99久视频精品免费| 欧美日韩国产亚洲二区| 精品国产美女av久久久久小说| 成人亚洲精品av一区二区| 色哟哟哟哟哟哟| 国内毛片毛片毛片毛片毛片| 亚洲 欧美一区二区三区| 1024香蕉在线观看| 国产97色在线日韩免费| 久久婷婷成人综合色麻豆| 高清毛片免费观看视频网站| 制服人妻中文乱码| 婷婷六月久久综合丁香| 国产精品久久电影中文字幕| 日本免费一区二区三区高清不卡| 麻豆国产av国片精品| 国产精品一区二区精品视频观看| 制服丝袜大香蕉在线| 亚洲av片天天在线观看| 亚洲激情在线av| 久久人妻av系列| 99热只有精品国产| 成人国语在线视频| 亚洲av成人不卡在线观看播放网| 亚洲熟女毛片儿| 亚洲性夜色夜夜综合| 国产成人精品久久二区二区免费| 午夜免费成人在线视频| 久久久精品国产亚洲av高清涩受| 最新美女视频免费是黄的| 丰满的人妻完整版| 国产视频内射| 久热爱精品视频在线9| 大型av网站在线播放| 色综合婷婷激情| 久久中文字幕一级| 欧美绝顶高潮抽搐喷水| 搡老妇女老女人老熟妇| 天堂影院成人在线观看| 在线视频色国产色| 久久久国产成人精品二区| 日韩欧美国产一区二区入口| 1024视频免费在线观看| 777久久人妻少妇嫩草av网站| 一个人免费在线观看的高清视频| 老司机福利观看| 日韩中文字幕欧美一区二区| 叶爱在线成人免费视频播放| 亚洲国产欧美网| 欧美一区二区国产精品久久精品 | 国产三级黄色录像| 三级毛片av免费| 又黄又爽又免费观看的视频| 日本精品一区二区三区蜜桃| 国产精品美女特级片免费视频播放器 | 国产黄色小视频在线观看| 熟妇人妻久久中文字幕3abv| 国产精品精品国产色婷婷| 十八禁网站免费在线| 久久午夜综合久久蜜桃| 1024香蕉在线观看| 高潮久久久久久久久久久不卡| 88av欧美| 国产成人aa在线观看| 久久婷婷成人综合色麻豆| 听说在线观看完整版免费高清| 韩国av一区二区三区四区| 亚洲精品久久成人aⅴ小说| 欧美日韩一级在线毛片| 亚洲全国av大片| 午夜免费激情av| 一级黄色大片毛片| 亚洲国产欧美人成| 亚洲国产欧美网| av在线天堂中文字幕| 50天的宝宝边吃奶边哭怎么回事| 变态另类丝袜制服| 久久 成人 亚洲| 少妇被粗大的猛进出69影院| xxx96com| 中文字幕人妻丝袜一区二区| 日本三级黄在线观看| 国产精品,欧美在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产看品久久| 蜜桃久久精品国产亚洲av| 久久人人精品亚洲av| 99热这里只有精品一区 | xxx96com| 成人三级黄色视频| 午夜成年电影在线免费观看| 国产精品久久久久久精品电影| 亚洲人成伊人成综合网2020| 国产成人系列免费观看| 精品欧美一区二区三区在线| 午夜免费成人在线视频| 可以免费在线观看a视频的电影网站| 啦啦啦免费观看视频1| 老司机午夜十八禁免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲第一欧美日韩一区二区三区| 大型黄色视频在线免费观看| av片东京热男人的天堂| 国产在线观看jvid| 久久久久性生活片| 日韩 欧美 亚洲 中文字幕| svipshipincom国产片| 亚洲激情在线av| www.精华液| 亚洲av成人av| 天堂av国产一区二区熟女人妻 | 嫩草影视91久久| 十八禁人妻一区二区| 男男h啪啪无遮挡| 久久国产精品影院| 美女午夜性视频免费| 久久久久久亚洲精品国产蜜桃av| 国产熟女xx| 一二三四社区在线视频社区8| 亚洲色图 男人天堂 中文字幕| 日本熟妇午夜| 少妇人妻一区二区三区视频| 久9热在线精品视频| 国产探花在线观看一区二区| 最近视频中文字幕2019在线8| 成人18禁在线播放| 亚洲成人国产一区在线观看| 三级毛片av免费| 亚洲精品在线观看二区| 久久久久国产一级毛片高清牌| 免费看a级黄色片| 在线观看免费午夜福利视频| 曰老女人黄片| 国产熟女午夜一区二区三区| 最好的美女福利视频网| 亚洲男人的天堂狠狠| 欧美在线黄色|