• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly crystalline,highly stable n-type ultrathin crystalline films enabled by solution blending strategy toward organic single-crystal electronics

    2024-04-06 06:21:00YngLiuShuyuLiYihnZhngXiotingZhuFngxuYngFeiJioWenpingHu
    Chinese Chemical Letters 2024年1期

    Yng Liu ,Shuyu Li ,Yihn Zhng ,Xioting Zhu ,Fngxu Yng,? ,Fei Jio,? ,Wenping Hu,b

    a Tianjin Key Laboratory of Molecular Optoelectronic Sciences,Department of Chemistry,School of Science,Tianjin University,Tianjin 300072,China

    b Haihe Laboratory of Sustainable Chemical Transformations,Tianjin 300192,China

    Keywords: n-type organic field effect transistors Ultrathin film High-performance Composites

    ABSTRACT The development of n-type semiconductor is still far behind that of p-type semiconductor on account of the challenges in enhancing carrier mobility and environmental stability.Herein,by blending with the polymers,n-type ultrathin crystalline thin film was successfully prepared by the method of meniscusguided coating.Remarkably,the n-type crystalline films exhibit ultrathin thickness as low as 5 nm and excellent mobility of 1.58 cm2 V-1 s-1,which is outstanding in currently reported organic n-type transistors.Moreover,the PS layer provides a high-quality interface with ultralow defect which has strong resistance to external interference with excellent long-term stability,paving the way for the application of n-type transistors in logic circuits.

    Large area single crystal thin films are the best candidate materials for high-performance integrated plastic electronics,on account of the advantages of eliminating the interference of grain boundaries,defects,impurities and charge traps [1–4].Up to now,large area preparation of organic single crystal film has become a hot research field due to the inherent unique characteristics of organic molecules [5–7].On the one hand,they have good selfcrystallization and tend to aggregate crystallization in solution processing [8,9].On the other hand,because of the development of meniscus-guided coating (MGC) method,the orientation-inducing force can induce organic molecules to assemble in the same direction,enabling the formation of large-area highly crystalline films[10,11].For an organic field effect transistor (OFET),carrier transport channels are considered to be located within several molecular layers at the interface between the organic semiconductor and the insulating layer [12,13].At present,it has been reported that the monolayer molecular crystal can achieve the same performance as the bulk single crystal [14,15].Moreover,the ultrathin crystal film also has inherent incomparable unique advantages.On the one hand,the ultrathin feature can greatly reduce the bulk resistance of the semiconductor,facilitating the carrier injection[16,17].On the other hand,the carriers in the ultrathin channel can be efficiently regulated by the gate,and thus the carriers can be completely depleted in the depletion region to achieve ultra-low off-state current [18,19].Currently,the methods of preparing ultrathin single crystals mainly include liquid surface substrate method and the MGC method.Despite the liquid substrate method can prepare two-dimensional organic crystals with a controllable number of layers based on spatial confinement,it cannot be fabricated on a large scale [20].By contrast,the MGC method can be fabricated in a large area.However,in order to ensure the continuity of the film,the thickness of the film is often increased,resulting in a challenge of achieving ultrathin thickness.Although there are a few reports on p-type ultrathin single crystal films [21],investigation on largearea n-type ultrathin crystalline films is scarce.

    In addition,the long-term storage and operational stability of n-type ultrathin semiconductor films is another formidable challenge that needs to be addressed.There are two main reasons for the morphological evolution of organic thin films after long-term storage.Firstly,molecular films are assembled by weak van der Waals interactions between organic molecules [22,23].Secondly,the heterointerface is generally accompanied by the existence of interfacial stress [24].Moreover,this phenomenon will be more pronounced for ultrathin films.To overcome this problem,it has been reported that increasing the thickness of the film can improve the stability [25,26].Even worse,the stability of n-type semiconductor thin films is a long-term problem in the field,mainly because the electronic properties of organic semiconductors are easily affected by water and oxygen [27,28].Thus,the stability of n-type ultrathin films will be a huge challenge,which needs to be solved by developing sophisticated strategies.

    Herein,we develop a polymer blending strategy to realize the preparation of n-type ultrathin films,obtaining high-performance n-type organic field effect transistors with excellent stability.Choosing 4,4′-(2λ4δ2-benzo[1,2-c:4,5-c’]bis[1,2,5]thiadiazole-4,8-diyldi-5,2-thiophenediyl)bis[2-dodecylbenzonitrile] (TU-3) as the n-type semiconductor,we obtained n-type ultrathin films owing to the properties of the continuous film formation and efficient crystallization of the polymer polystyrene (PS) in TU-3/PS composite.The electron mobility of the corresponding device is as high as 1.58 cm2V-1s-1,which is the highest value for n-type ultrathin films.More importantly,the n-type ultrathin film achieves good long-term stability due to the addition of PS to stabilize the heterointerfacial stress,and the low defect system also enables the film to obtain good resistance to external interference.This study lays a solid foundation for the development of high-performance n-type ultrathin films for large area integrated electronics.

    For the solution shearing method,ultra-low solution concentration or fast shear rate are generally required to prepare ultrathin films [29].Small molecules are not easy to form films due to their low viscosity,so we tend to increase the shear rate to reduce the thickness of the film,which often results in discontinuity and inhomogeneity of the film [10].However,the addition of polymers can significantly increase the viscosity and improve the wettability of the solution,thereby improving the growth kinetics,which is more favorable for the growth of thin films [30,31].In terms of molecular selection,we chose small molecule TU-3 and polymer PS with good solubility and high stability [32,33].In film preparation,we chose the strategy of polymer blending to assist solution shearing (Fig.1a).By using the method of meniscus-guided coating,an orientation force is applied to small molecules to induce crystallization toward the dominant direction.The uniform solidification of PS with long-chain structure at the bottom layer provides a favorable platform for the deposition of TU-3 small molecules,thereby obtaining continuous and uniform ultrathin films by adjusting the appropriate shear rate (Fig.1b).Optical micrographs reveal ultrathin films with centimeter-scale dimensions and smooth,flat surfaces,and atomic force microscopy (AFM) images indicate a thickness of 5.5 nm (Fig.S1 in Supporting information).The microstructure of the ultrathin film is revealed by AFM,and it is found that the blend film has a more continuous and flatter surface than the single-component film,and the root mean square roughness (RMS) is reduced from 1.49 nm to 0.48 nm due to the introduction of polymers,which reflects that the blending strategy improves the uniformity and continuity of the ultrathin films (Figs.1c and d).In order to further analyze the crystallinity and structure of the ultrathin film,it is first observed under a polarizing microscope (POM).When the polarization angle is rotated by 45°,the film shows a uniform color change and a significant extinction phenomenon,indicating that it has a long-range ordered internal structure (Figs.1e and f).Meanwhile,the out-of-plane X-ray diffraction pattern shows that the blend film had sharper diffraction peaks,indicating that the introduction of PS effectively improves the crystallinity of TU-3 (Fig.S2 in Supporting information).Besides,the selected-area electron diffraction (SAED) image shows that the ultrathin film has periodically arranged diffraction spots,further proving its single-crystal structure (Fig.1g).

    Fig.1.(a) Chemical structure of TU-3 and PS and schematic diagram of ultrathin film preparation.(b) Schematic diagram of small molecule deposition process.(c,d) AFM images of a pure TU-3 film and a TU-3/PS blend ultrathin film on Si/SiO2 substrate.(e,f) POM images of an ultrathin film.(g) An SAED image of an ultrathin film.Inset: a transmission electron microscope image (TEM) of the ultrathin film.

    We transferred Ag (80 nm)/Au (80 nm) as source and drain electrodes on the ultrathin films,and constructed bottom-gate topcontact (BGTC) OFETs to study its electrical properties (Fig.2a and Fig.S3 in Supporting information).All experiments were performed at room temperature and in air environment.The transfer characteristic curves of ultrathin film-based OFETs are shown in Fig.2b,and the corresponding output curves are shown in Fig.2c.An electron mobility of 1.58 cm2V-1s-1is obtained under optimal conditions with an on-off ratio greater than 107.Moreover,we systematically studied the effect of different annealing temperatures on the mobility,and found that the mobility of the device was the highest when annealing at 100°C for 1 h (Fig.2d),which is attributed to the volatilization of impurities such as organic solvents and water in the ultra-thin film,as well as the enhancement of film crystallinity (Fig.S4 in Supporting information).In addition,the effect of different mixing ratios on the mobility is also crucial,and the performance of the device is the best when the mixing ratio is 3:1 (Fig.S5 in Supporting information).It is worth mentioning that with the increase of shear rate,the thickness of the film will decrease inversely proportional,and the thickness of the ultra-thin film can be as low as 5 nm.When the shear rate is 0.25 mm/s,the mobility of the ultrathin films reaches the maximum value.However,continuing to increase the shear rate significantly increases the defects of the film,thereby reducing its electrical transport capacity (Fig.2e and Fig.S6 in Supporting information).The mobilities of 30 devices under the optimal conditions are counted as shown in Fig.2f,which is a normal distribution.The average electron mobility is 1.09 cm2V-1s-1,and the maximum electron mobility is 1.58 cm2V-1s-1,which is the highest value reported so far in OFETs used TU-3 as the n-type semiconductor.

    Fig.2.(a) Schematic diagram of OFET device based on ultrathin films.Representative transfer (b) and output (c) curves of OFETs based on ultrathin films.(d) OFET mobility as a function of annealing temperature,the error bars were calculated from the standard deviations over 10 devices in each annealing temperature.(e) Film thickness and average mobility at different shear rates,the error bars were calculated from the standard deviations over 5 devices at each shear rate.(f) Histogram of mobility distribution of 30 devices,with average value of 1.09 cm2 V-1 s-1.

    Long-term operational stability and environmental stability are one of the most important application metrics for n-type organic field effect transistors.We measured the output current of the device under a constant gate voltage of 20 V,and found that the device prepared based on the blending strategy showed better stability than the single-component device.After 8.5 h of continuous bias operation,the output current of the device still did not decay(Fig.3a).At the same time,the device was switched on and off 20 times within 2 h,and its transfer curve did not change distinctly(Fig.S7 in Supporting information).In order to explore its intrinsic mechanism,we tested the UV–vis absorption spectrum of the ultrathin film within six months,and the curve basically did not change,proving its good chemical stability (Fig.3b).The devices were then tested for photostability,and the OFETs exhibited good photostability to all wavelengths of light,which was attributed to the high molecular order in the conducting channel and the highquality interface between the dielectric layer and the semiconductor (Figs.3c-e) [34].It is worth noting that when the incident light is 365 nm,the off current of the device significantly increases,which is due to the generation of a large number of photo generated charge carriers in the active layer.However,the threshold voltage did not significantly shift,because there were few defects in the system and almost no hole trapping occurred,demonstrating the photostability of the transistor (Fig.3c).In the blend film,there is a more favorable enthalpy interaction between PS and SiO2,PS will preferentially deposit on the SiO2substrate [35,36],while the more hydrophobic TU-3 small molecules crystallize at the interface of air and film,which can be confirmed in scanning electron micrographs (SEM,as shown in Fig.3i).We also used X-ray photoelectron spectroscopy (XPS) to analyze the atomic ratios of C/S and C/N on the surfaces of blend and single-component films,and the phase separation result was confirmed by their equality (Fig.3j and Fig.S8 in Supporting information).Actually,PS layer passivates the electron traps on the surface of SiO2,provides a high-quality interface,and the whole system is a low-defect system with strong resistance to external interference,thus obtaining perfect stability (Figs.3k and l).Subsequently,we stored the device in air and tracked its mobility and threshold voltage over time.The introduction of PS also significantly improved the environmental stability of the device,and the change in threshold voltage after 9 months was only about 5 V (Fig.3f).Moreover,the mobility of the device is only reduced by about 10% after 4 months of storage.After 8 months,the mobility of the device can still be as high as 1 cm2V-1s-1(Fig.3g).Compared with the previously reported stability of n-type OFETs [37–46],our work is at the cutting edge (Fig.3h).

    Fig.3.(a) The I-t curves of OFETs based on single-component and blend ultrathin films under applied constant voltage VG of 20 V at VD of 40 V.(b) Time-dependent UV–vis spectra of a blend ultrathin film under ambient air.Transfer curves of OFETs based on blend ultrathin films in dark and under different illumination intensities at (c)365 nm,(d) 450 nm and (e) 735 nm.(f) Time-dependent threshold voltage shift of single-component and blend OFETs stored in air at room temperature,the error bars were calculated from the standard deviations over 10 devices.(g) Time-dependent electron mobility of 10 OFETs based on blend ultrathin films stored in air at room temperature.(h) Comparison of n-type OFET stability.(i) Cross-sectional SEM image of a blend ultrathin film.(j) Atomic ratios of the surfaces of single-component and blend ultrathin films.(k,l) The possible mechanism for the stability of ultrathin films.

    To demonstrate the universality of this strategy for different substrates,a high-quality alumina dielectric layer was prepared by template stripping method [47],and then grew a blend ultrathin film on the dielectric (Fig.S9 in Supporting information).Optical microscope and polarized optical microscope images prove that the thin film has a flat surface and good crystallinity (Figs.4ac).Moreover,the morphology and thickness of the thin film did not significantly change with the substrate (Fig.S10 in Supporting information).Subsequently,we thermally evaporated 2 nm 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as a buffer layer,and then deposited 30 nm Ag as the top electrode to prepare a large-area transistor array (Fig.S11 in Supporting information),and the schematic diagram of the devices structure is shown in Fig.4d.Figs.4e and f show the transfer and output curves of the devices,respectively.The highest mobility can reach 0.53 cm2V-1s-1,which is one of the best performance n-type low voltage transistors at present (Table S2 in Supporting information).The mobility of 6× 6 transistors is counted,and it has a relatively uniform distribution (Fig.4i).Likewise,low-voltage devices exhibit good operational stability and environmental stability (Figs.4g and h),which provides a favorable guarantee for the development of organic logic circuits in the future.

    Fig.4.(a) OM and (b,c) POM images of an ultrathin film on Al/AlOx substrate.(d) Schematic diagram of low-voltage transistors based on ultrathin films.(e) Representative transfer and (f) output curves of OFETs based on ultrathin films.(g) The I-t curve of OFETs under applied constant voltage VG of 2 V at VD of 4 V.(h) Time-dependent I-V curves of OFETs under ambient air.(i) The distribution of OFET mobilities of a 6× 6 low-voltage transistor array.

    In conclusion,we have fabricated large-area ultrathin n-type crystalline filmsviausing the polymer blending strategy.Through the introduction of the polymer and the regulation of the shear rate,the electron mobility of the ultrathin film can be as high as 1.58 cm2V-1s-1when the thickness can be as low as 5.5 nm.In the blend system,the favorable interaction between PS and TU-3 molecules regulates the arrangement of TU-3 molecules,enhances the crystallinity of the film,and thus improves the electrical transport performance of the device.Moreover,PS solves the instability caused by n-type semiconductors and ultrathin film,and the lowdefect system also enables the film to obtain good resistance to external interference.Finally,we have successfully fabricated n-type OFETs with high stability and high performance,while low-voltage devices have good uniformity and stability,which has guiding significance for the development of logic circuits.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are grateful to the financial support of the National Key Research and Development Program (No.2022YFF1202700),National Natural Science Foundation of China (No.52121002) and the Haihe Laboratory of Sustainable Chemical Transformations.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108764.

    乱码一卡2卡4卡精品| 婷婷色av中文字幕| 午夜免费鲁丝| 亚洲成人手机| 在现免费观看毛片| 美女视频免费永久观看网站| 狠狠精品人妻久久久久久综合| av黄色大香蕉| 亚洲欧美成人精品一区二区| 国产av精品麻豆| 你懂的网址亚洲精品在线观看| 国产成人精品无人区| 亚洲精品自拍成人| www.色视频.com| 中文精品一卡2卡3卡4更新| 2018国产大陆天天弄谢| 美女福利国产在线| 99热全是精品| 少妇精品久久久久久久| 欧美+日韩+精品| 亚洲成人av在线免费| 欧美精品一区二区大全| 九九久久精品国产亚洲av麻豆| 一级a做视频免费观看| 欧美性感艳星| 美女内射精品一级片tv| 国产亚洲一区二区精品| 99久久人妻综合| 精品一区二区三卡| 亚洲精品aⅴ在线观看| 汤姆久久久久久久影院中文字幕| 中国三级夫妇交换| 久久ye,这里只有精品| 91精品国产国语对白视频| 老司机影院成人| 国产精品一区www在线观看| 亚洲丝袜综合中文字幕| 国产在线一区二区三区精| 成年人免费黄色播放视频| 久久久久视频综合| 女人精品久久久久毛片| 久久ye,这里只有精品| 日日爽夜夜爽网站| 曰老女人黄片| 丝袜在线中文字幕| 亚洲丝袜综合中文字幕| 欧美最新免费一区二区三区| 亚洲欧美成人精品一区二区| 精品国产一区二区三区久久久樱花| 国产av码专区亚洲av| 日韩av在线免费看完整版不卡| 日本午夜av视频| 亚州av有码| 亚洲情色 制服丝袜| 能在线免费看毛片的网站| 国产精品嫩草影院av在线观看| 国产精品一二三区在线看| 亚洲国产精品国产精品| 尾随美女入室| 午夜福利在线观看免费完整高清在| 男女啪啪激烈高潮av片| 亚洲av男天堂| 最近中文字幕高清免费大全6| 在现免费观看毛片| 亚洲精品国产av蜜桃| 成人综合一区亚洲| 看十八女毛片水多多多| 亚洲一区二区三区欧美精品| 亚洲av.av天堂| 色视频在线一区二区三区| 春色校园在线视频观看| 在线观看www视频免费| 乱码一卡2卡4卡精品| av专区在线播放| 大香蕉久久网| 超色免费av| 五月玫瑰六月丁香| 91精品国产国语对白视频| 大香蕉97超碰在线| 中文字幕免费在线视频6| 日韩精品免费视频一区二区三区 | 美女脱内裤让男人舔精品视频| 亚洲av中文av极速乱| 亚洲怡红院男人天堂| 亚洲欧洲精品一区二区精品久久久 | 日韩人妻高清精品专区| 国产国语露脸激情在线看| 国产精品免费大片| 插阴视频在线观看视频| 纯流量卡能插随身wifi吗| 精品人妻在线不人妻| 亚洲成色77777| 超色免费av| 亚洲国产欧美在线一区| 少妇猛男粗大的猛烈进出视频| 秋霞在线观看毛片| 欧美97在线视频| 国产在线免费精品| 免费人妻精品一区二区三区视频| 亚洲av福利一区| 国产av国产精品国产| 九色亚洲精品在线播放| 乱码一卡2卡4卡精品| 亚洲在久久综合| 国产女主播在线喷水免费视频网站| 日韩不卡一区二区三区视频在线| 丰满迷人的少妇在线观看| 国产精品熟女久久久久浪| 特大巨黑吊av在线直播| 亚洲精品一二三| 夜夜看夜夜爽夜夜摸| 亚洲激情五月婷婷啪啪| 日本色播在线视频| a级毛片免费高清观看在线播放| 一区二区av电影网| 亚洲成人手机| 亚洲国产最新在线播放| 欧美日韩在线观看h| 日本黄大片高清| 日韩熟女老妇一区二区性免费视频| 国产精品不卡视频一区二区| 夜夜爽夜夜爽视频| 秋霞在线观看毛片| 色婷婷av一区二区三区视频| 国产成人免费观看mmmm| 亚洲av.av天堂| 少妇人妻久久综合中文| 一级片'在线观看视频| 欧美xxⅹ黑人| 久久久亚洲精品成人影院| 免费av不卡在线播放| 精品亚洲乱码少妇综合久久| 亚洲婷婷狠狠爱综合网| 色视频在线一区二区三区| 丰满乱子伦码专区| xxx大片免费视频| 日韩大片免费观看网站| 日日撸夜夜添| 日韩三级伦理在线观看| 一本—道久久a久久精品蜜桃钙片| 久久精品久久久久久噜噜老黄| 91aial.com中文字幕在线观看| a级毛片在线看网站| 色网站视频免费| av线在线观看网站| 久久久亚洲精品成人影院| 岛国毛片在线播放| 少妇人妻久久综合中文| 人妻少妇偷人精品九色| 日韩,欧美,国产一区二区三区| 国产精品一国产av| 春色校园在线视频观看| 欧美变态另类bdsm刘玥| 欧美日韩视频精品一区| av电影中文网址| 亚洲图色成人| 高清黄色对白视频在线免费看| 在线观看三级黄色| 麻豆精品久久久久久蜜桃| 考比视频在线观看| 亚洲美女黄色视频免费看| 人人妻人人添人人爽欧美一区卜| 婷婷色av中文字幕| 国产白丝娇喘喷水9色精品| 婷婷色综合大香蕉| av电影中文网址| 黄色欧美视频在线观看| 久久99蜜桃精品久久| 日本av手机在线免费观看| 久热久热在线精品观看| 老司机影院毛片| 18禁裸乳无遮挡动漫免费视频| 久久国内精品自在自线图片| 国产成人午夜福利电影在线观看| 精品国产乱码久久久久久小说| av国产精品久久久久影院| 亚洲不卡免费看| 人人妻人人澡人人爽人人夜夜| 99热网站在线观看| 欧美xxxx性猛交bbbb| 尾随美女入室| 七月丁香在线播放| 99热6这里只有精品| 欧美+日韩+精品| 久久精品久久久久久噜噜老黄| 午夜福利影视在线免费观看| 热99久久久久精品小说推荐| 91aial.com中文字幕在线观看| 久久 成人 亚洲| 久久久久久久久久久丰满| 亚洲第一区二区三区不卡| 国产欧美另类精品又又久久亚洲欧美| 久久精品久久久久久久性| 精品人妻熟女毛片av久久网站| 国产极品粉嫩免费观看在线 | 国产一级毛片在线| 国产免费福利视频在线观看| 人人澡人人妻人| 亚洲美女搞黄在线观看| 国产黄色免费在线视频| 午夜91福利影院| 一级爰片在线观看| 国产一区二区三区av在线| 一本—道久久a久久精品蜜桃钙片| 久久久久久久久久久久大奶| 另类精品久久| 国产在视频线精品| 中文字幕av电影在线播放| 日本猛色少妇xxxxx猛交久久| 免费观看在线日韩| 国产精品久久久久久久电影| 亚洲欧美精品自产自拍| 高清黄色对白视频在线免费看| 只有这里有精品99| 精品久久久久久久久亚洲| 少妇人妻 视频| 国产一区亚洲一区在线观看| 国产高清国产精品国产三级| 免费观看性生交大片5| 国产成人a∨麻豆精品| 中文字幕精品免费在线观看视频 | 日韩欧美一区视频在线观看| 一区在线观看完整版| 99九九在线精品视频| 欧美97在线视频| 国产黄频视频在线观看| 亚洲欧美清纯卡通| 国产精品99久久久久久久久| 日韩三级伦理在线观看| 香蕉精品网在线| 你懂的网址亚洲精品在线观看| 国产精品欧美亚洲77777| 另类精品久久| 国产女主播在线喷水免费视频网站| 亚洲情色 制服丝袜| 91成人精品电影| 男女啪啪激烈高潮av片| 午夜老司机福利剧场| 一级毛片aaaaaa免费看小| 街头女战士在线观看网站| 大片免费播放器 马上看| 美女中出高潮动态图| 国产精品成人在线| 亚洲四区av| 亚洲性久久影院| 一级毛片 在线播放| 成人无遮挡网站| 亚洲丝袜综合中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美激情性bbbbbb| 免费av不卡在线播放| 一级a做视频免费观看| 亚洲国产成人一精品久久久| 一级,二级,三级黄色视频| 日日摸夜夜添夜夜爱| 亚洲精品久久成人aⅴ小说 | 国产精品久久久久久久久免| 亚洲精品视频女| 菩萨蛮人人尽说江南好唐韦庄| 在线看a的网站| 热re99久久国产66热| 97在线视频观看| 亚洲国产欧美在线一区| 狂野欧美激情性xxxx在线观看| 毛片一级片免费看久久久久| 男人爽女人下面视频在线观看| 婷婷成人精品国产| 精品久久久噜噜| 精品人妻在线不人妻| 国产高清不卡午夜福利| 国产黄色免费在线视频| 亚洲一级一片aⅴ在线观看| 搡老乐熟女国产| 插阴视频在线观看视频| 免费看光身美女| 日韩大片免费观看网站| 久久久久久久大尺度免费视频| 在线看a的网站| 91久久精品国产一区二区成人| 99久久精品一区二区三区| 国产一区二区在线观看日韩| 国产日韩欧美视频二区| 成人毛片60女人毛片免费| 日韩成人av中文字幕在线观看| 亚洲av成人精品一区久久| 午夜av观看不卡| 欧美 亚洲 国产 日韩一| 91精品三级在线观看| 亚洲综合色网址| 飞空精品影院首页| 欧美日韩成人在线一区二区| 亚洲人与动物交配视频| 国产成人精品久久久久久| 日韩中字成人| 日本wwww免费看| 亚洲怡红院男人天堂| 日韩三级伦理在线观看| 欧美国产精品一级二级三级| 久久韩国三级中文字幕| 亚洲精品成人av观看孕妇| 久久久久久人妻| 亚洲第一av免费看| 考比视频在线观看| 女性生殖器流出的白浆| 欧美亚洲 丝袜 人妻 在线| 69精品国产乱码久久久| 国产欧美日韩综合在线一区二区| 国产极品天堂在线| 免费观看av网站的网址| 九九在线视频观看精品| 91午夜精品亚洲一区二区三区| 九色成人免费人妻av| 国产精品久久久久成人av| 精品人妻在线不人妻| 国产精品 国内视频| 视频区图区小说| 黑人高潮一二区| 性色avwww在线观看| 精品亚洲成a人片在线观看| 亚洲久久久国产精品| 91午夜精品亚洲一区二区三区| 免费大片18禁| 亚洲精品中文字幕在线视频| 国产伦理片在线播放av一区| 精品人妻偷拍中文字幕| 一级片'在线观看视频| 大片免费播放器 马上看| 国产色爽女视频免费观看| 成年美女黄网站色视频大全免费 | 高清不卡的av网站| 欧美成人午夜免费资源| 全区人妻精品视频| 国产国拍精品亚洲av在线观看| 男人爽女人下面视频在线观看| 赤兔流量卡办理| 国产午夜精品久久久久久一区二区三区| 9色porny在线观看| 飞空精品影院首页| 美女脱内裤让男人舔精品视频| 久久人人爽人人爽人人片va| 日韩一区二区三区影片| 伊人久久精品亚洲午夜| 又大又黄又爽视频免费| 日韩免费高清中文字幕av| h视频一区二区三区| av播播在线观看一区| 黑人操中国人逼视频| 亚洲国产看品久久| 亚洲精品美女久久久久99蜜臀| 91精品三级在线观看| 18禁裸乳无遮挡动漫免费视频| 一级黄色大片毛片| 一级片免费观看大全| 久久久久久亚洲精品国产蜜桃av| 国产亚洲av高清不卡| 国产av精品麻豆| 天堂8中文在线网| 午夜免费成人在线视频| 亚洲av欧美aⅴ国产| 久久人妻av系列| 999久久久国产精品视频| 亚洲av日韩在线播放| 日日摸夜夜添夜夜添小说| 日韩欧美一区二区三区在线观看 | 久久天堂一区二区三区四区| 夜夜夜夜夜久久久久| 丝袜在线中文字幕| 在线看a的网站| 热re99久久国产66热| 亚洲精品久久成人aⅴ小说| 欧美日韩一级在线毛片| 在线观看66精品国产| 亚洲第一青青草原| 51午夜福利影视在线观看| 久久精品国产99精品国产亚洲性色 | 成人亚洲精品一区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清国产精品国产三级| 国产亚洲精品第一综合不卡| 亚洲精华国产精华精| 精品国产国语对白av| 久久精品aⅴ一区二区三区四区| 交换朋友夫妻互换小说| 午夜老司机福利片| 一本综合久久免费| 久久精品aⅴ一区二区三区四区| 香蕉国产在线看| 高清欧美精品videossex| 亚洲视频免费观看视频| 国产成人av教育| 超碰成人久久| 国产精品二区激情视频| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 久久久国产精品麻豆| 欧美中文综合在线视频| 婷婷成人精品国产| 成在线人永久免费视频| www.熟女人妻精品国产| 亚洲av成人不卡在线观看播放网| 夜夜爽天天搞| 99精品在免费线老司机午夜| 老司机午夜福利在线观看视频 | 男男h啪啪无遮挡| 女人高潮潮喷娇喘18禁视频| 亚洲精品乱久久久久久| tube8黄色片| e午夜精品久久久久久久| 91成人精品电影| 国产97色在线日韩免费| 在线观看人妻少妇| 婷婷丁香在线五月| 久久久欧美国产精品| 夫妻午夜视频| 另类亚洲欧美激情| 黄色怎么调成土黄色| 久久av网站| 国产aⅴ精品一区二区三区波| 国产一卡二卡三卡精品| 亚洲 欧美一区二区三区| 日本黄色日本黄色录像| 精品高清国产在线一区| 叶爱在线成人免费视频播放| 老司机深夜福利视频在线观看| 天堂中文最新版在线下载| 欧美国产精品va在线观看不卡| 免费观看av网站的网址| 黄色成人免费大全| 国产精品成人在线| 久久久久久久大尺度免费视频| 亚洲人成电影免费在线| 亚洲成人免费av在线播放| 国产单亲对白刺激| 男女无遮挡免费网站观看| 成人三级做爰电影| 热99久久久久精品小说推荐| 青青草视频在线视频观看| 国产在线视频一区二区| 丁香六月欧美| 精品国产一区二区三区久久久樱花| 美国免费a级毛片| 天堂中文最新版在线下载| 色老头精品视频在线观看| 亚洲av欧美aⅴ国产| 久热爱精品视频在线9| 午夜福利在线观看吧| 亚洲成人免费电影在线观看| 99香蕉大伊视频| 亚洲伊人色综图| 在线av久久热| 午夜福利乱码中文字幕| 久久午夜综合久久蜜桃| 久久久水蜜桃国产精品网| 美女福利国产在线| 狠狠婷婷综合久久久久久88av| 成年版毛片免费区| 这个男人来自地球电影免费观看| 婷婷成人精品国产| 桃花免费在线播放| 在线观看一区二区三区激情| 黑人猛操日本美女一级片| 他把我摸到了高潮在线观看 | 国产男女超爽视频在线观看| 成人永久免费在线观看视频 | 美女高潮喷水抽搐中文字幕| 欧美大码av| 深夜精品福利| 国产成人免费无遮挡视频| 国产男女超爽视频在线观看| 欧美激情久久久久久爽电影 | 久久天躁狠狠躁夜夜2o2o| 天天操日日干夜夜撸| 制服人妻中文乱码| 国产主播在线观看一区二区| av又黄又爽大尺度在线免费看| 亚洲五月色婷婷综合| 国产成人精品久久二区二区91| 午夜福利影视在线免费观看| 久久中文字幕一级| 亚洲成人手机| 日韩三级视频一区二区三区| 亚洲情色 制服丝袜| 亚洲第一青青草原| svipshipincom国产片| 国产又色又爽无遮挡免费看| 一本—道久久a久久精品蜜桃钙片| 成人国产一区最新在线观看| 国产av又大| 亚洲午夜精品一区,二区,三区| 免费日韩欧美在线观看| 天天躁夜夜躁狠狠躁躁| kizo精华| 久9热在线精品视频| av不卡在线播放| 国产精品国产av在线观看| 啪啪无遮挡十八禁网站| 狂野欧美激情性xxxx| 真人做人爱边吃奶动态| 亚洲专区中文字幕在线| 日韩一卡2卡3卡4卡2021年| 国产成人系列免费观看| 一级毛片电影观看| 99re6热这里在线精品视频| 精品少妇内射三级| 天堂中文最新版在线下载| 欧美日韩av久久| 99riav亚洲国产免费| 久久久精品区二区三区| 日本一区二区免费在线视频| 丁香六月天网| 高清在线国产一区| 十八禁网站免费在线| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜制服| www日本在线高清视频| 久久中文看片网| 操出白浆在线播放| 久久人妻熟女aⅴ| 精品久久久久久电影网| 亚洲欧美精品综合一区二区三区| 91精品三级在线观看| 成年人黄色毛片网站| 亚洲av成人一区二区三| 男女床上黄色一级片免费看| 多毛熟女@视频| 涩涩av久久男人的天堂| 国产欧美日韩一区二区精品| 丰满少妇做爰视频| 欧美激情 高清一区二区三区| 一区二区三区精品91| 国产精品电影一区二区三区 | 在线观看舔阴道视频| 国产福利在线免费观看视频| 国产日韩欧美视频二区| 免费不卡黄色视频| 另类亚洲欧美激情| 王馨瑶露胸无遮挡在线观看| a级毛片在线看网站| 中文字幕制服av| 欧美一级毛片孕妇| 99re6热这里在线精品视频| 欧美 亚洲 国产 日韩一| 超色免费av| 日本五十路高清| av一本久久久久| 久久精品人人爽人人爽视色| 亚洲午夜精品一区,二区,三区| av福利片在线| 精品一区二区三卡| 免费一级毛片在线播放高清视频 | 日韩中文字幕欧美一区二区| 亚洲伊人久久精品综合| 久久毛片免费看一区二区三区| 国产免费视频播放在线视频| 人成视频在线观看免费观看| 午夜视频精品福利| 国产成人啪精品午夜网站| 日韩三级视频一区二区三区| 国产老妇伦熟女老妇高清| 麻豆国产av国片精品| 免费少妇av软件| 午夜免费鲁丝| 日本a在线网址| 欧美日韩黄片免| 狂野欧美激情性xxxx| 国产在线视频一区二区| 在线 av 中文字幕| 中文字幕人妻熟女乱码| av在线播放免费不卡| 国产av国产精品国产| 国产成人精品无人区| 悠悠久久av| 大片电影免费在线观看免费| 女性生殖器流出的白浆| 亚洲精品一卡2卡三卡4卡5卡| 国产国语露脸激情在线看| 另类亚洲欧美激情| 一本久久精品| 成人手机av| 国产成人系列免费观看| 日日夜夜操网爽| 天堂中文最新版在线下载| 女人被躁到高潮嗷嗷叫费观| svipshipincom国产片| 成人亚洲精品一区在线观看| 手机成人av网站| 日韩大码丰满熟妇| 免费在线观看影片大全网站| 可以免费在线观看a视频的电影网站| 国产精品二区激情视频| 中文字幕高清在线视频| 少妇裸体淫交视频免费看高清 | 丰满人妻熟妇乱又伦精品不卡| 午夜福利免费观看在线| 亚洲欧美日韩另类电影网站| 操美女的视频在线观看| 免费在线观看完整版高清| 欧美 亚洲 国产 日韩一| 在线观看免费午夜福利视频| h视频一区二区三区| 精品高清国产在线一区| 亚洲av国产av综合av卡| 国产成人系列免费观看| 国产免费视频播放在线视频| 欧美日韩成人在线一区二区| 在线观看一区二区三区激情| 人妻久久中文字幕网| 日韩视频在线欧美| 国产97色在线日韩免费| 黄网站色视频无遮挡免费观看| 亚洲欧美色中文字幕在线| 18禁黄网站禁片午夜丰满| 在线观看www视频免费| 满18在线观看网站| 成年动漫av网址|