• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Probing mitochondrial damage using a fluorescent probe with mitochondria-to-nucleolus translocation

    2024-04-06 06:21:02ChiLiChongZongYngLiuZhiqingLiuKngNnWngXioqingYu
    Chinese Chemical Letters 2024年1期

    Chi Li ,Chong Zong ,Yng Liu,b ,Zhiqing Liu,b,? ,Kng-Nn Wng,b,? ,Xioqing Yu,?

    a State Key Laboratory of Crystal Materials,Shandong University,Ji’nan 250100,China

    b Shenzhen Research Institute of Shandong University,Shenzhen 518057,China

    Keywords: Fluorescent probe Mitochondria targeting Nucleolus translocation Mitochondrial damage diagnosis Fluorescence imaging

    ABSTRACT Mitochondrial damage is closely related to the occurrence of many diseases.However,accurate monitoring and reporting of mitochondrial damage are not easy.Here,we developed a small molecule fluorescent probe named CB-Cl,which has splendid spectral properties (large Stokes shift,strong affinity for RNA, etc.) and excellent targeting ability to intracellular mitochondria.After mitochondria were damaged by external stimuli,CB-Cl would light up the nucleolus as a signal reporter.The cascade imaging of mitochondria and nucleolus using CB-Cl can monitor and visualize the mitochondrial status in living cells in real-time.Based on the above advantages,the probe CB-Cl has reference significance for the related research of mitochondrial damage and the prevention and treatment of related diseases.

    Mitochondria are essential organelles in eukaryotic cells,known as "cell power factories",which play an important role in energy metabolism and signal transmission of cells [1–3].Mitochondria provide the vast majority of adenosine triphosphate (ATP)through oxidative phosphorylation (OXPHOS) [4],store metabolites(calcium,iron,lipids and protons,etc.),biosynthesize active compounds (iron-sulfur clusters),and act as “gatekeepers” of apoptotic and inflammatory pathways [5].When mitochondria generate energy,they store electrochemical potential energy in the inner membrane of mitochondria.On both sides of the inner membrane,the asymmetric distribution of proton and other ion concentrations makes mitochondria form a negative transmembrane potential as high as -180 mV,namely the mitochondrial membrane potential (MMP) [6,7].Hypoxia,drug damage or other stress stimuli may lead to decreased MMP and further dysfunction and oxidative damage,thereby inducing various pathological processes,such as Alzheimer’s disease and myocardial injury [8,9].Therefore,realtime monitoring of mitochondrial status is of great significance for the diagnosis and treatment of related diseases.

    Many techniques have been developed to detect mitochondrial damage,including electron probe microscopy (EPM),transmission electron microscopy (TEM) and electrochemical luminescence technology (ECL),etc.[10,11].But these techniques cannot track the dynamics of mitochondria in living cells in real-time.Because of its high specificity,high sensitivity,high contrast and imaging visualization,fluorescence imaging has attracted extensive attention in chemical biology,biochemistry,medicine and other disciplines.Small molecule fluorescent probes based on fluorescence imaging have the advantages ofin situand real-time visualization of living cells,low damage to biological samples,and allowing dynamic analysis of living samples.They have also been widely used in subcellular organelle imaging,intracellular biological signal molecule tracking,and marker monitoring of cancer and other diseases [12–17].At present,JC-1 and other commercial fluorescent dyes developed based on the characteristics of MMP,and some recently reported small molecule fluorescent probes can be used for mitochondrial membrane tracking through J-aggregation and other luminescence methods [18–20].For example,our group recently developed two fluorescent probes ECPI-12 and IVPI-12,that can image and track the dynamic changes of mitochondria,becoming a potential tool for monitoring and tracking the dynamic changes of mitochondria in living cells and tissues [21].Liet al.developed a vibration-induced-emission based mitochondria targeting fluorescent probe,providing an effective way to detect changes in mitochondrial viscosity [22].Milleret al.developed a fluorescentΔψm reporter that does not rely onΔψm-dependent accumulation,which is vital for detecting changes in mitochondrial membrane potential [23].Although this kind of small molecule fluorescent probes can realize real-time tracking of MMP changes and mitochondrial damage,the narrow Stokes shift of such fluorescent probes and the interference caused by the autofluorescence of biological macromolecules may lead to problems such as low detection sensitivity and fluorescence crosstalkin situdetection.Therefore,it is particularly important to develop novel methods for tracking mitochondrial dynamic changes based on fluorescence imaging.

    In order to avoid the fluorescence crosstalk,fluorescent probes with subcellular migratory properties have received increasing attention from researchers.Under normal conditions,the probe can selectively target to a specific subcellular organelle;when the cells are disturbed by external stimuli,the probe would be transferred to other organelles,due to the reduced binding force with this subcellular organelle.Therefore,by tracking the transfer of the probe between the subcellular organelles,the state of the original targeted subcellular organelles can be reflected.Recently,Tanget al.developed a fluorescent probe TPE-4EP+,which can translate from mitochondria to nucleus during apoptosis,and real-time monitoring of cell status by fluorescence migration [24].Mao and Liuet al.have developed a cell membrane probe that acts as a signal reporter to illuminate the nucleus once the cell membrane is damaged,which opens up a new avenue for designing membrane damage diagnosis probes for biomedical applications [25].Although this kind of probe for subcellular organelle migration has made remarkable achievements in monitoring subcellular organelle status,the subcellular migratory probe is still rare,which is challenging to meet the application requirements of medical staff and scientific researchers.Therefore,it is an urgent task to develop fluorescent probes with subcellular migration properties to detect mitochondrial damage.

    Fluorescent molecules with D-π-A configuration are one of the primary strategies in designing subcellular organelle targeting probes.Small molecule structures with positive charge can be enriched into mitochondria,nucleus,and other sub-organelles by electrostatic action [26–29].The benzothiazolium salts are not only a class of electron-absorbing units,but also have been reported to have good nuclear targeting ability.Carbazole and its derivatives are a class of classical electronic donor units [30].Therefore,fluorescent probe with nucleic acid response and mitochondria/nuclear targeting can be designed by linking benzothiazolium salt and carbazole derivative through conjugated double bonds,which has been confirmed by a reported probe (Fig.1a) [31].Herein,a fluorescent probe,CB-Cl,was engineered from the reported probe CB-H,which replaced the hydrogen at the 5-position of benzothiazole monocyclic ring in CB-H with a chlorine atom.Probe CB-Cl is mainly enriched in mitochondria,and when mitochondria are stimulated and the membrane potential decreases,CB-Cl will gradually transfer from mitochondria to the nucleus and further light up nucleoli.This subcellular organelle transfer strategy of mitochondrial escape and nucleolus lighting could be used to reflect the state of mitochondria.

    Fig.1.(a) The structures of probe CB-H and CB-Cl;(b) The frontier orbitals of CB-H and CB-Cl;(c,d) The absorption and fluorescence spectra of CB-H (c) and CB-Cl (d)(10 μmol/L) in different polarity solvents, λex=470 nm.

    The synthesis path of CB-Cl and CB-H is similar,and the specific synthesis routes are shown in Scheme S1 (Supporting information).The structures were confirmed by1H NMR,13C NMR and high resolution mass spectrometry (HRMS) (Figs.S18–S23 in Supporting information).According to the calculation of highest occupied orbital (HOMO) and lowest vacant molecular orbital (LUMO) orbitals of the two molecules by Gaussian 09 (Fig.1b),the HOMO of the two probes is mainly distributed onN-ethyl carbazole,while the LUMO is mainly distributed on benzothiazole unit.This result indicates that a charge transfer process from theN-ethylcarbazole to the benzothiazole moiety may have occurred in the two molecules due to their typical D-π-A structural features.The absorption and emission spectra of the two probes in different solvents are shown in Figs.1c and d,and Tables S1 and S2 (Supporting information).The spectral characteristics of the two probes are similar,and both show polarity dependent spectral changes [32].In dichloromethane(DCM),significantly red-shifted absorption peaks were detected,which may be due to the formation of halogen bonds [33].The maximum absorption peak of CB-Cl in water is 457 nm,with a maximum emission peak of 578 nm,such large Stokes shift (~121 nm) can greatly reduce the self-absorption and avoiding the interference of the incident light.Moreover,the red emission of CBCl can avoid interference from endogenous fluorophores during bioimaging applications [34].

    Then we examined the interaction forms between the probes and nucleic acids in the Tris-HCl buffer.The ultraviolet and visible spectrophotometry (UV–vis) absorption and fluorescence spectra show that the probes exhibit a significant spectral response to nucleic acids and increase in fluorescence as the nucleic acid concentration increases from 0 to 2 mg/mL (Figs.2a–d,Figs.S1 and S2 in Supporting information).The binding constant (Ka) of probes and DNA were calculated as 2.84×106L/mol and 2.33×106L/mol for CB-Cl and CB-H,respectively (Fig.S3 in Supporting information);and theKaof probes and RNA were calculated as 3.73×106L/mol and 3.02×106L/mol for CB-Cl and CB-H,respectively,indicating the probe’s good affinity to RNA.At the same time,with the increase of probes concentration from 1 μmol/L to 64 μmol/L,the absorption intensity of CB-Cl and CB-H increase gradually with a good linear relationship (Fig.2e and Fig.S4 in Supporting information),indicating the probes will not aggregate in water,thus eliminating the interference of aggregation at the working concentration of 5–20 μmol/L.In addition,different ratios of methanol-glycerol mixed solution systems were adopted to verify the fluorescence emission characteristics of the probes in viscous environments (Fig.2f and Fig.S5 in Supporting information) [35].The significantly enhanced fluorescence in glycerol lays the groundwork for lighting up the highly viscous organelles [36,37].In order to exclude the influence of pH and various biomolecular species,we conducted different biomolecular species selectivity and pH response experiments on CB-Cl and CB-H (Figs.2g and h,Fig.S6 in Supporting information).The results show that the change of fluorescence intensity is almost independent of biomolecular species and pH value,which lay a foundation for its application in bioimaging.

    Fig.2.Emission spectra of CB-H (a,c) and CB-Cl (b,d) (10 μmol/L) in the presence of different concentrations of RNA or DNA in Tris-HCl buffer solution (pH 7.2);(e)Concentration-dependent absorption of CB-Cl in aqueous solution;(f) Emission of CB-Cl (10 μmol/L) in glycerol (Gly)-methanol mixtures at room temperature;(g,h) Fluorescence intensity change of CB-Cl in the presence of different biomolecular species (g) and different pH buffer solutions (h);(i,j) The molecular docking calculations based on the structure optimized CB-H (i) and CB-Cl (j) with RNA secondary structure fragments (PDB No.5T2C). λex=470 nm.

    In order to further prove the affinity of probe for nucleic acids,AutoDock 4.2 software was adopted for simulation docking study[38].The binding energies between CB-H and CB-Cl and nucleic acid are shown in Tables S3–S6 (Supporting information).As can be seen,the minimum docking energy to RNA are -29.04 kJ/mol for CB-Cl,and -29.29 kJ/mol for CB-H.In contrast,the lowest binding energies for CB-Cl and CB-H to DNA are -13.89 kJ/mol and-13.23 kJ/mol respectively,which means that the probes will preferentially bind to RNA once it encounters nucleic acids.In addition,among the 50 calculated docking genetic algorithm runs of probe and RNA,the number of binding configurations between probes and RNA up to 24,indicate that the probes and RNA have high accessibility.Furtherly,the optimal conformation with the minimum binding energy between the probe and nucleic acid was selected for study (Figs.2i and j,Fig.S7 in Supporting information).It can be found that the probes are inserted into the minor groove of the nucleic acid,with strong electrostatic interaction between the protonated nitrogen atoms on thiazolium salt and the phosphate acyl unit in nucleic acid.These molecular docking results indicate that both probes CB-H and CB-Cl can show strong binding force with nucleic acids (especially RNA),which lays the foundation for the two probes to light up nucleoli in living cells.The cytotoxicity of CB-H and CB-Cl was then evaluated in HeLa cells before being used for living cell imaging (Fig.S8 in Supporting information).According to the standard MTT assay,the probes exhibit good biocompatibility at working concentrations of 1–20 μmol/L.After stained with different concentrations of probe for 30 min,the fluorescence intensity of two probes increased with the increase of concentration (Figs.S9 and S10 in Supporting information).For CBH,both the nucleolus and the cytoplasm produced red-light emission,which is consistent with the reported data [31].For CB-Cl,the staining sites in the cells were observed to be granular or filamentous,which is the typical characteristic of mitochondria.However,no obvious fluorescence was detected in the nucleus.The colocalization experiments with commercial dyes showed that the fluorescence of CB-Cl overlain well with the commercial mitochondrial probe Mito Tracker Deep Red (MTDR) with a Pearson’s coefficient of 0.85,while the overlap with other dyes were poor,suggesting that CB-Cl has high specificity for mitochondria (Fig.3).

    Fig.3.Fluorescence images of CB-Cl (1 μmol/L) in living HeLa cells.Cells incubated with probe for 30 min and co-stained with different commercial dyes.For CB-Cl,λex=488 nm, λem=580–610 nm.For Hoechst 33342, λex=405 nm, λem=420–450 nm.For endoplasmic reticulum blue-white DPX (ER-Blue),λex=405 nm,λem=460–490 nm.For LiDR, λex=633 nm, λem=650–680 nm.For LTDR, λex=633 nm,λem=650–680 nm.For MTDR, λex=633 nm, λem=650–680 nm.Scale bar: 10 μm.

    In addition,time-lapse imaging was performed after the cells were stained with CB-Cl or CB-H (Figs.4a and b).For CB-Cl,after the cells were stimulated by light irradiation,the mitochondria were damaged and the MMP decreased [39].CB-Cl escaped from mitochondria and bound to RNA in the cytoplasm and nucleolus (Fig.4c,Movies S1 and S2 in Supporting information).In addition,the dyes outside the cell permeated into cell again,which resulted in increasingly bright fluorescence in the cytoplasm and nucleoli (Fig.4b).And the time-lapse imaging captured from the control group (Fig.S11 in Supporting information) indicated the probe could not enter the nucleolus under dark conditions.And the colocalization experiments with Lidi Deep Red (LiDR) and Lyso Tracker Deep Red (LTDR) after light irradiation showed that CBCl may have gone to other organelles after escaping from the mitochondria (Fig.S12 in Supporting information),but this did not affect the nucleolus lighting up.While for CB-H,fluorescence in both cytoplasm and nucleolus was quenched quickly (Movies S3 and S4 in Supporting information),which also reflect the excellent optical stability of CB-Cl.This nucleolar targeting properties of CB-Cl after light exposure was further verified by co-staining with commercial probes RNAselect and Hoechst 33342 (Fig.4d and Fig.S13 in Supporting information).To evaluate whether the probe CBCl can be used to detect the degree of mitochondrial damage in living cells,a model of mitochondria damaging induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was applied (Fig.4e) [24].It has been first confirmed that CCCP at the concentration of 20 μmol/L can induce a decrease in MMP without causing cell death (Figs.S14 and S15 in Supporting information).After normal staining with CB-Cl,the cells were treated with CCCP to lose MMP and simulate mitochondria damage.As shown in Fig.4e,the CCCPtreated mitochondria were progressively broken and fragmented,and the nucleolus in the living cells were light up.Similarly,the same experimental conditions were employed with human astrocytes cells,and similar mitochondrial targeting results were detected (Fig.S16 in Supporting information).After the cells were treated with the inflammation-inducing factor lipopolysaccharide(LPS) for 6 h to induce an inflammatory reaction [40],during this process the mitochondria were also stimulated and damaged.Obviously,the probe also lights up the nucleoli in inflammatory cells(Fig.4f).While,the living HeLa cells treated with mitochondrial protection drug idebenone (IDBN) [41] could not be detected any fluorescent signal in the nucleolus (Fig.S17 in Supporting information).The mitochondria-nucleolar translocation of CB-Cl results from the changes in mitochondrial damage and decreased MMP,which indicates that it can be used to evaluate mitochondria integrity and MMP changes.

    Fig.4.Fluorescence images of CB-Cl and CB-H in living HeLa cells.(a) Time-lapse imaging of living HeLa cells treated with CB-Cl or CB-H (488 nm,15 mW/cm2).The timedependent fluorescence intensity of living cells after probe treatment was shown in (b).(c) Schematic representation of mitochondria-to-nucleolus translocation of CB-Cl under light-stimulated conditions in living cells.(d) Colocalization of CB-Cl and RNAselect after irradiation.(e,f) Cells were pretreated with CB-Cl (1 μmol/L) for 30 min,then incubated with CCCP (20 μmol/L) (e) or LPS (20 μg/mL) (f) for 15 min (488 nm,2 mW/cm2). λex=488 nm, λem=580–610 nm.Scale bar: 20 μm.

    In conclusion,we precisely designed a homologous probe CB-Cl that can migrate from mitochondria to nucleoli after mitochondrial damage.CB-Cl shows a large Stokes shift and high affinity for nucleic acidin vitro,and is not responsive to various ions and pH changes.Molecular docking also proves that the probe can produce high binding energy with RNA through electrostatic interaction.Living cell staining show that CB-Cl has a good targeting effect on mitochondria,and it will be transferred to the nucleoli after mitochondrial damage.These results indicate that the probe can monitor mitochondrial damage by illuminating the nucleolus,which has guiding significance for the design of related probes and the prevention and treatment of mitochondrial related diseases.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Shenzhen Science and Technology Research and Development Funds (No.JCYJ20190806155409104),National Natural Science Foundation of China (Nos.52150222,21672130 and 52073163),Guangdong Basic and Applied Basic Research Foundation (No.2019A1515110356),and the Qilu Young Scholars Program of Shandong University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108323.

    日韩中文字幕视频在线看片| 波野结衣二区三区在线| 一区二区三区乱码不卡18| 久久久国产欧美日韩av| 亚洲av国产av综合av卡| 18禁动态无遮挡网站| 亚洲欧洲精品一区二区精品久久久 | 大香蕉97超碰在线| 亚洲四区av| 亚洲,欧美,日韩| 亚洲国产精品专区欧美| 国产高清不卡午夜福利| 成年女人在线观看亚洲视频| 最后的刺客免费高清国语| 男女边摸边吃奶| 亚洲av成人精品一区久久| 久久99热这里只频精品6学生| 女人久久www免费人成看片| av又黄又爽大尺度在线免费看| 乱系列少妇在线播放| 亚洲国产精品专区欧美| 高清视频免费观看一区二区| 亚洲精品国产av蜜桃| 丁香六月天网| 午夜福利视频精品| 亚洲va在线va天堂va国产| 国产免费一级a男人的天堂| 大码成人一级视频| 久久久久国产网址| 黑人巨大精品欧美一区二区蜜桃 | 久久精品夜色国产| 99久国产av精品国产电影| 国产亚洲最大av| 又黄又爽又刺激的免费视频.| 桃花免费在线播放| 久久国产精品大桥未久av | 99国产精品免费福利视频| 国产精品久久久久久精品古装| 国产中年淑女户外野战色| 黑人高潮一二区| 亚洲精品,欧美精品| 国产成人精品福利久久| 国产日韩欧美视频二区| 成人18禁高潮啪啪吃奶动态图 | 精品国产国语对白av| 亚洲精品日韩av片在线观看| 国产在线一区二区三区精| 久久久久视频综合| 看十八女毛片水多多多| 亚洲精品久久久久久婷婷小说| 一区二区三区四区激情视频| 91午夜精品亚洲一区二区三区| videossex国产| 91午夜精品亚洲一区二区三区| 国产伦精品一区二区三区视频9| 亚洲美女搞黄在线观看| 午夜老司机福利剧场| 一级片'在线观看视频| 久久国产乱子免费精品| 女的被弄到高潮叫床怎么办| 少妇猛男粗大的猛烈进出视频| 中文欧美无线码| 22中文网久久字幕| 成人国产麻豆网| av免费在线看不卡| 国产一区二区在线观看av| 国内少妇人妻偷人精品xxx网站| 精品亚洲乱码少妇综合久久| 精品一区二区三区视频在线| 夫妻午夜视频| 久久精品国产自在天天线| 欧美精品人与动牲交sv欧美| 少妇高潮的动态图| h视频一区二区三区| 国产欧美日韩一区二区三区在线 | 人体艺术视频欧美日本| 亚洲欧美一区二区三区国产| 少妇的逼好多水| 一个人看视频在线观看www免费| 日日撸夜夜添| 国产真实伦视频高清在线观看| 性高湖久久久久久久久免费观看| 嫩草影院新地址| 久久久国产一区二区| 成人午夜精彩视频在线观看| 免费在线观看成人毛片| av在线播放精品| 日产精品乱码卡一卡2卡三| 欧美激情国产日韩精品一区| 一级毛片我不卡| 男女边吃奶边做爰视频| 亚洲一区二区三区欧美精品| 国产在线免费精品| 自线自在国产av| 国产 精品1| 精品少妇内射三级| 一本色道久久久久久精品综合| kizo精华| 久久99热6这里只有精品| 亚洲精品久久久久久婷婷小说| 97超碰精品成人国产| 久久久久久久久久久丰满| 麻豆精品久久久久久蜜桃| 国产国拍精品亚洲av在线观看| 岛国毛片在线播放| av专区在线播放| 色婷婷久久久亚洲欧美| 青青草视频在线视频观看| 男女边摸边吃奶| 三级国产精品欧美在线观看| 亚洲国产成人一精品久久久| 免费观看无遮挡的男女| 亚州av有码| 亚洲av日韩在线播放| 国产精品不卡视频一区二区| 国产乱来视频区| 午夜福利影视在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产一区二区在线观看日韩| 久久久久久久久久成人| 欧美3d第一页| 夫妻午夜视频| 十分钟在线观看高清视频www | 日本免费在线观看一区| av福利片在线观看| 伊人久久国产一区二区| 欧美成人午夜免费资源| 国产欧美日韩精品一区二区| 丰满饥渴人妻一区二区三| 久久精品夜色国产| 男人和女人高潮做爰伦理| 色视频在线一区二区三区| 伦理电影免费视频| 成人影院久久| 美女内射精品一级片tv| 91精品国产国语对白视频| 免费观看无遮挡的男女| 爱豆传媒免费全集在线观看| 各种免费的搞黄视频| 天天躁夜夜躁狠狠久久av| 99精国产麻豆久久婷婷| 亚洲成色77777| 亚洲第一av免费看| 观看免费一级毛片| 在线观看免费视频网站a站| 久久这里有精品视频免费| 人妻 亚洲 视频| 午夜免费男女啪啪视频观看| 日韩精品免费视频一区二区三区 | 久久久久久久大尺度免费视频| 狂野欧美激情性bbbbbb| 国产精品99久久99久久久不卡 | .国产精品久久| a级片在线免费高清观看视频| 妹子高潮喷水视频| av线在线观看网站| 国产伦精品一区二区三区四那| 三上悠亚av全集在线观看 | 国产永久视频网站| av在线观看视频网站免费| 国产黄频视频在线观看| 日本猛色少妇xxxxx猛交久久| 久久人人爽av亚洲精品天堂| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久成人av| 精品人妻熟女av久视频| 国产伦理片在线播放av一区| 另类亚洲欧美激情| 人妻一区二区av| 国产白丝娇喘喷水9色精品| 91成人精品电影| 精品久久久噜噜| 国产成人精品福利久久| 美女脱内裤让男人舔精品视频| 欧美激情极品国产一区二区三区 | 少妇裸体淫交视频免费看高清| 91精品伊人久久大香线蕉| 色婷婷久久久亚洲欧美| 欧美 日韩 精品 国产| 国产在线男女| av视频免费观看在线观看| 国产在线男女| 18+在线观看网站| 日韩在线高清观看一区二区三区| 高清视频免费观看一区二区| 久久免费观看电影| 亚洲伊人久久精品综合| 国产综合精华液| 老司机影院成人| 极品教师在线视频| 国产日韩欧美视频二区| 免费少妇av软件| 国产欧美亚洲国产| 亚洲av欧美aⅴ国产| 中国三级夫妇交换| 插阴视频在线观看视频| 国产日韩欧美在线精品| 成人毛片60女人毛片免费| 777米奇影视久久| 人妻人人澡人人爽人人| 亚洲av成人精品一区久久| av福利片在线观看| 少妇人妻久久综合中文| 在现免费观看毛片| 内地一区二区视频在线| 国产在线免费精品| 精品国产一区二区久久| 一级毛片我不卡| videos熟女内射| 日本-黄色视频高清免费观看| 国产一区二区在线观看日韩| 青青草视频在线视频观看| 国产欧美日韩一区二区三区在线 | 中文字幕亚洲精品专区| 人人妻人人爽人人添夜夜欢视频 | 色哟哟·www| 五月天丁香电影| 中文字幕久久专区| 国产av精品麻豆| 人妻 亚洲 视频| 亚洲国产精品一区二区三区在线| 国产熟女欧美一区二区| 如日韩欧美国产精品一区二区三区 | 日日爽夜夜爽网站| 国产在视频线精品| h视频一区二区三区| 亚洲精品自拍成人| 男女国产视频网站| a级毛色黄片| 欧美激情国产日韩精品一区| 热re99久久国产66热| 乱人伦中国视频| 三级经典国产精品| 亚洲伊人久久精品综合| 亚洲综合精品二区| 国产一区有黄有色的免费视频| 国产探花极品一区二区| 国产午夜精品久久久久久一区二区三区| 日本vs欧美在线观看视频 | 在线免费观看不下载黄p国产| 香蕉精品网在线| 尾随美女入室| 亚洲精品久久久久久婷婷小说| 国产一区二区三区av在线| 久久综合国产亚洲精品| 久久久久久久国产电影| 精品国产一区二区三区久久久樱花| av免费观看日本| 亚洲精品国产av成人精品| 免费看不卡的av| 男女边摸边吃奶| 在线观看国产h片| 国产69精品久久久久777片| 中国美白少妇内射xxxbb| 日本午夜av视频| 国模一区二区三区四区视频| 性色av一级| h日本视频在线播放| 日本午夜av视频| 91精品国产国语对白视频| 观看免费一级毛片| 老司机影院毛片| 亚洲一区二区三区欧美精品| 国产成人精品婷婷| 日韩成人av中文字幕在线观看| 一二三四中文在线观看免费高清| a级毛色黄片| 伊人久久精品亚洲午夜| 久久99一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 成人综合一区亚洲| 精品国产露脸久久av麻豆| 免费播放大片免费观看视频在线观看| 亚洲成人手机| 中文字幕制服av| 99精国产麻豆久久婷婷| 亚洲av成人精品一二三区| 午夜激情久久久久久久| 精品少妇内射三级| 亚洲三级黄色毛片| 亚洲成人av在线免费| 国产一区二区三区av在线| 色哟哟·www| 一本大道久久a久久精品| 国产伦精品一区二区三区四那| .国产精品久久| 日本与韩国留学比较| 中国三级夫妇交换| 中文乱码字字幕精品一区二区三区| 亚洲精品乱码久久久v下载方式| 日韩一区二区视频免费看| 国产伦在线观看视频一区| 少妇被粗大猛烈的视频| 久久综合国产亚洲精品| 免费黄网站久久成人精品| 午夜福利网站1000一区二区三区| 少妇的逼好多水| 性色av一级| 看十八女毛片水多多多| 精品国产乱码久久久久久小说| 国产精品久久久久成人av| 成年女人在线观看亚洲视频| 街头女战士在线观看网站| 王馨瑶露胸无遮挡在线观看| 男人添女人高潮全过程视频| 日本与韩国留学比较| 日韩三级伦理在线观看| 久久人人爽人人片av| .国产精品久久| 国产精品无大码| 春色校园在线视频观看| 亚洲欧美成人精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲综合精品二区| 国产精品99久久久久久久久| 日韩不卡一区二区三区视频在线| 18禁在线无遮挡免费观看视频| 国产精品蜜桃在线观看| 肉色欧美久久久久久久蜜桃| 国产亚洲欧美精品永久| 一级黄片播放器| 人妻一区二区av| 只有这里有精品99| 国产男女内射视频| 国产精品久久久久久精品古装| 五月开心婷婷网| 精品午夜福利在线看| 热re99久久国产66热| 午夜精品国产一区二区电影| h日本视频在线播放| 街头女战士在线观看网站| 在线观看免费高清a一片| 欧美 日韩 精品 国产| 永久网站在线| 亚洲激情五月婷婷啪啪| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品一区三区| 久久精品夜色国产| 午夜影院在线不卡| 国产极品天堂在线| 亚洲精品久久午夜乱码| 国产色婷婷99| 天天躁夜夜躁狠狠久久av| 久久国产亚洲av麻豆专区| 性色av一级| 欧美精品一区二区大全| 丰满迷人的少妇在线观看| 亚洲av在线观看美女高潮| 精品人妻偷拍中文字幕| 97在线视频观看| 国产精品伦人一区二区| 麻豆成人av视频| 男人添女人高潮全过程视频| 自拍偷自拍亚洲精品老妇| 一级毛片黄色毛片免费观看视频| 一本色道久久久久久精品综合| 高清欧美精品videossex| 国产伦理片在线播放av一区| 精品久久久久久电影网| 青春草亚洲视频在线观看| 国产 精品1| 天堂俺去俺来也www色官网| 中文字幕久久专区| 男女啪啪激烈高潮av片| 亚洲欧洲日产国产| 亚洲av免费高清在线观看| 免费观看的影片在线观看| 亚洲国产成人一精品久久久| 大又大粗又爽又黄少妇毛片口| 色网站视频免费| 哪个播放器可以免费观看大片| 国产精品国产三级国产av玫瑰| 在线观看国产h片| 亚洲精品成人av观看孕妇| 欧美+日韩+精品| 国产在线视频一区二区| 街头女战士在线观看网站| 日日爽夜夜爽网站| 内地一区二区视频在线| 久久狼人影院| 国产精品一区二区在线观看99| 日本与韩国留学比较| 精品久久久久久电影网| 亚洲婷婷狠狠爱综合网| 九九爱精品视频在线观看| 熟女电影av网| 多毛熟女@视频| 亚洲va在线va天堂va国产| 老熟女久久久| 免费观看在线日韩| 中国国产av一级| 天堂俺去俺来也www色官网| 国产在线免费精品| 亚洲欧美精品专区久久| 日日爽夜夜爽网站| 中文字幕免费在线视频6| 少妇精品久久久久久久| 亚洲精品乱码久久久久久按摩| 日本黄大片高清| 亚洲怡红院男人天堂| 精品久久久久久久久av| 久久综合国产亚洲精品| 午夜日本视频在线| 国产伦精品一区二区三区视频9| 亚洲伊人久久精品综合| 成年人午夜在线观看视频| 精品人妻一区二区三区麻豆| 肉色欧美久久久久久久蜜桃| 亚洲av男天堂| 亚洲精品日本国产第一区| 久久精品国产亚洲av天美| 中文资源天堂在线| 国产精品偷伦视频观看了| 亚洲欧美日韩卡通动漫| 免费看av在线观看网站| 蜜桃在线观看..| 汤姆久久久久久久影院中文字幕| 97超视频在线观看视频| av在线播放精品| 精品一区二区三卡| 亚洲av国产av综合av卡| 免费大片18禁| 国产免费一区二区三区四区乱码| 超碰97精品在线观看| 91精品一卡2卡3卡4卡| 欧美xxⅹ黑人| 亚洲av电影在线观看一区二区三区| 在线观看国产h片| 久久久久久人妻| 国产高清不卡午夜福利| 一级片'在线观看视频| 少妇 在线观看| 国产探花极品一区二区| 亚洲电影在线观看av| 视频区图区小说| 国产淫片久久久久久久久| 日韩欧美一区视频在线观看 | 久久久久久久久大av| 91久久精品国产一区二区成人| 建设人人有责人人尽责人人享有的| 国产伦在线观看视频一区| 少妇的逼好多水| 黑人巨大精品欧美一区二区蜜桃 | 18禁在线播放成人免费| 午夜影院在线不卡| 各种免费的搞黄视频| 国产日韩欧美亚洲二区| 美女xxoo啪啪120秒动态图| 超碰97精品在线观看| 久久99一区二区三区| 久久国产亚洲av麻豆专区| 精品亚洲成国产av| 日本色播在线视频| 亚洲欧美日韩另类电影网站| 九草在线视频观看| 激情五月婷婷亚洲| 日本欧美视频一区| freevideosex欧美| 大片免费播放器 马上看| 久久久久久久亚洲中文字幕| 久久99蜜桃精品久久| av在线播放精品| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 亚洲一级一片aⅴ在线观看| 新久久久久国产一级毛片| 亚洲精品乱码久久久久久按摩| 日韩制服骚丝袜av| 在线亚洲精品国产二区图片欧美 | 午夜视频国产福利| 少妇高潮的动态图| 国产视频首页在线观看| 亚洲美女搞黄在线观看| 亚洲一区二区三区欧美精品| 欧美日韩av久久| 九草在线视频观看| 天堂8中文在线网| 欧美变态另类bdsm刘玥| 少妇被粗大猛烈的视频| 在线观看免费高清a一片| 少妇被粗大的猛进出69影院 | 22中文网久久字幕| 亚洲欧美日韩卡通动漫| 亚洲国产欧美日韩在线播放 | 久久久久视频综合| 国产黄色视频一区二区在线观看| 日韩在线高清观看一区二区三区| 国产成人精品久久久久久| 国产高清国产精品国产三级| 久久国产精品男人的天堂亚洲 | 又粗又硬又长又爽又黄的视频| 久久久久网色| 看十八女毛片水多多多| 最近最新中文字幕免费大全7| 水蜜桃什么品种好| 国产有黄有色有爽视频| 国产一区二区在线观看av| 麻豆成人午夜福利视频| 国产一区二区三区综合在线观看 | a级毛片免费高清观看在线播放| 啦啦啦啦在线视频资源| 成年美女黄网站色视频大全免费 | 草草在线视频免费看| 亚洲av免费高清在线观看| 久久久精品免费免费高清| 黄片无遮挡物在线观看| 美女福利国产在线| 国产淫语在线视频| 国产 一区精品| 亚洲四区av| 免费看不卡的av| 美女xxoo啪啪120秒动态图| 久久99热6这里只有精品| 一个人看视频在线观看www免费| 哪个播放器可以免费观看大片| 好男人视频免费观看在线| 欧美日本中文国产一区发布| 精品久久久久久久久av| 国产精品久久久久久精品古装| 国产永久视频网站| 天堂8中文在线网| 国产精品人妻久久久久久| 国产一区二区在线观看av| 妹子高潮喷水视频| 汤姆久久久久久久影院中文字幕| 午夜老司机福利剧场| 尾随美女入室| 国产伦精品一区二区三区视频9| 国产老妇伦熟女老妇高清| 高清午夜精品一区二区三区| 国产亚洲91精品色在线| 一个人免费看片子| 精品国产露脸久久av麻豆| 欧美性感艳星| 高清毛片免费看| 国产 一区精品| 狠狠精品人妻久久久久久综合| 国产免费福利视频在线观看| 久久99热这里只频精品6学生| 老熟女久久久| 一区在线观看完整版| 免费看av在线观看网站| 精品人妻偷拍中文字幕| 久久青草综合色| 午夜福利,免费看| 97在线视频观看| 国产亚洲av片在线观看秒播厂| 国产极品天堂在线| 麻豆成人午夜福利视频| 全区人妻精品视频| 日韩成人av中文字幕在线观看| 精品亚洲成国产av| 又大又黄又爽视频免费| 免费在线观看成人毛片| 男的添女的下面高潮视频| 精品卡一卡二卡四卡免费| 99国产精品免费福利视频| av天堂久久9| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| 在线观看人妻少妇| 国内揄拍国产精品人妻在线| 51国产日韩欧美| 国产黄色免费在线视频| 免费在线观看成人毛片| 国产精品国产三级专区第一集| 精品国产国语对白av| 高清视频免费观看一区二区| 丰满迷人的少妇在线观看| 精品久久久噜噜| av又黄又爽大尺度在线免费看| a 毛片基地| 久久人妻熟女aⅴ| 亚洲av免费高清在线观看| 日本黄色日本黄色录像| 少妇裸体淫交视频免费看高清| 国产成人精品一,二区| 99久久中文字幕三级久久日本| 狂野欧美激情性bbbbbb| 一级,二级,三级黄色视频| 五月天丁香电影| 永久网站在线| 午夜91福利影院| 伦理电影大哥的女人| 国产精品三级大全| 日韩制服骚丝袜av| 精品久久国产蜜桃| 91精品伊人久久大香线蕉| 51国产日韩欧美| 肉色欧美久久久久久久蜜桃| 夜夜骑夜夜射夜夜干| 日韩成人伦理影院| 交换朋友夫妻互换小说| 女人精品久久久久毛片| 亚洲欧美一区二区三区国产| 成年人免费黄色播放视频 | 国产成人免费无遮挡视频| 国产中年淑女户外野战色| 国产亚洲午夜精品一区二区久久| 99久国产av精品国产电影| 97在线人人人人妻| 亚洲精品,欧美精品| 国产在视频线精品| 国产精品久久久久久久电影| 中国三级夫妇交换| 美女视频免费永久观看网站| 日韩成人伦理影院| 中国国产av一级| 国产欧美日韩精品一区二区| 国产一区二区三区av在线| 婷婷色综合www| 国产精品人妻久久久久久| 人人妻人人澡人人看| 国产在视频线精品| 五月天丁香电影|