• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radical cascade cyclization for the green and simple synthesis of silylated indolo[2,1-a]isoquinoline derivatives via visible light-mediated Si–H bonds activation

    2024-04-06 06:20:50ZhenkiLeiFeiXueBinWngShijieWngYuXiYonghongZhngWeiweiJinChenjingLiu
    Chinese Chemical Letters 2024年1期

    Zhenki Lei ,Fei Xue ,Bin Wng ,Shijie Wng ,Yu Xi ,Yonghong Zhng ,Weiwei Jin,Chenjing Liu,b,?

    a State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,Key Laboratory of Oil and Gas Fine Chemicals,Ministry of Education&Xinjiang Uygur Autonomous Region,Urumqi Key Laboratory of Green Catalysis and Synthesis Technology,College of Chemistry,Xinjiang University,Urumqi 830017,China

    b College of Future Technology,Institute of Materia Medica,Xinjiang University,Urumqi 830017,China

    c Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute,Urumqi 830011,China

    Keywords: Indolo[2,1-a]isoquinolines Silyl radicals Green photocatalytic Simple photoinduced Silylated Hydrogen atom transfer EDA complex

    ABSTRACT Photocatalytic and photoinduced silyl radicals cascade cyclization procedures for the green and simple preparation of fused tetracyclic skeleton silylated indolo[2,1-a]isoquinoline-6(5H)-ones from 2-aryl-N-acryloyl indoles with hydrosilanes are developed.The photocatalytic reaction is carried out with 9,10-dicyanoanthracene (DCA) as an organophotocatalyst and 3-acetoxyquinuclidine as hydrogen atom transfer(HAT) catalyst at room temperature under metal-and oxidant-free conditions.The keys to the success of photoredox-catalytic conversion include (1) the reductive quenching of DCA?[E1/2(?P/P–)=+1.97 V vs. SCE in MeCN] by 3-acetoxyquinuclidine (Ep=+1.22 V vs. SCE in MeCN),and (2) the thermodynamic feasibility of hydrogen atom abstraction from hydridic Si–H bond by electrophilic N+?.Particularly,the simple photoinduced cascade cyclization using (TMS)3SiH with 2-aryl-N-acryloyl indoles was exploited via an electron-donor-acceptor (EDA) complex under visible light irradiation.

    Organosilicon molecules are evoked remarkable interests and explored deeply by synthetic chemists,pharmacologists and material scientists because of their conspicuous chemical,physical,and biological properties (I-V,Fig.1) [1–7].Especially,silicon as isostere of carbon in biomolecules have become new drug-like candidates in drug discovery [8].Classically,organosilicon derivatives were prepared by nucleophilic reactions of organometallic reagents with halosilanes [9–10],and transition-metal catalyzed cross-coupling of hydrocarbons or halogenated hydrocarbons with silylating reagents [11–20].Recently,there were two effective methods for the synthesis of organosilicon compounds from hydrosilanes [21] or Si–X (X=Si [22],B [23],COOH [24]) reagents with alkenes,alkynes and arenes [25].Among them,it was an atom-economical silylated approachviahomolytic cleavage of Si–H bonds in hydrosilanes to generate silyl radicals.The archetypical way was thermo-promoted peroxide decomposition to trigger silyl radicals [26].The second protocol was electron induced peroxide to initiate silyl radicals,the electron donors including transition-metal[27–29],TBAI [30] and photocatalyst [31].The third way was that alkali initiated silyl radicals [32].Although there have been significant advances,some methods suffered from harsh conditions or poor group compatibility,which would drive to find new strategies of triggering silyl radicals.

    Fig.1.Special examples of silicon-containing active molecules (I-V) and indolo[2,1-a]isoquinoline derivatives (VI-VIII).

    Photoredox catalysis [33–44] has appeared as a attractive protocol for silyl radicals generation via hydrogen atom transfer (HAT)of Si–H bonds [45–48].Fagnoniet al.pioneered the tetrabutylammonium decatungstate (TBADT) as HAT photo-catalyst for trisubstituted silanes activation under phosphor-coated lamps irradiated by 310 nm [49].Unfortunately,due to the comparably high bond dissociation energies (BDEs) of Si–H andα–Si–C–H bonds in alkyl-substituted silanes (e.g.,triethylsilane) [50],the HAT process initiated simultaneously the cleavage of Si–H andα–Si–C–H bonds.So the selectivity of HAT catalyst for Si-H bonds was poor.For achieving the desired HAT of Si–H bonds,it is necessary that using “aggressive” radicals to break the BDEs of Si–H bonds [51],hence the process is thermodynamically favorable.For instance,an electrophotocatalytic HAT process was developed for silyl radicals generation using MeOH as HAT reagent [52].This work confirmed that hydrogen atom abstraction could be achieved by “aggressive” MeO?(BDEO–H=105 kcal/mol).Wuet al.developed an effective method for silyl radicals formation employing 3-acetoxyquinuclidine or triisopropyl-silanethiol as HAT reagent [53].This also showed the feasibility of hydrogen atom abstraction by“aggressive” N+?(BDEN+–H=100 kcal/mol) or S?(BDES–H=88.2 kcal/mol).What is more,because hydrogen is more electronegative than silicon in hydrosilanes,according to the polarity-matched effect [54],the electrophilic radical (e.g.,O?,N+?,S?) could be used to selectively abstract hydrogen of Si–H bonds in hydrosilanes rather thanα–Si–C–H bonds.

    (TMS)3SiH was an ideal reagent in radical chemistry,which was used in many tris(trimethylsilyl)silylation or conversion processes.Because (TMS)3SiH has noα–Si–C–H bond and BDESi–His relatively low,(TMS)3Si?radical could be initiatedviahydrogen atom abstraction by HAT reagent,single electron oxidation of (TMS)3SiH by PC?and then deprotonation [55],phosphor coating fluorescent lamp and UV light irradiation [49,56-58],etc.[59,60].However,only two examples were reported that (TMS)3Si?radical was producedviaformation an electron-donor-acceptor (EDA) complex with alkyl or aryl halide to abstract halogen under visible light irradiation [61,62].

    Indolo[2,1-a]isoquinolines containing the tetracyclic skeleton are widely found in bioactive and pharmaceutical molecules(VI-VIII,Fig.1) [63–69].Due to the potential of silicon incorporation in drug discovery,it is of great significance for the synthesis of silylated indolo[2,1-a]isoquinoline compounds.So far,few cases of synthesis have been reported,including Cu(acac)2/TBPB-initiated triethylsilyl radical cascade cyclization(Scheme 1a) [70],cerium-electrophotocatalyzed methoxyl radicalmediated triethylsilyl radical cascade cyclization (Scheme 1b) [52],and palladium-catalyzed cascade cyclization with hexamethyldisilane [71] or Me3SiSiMe2(OnBu) (Scheme 1c) [72].Despite significant advances,the fly in the ointment was that these examples were heating conditions,besides,there were one or more shortcomings,such as stoichiometric oxidant,poor atom economy,preactivation of substrates and expensive transition-metal catalysts.

    Scheme 1.Different protocols for the synthesis of silylated indolo[2,1-a]isoquinoline-6(5H)-ones.

    Taking into account the above aspects and our continuing interest in the preparation of heterocyclic molecules under visible light conditions [73–79],herein we report photocatalytic HAT selectively initiated silyl radicals cascade cyclization for the synthesis of silylated indolo[2,1-a]isoquinoline compounds.In addition,the simpler and greener cascade cyclization using (TMS)3SiH was exploitedvianovel EDA complex,the tris(trimethylsilyl)silylated indolo[2,1-a]isoquinolines can be obtained successfully under visible light irradiation even in the absence of photocatalyst and HAT catalyst (Scheme 1d).

    Preliminary research was investigated by 1-(2,3-diphenyl-1Hindol-1-yl)-2-methylprop-2-en-1-one (1a) and triethyl-silane (2a)as model reaction substrates,and the outcomes were summarized in Table 1 and Tables S1-S5 (Supporting information).After screening these detailed conditions,it was found that the optimal choice including 0.1 mmol of1a,10 equiv.of2a,10 mol% of PC1,and 12.5 mol% of HAT cat.1in 2 mL dry MeCN under 10 W blue LEDs irradiation at room temperature for 30 h.And the target product3awas isolated with a yield of 70% under the optimal conditions.

    Table 1 Optimization of reaction conditions.a

    Having confirmed the optimal reaction conditions,we next evaluated the scope of 2-aryl-N-acryloyl indoles (Scheme 2).For example,substrates containing electron-withdrawing groups (F-,Cl-,CN-,and CF3O-) at C5-position of indole ring could yield the desired products3b-3ein 42%-53% yields.Electron-donating groups (Me-,Et-,andiPr-) were also good compatibility,giving the expected products3f-3hwith yields of 53%-65%.

    Scheme 2.Scope of 2-aryl-N-acryloyl indoles.Reaction conditions: 1 (0.1 mmol), 2a (1 mmol),PC 1 (10 mol%),HAT cat. 1 (12.5 mol%),dry MeCN (2 mL),10 W blue LEDs,N2,r.t.,30 h.Isolated yields.

    We next inspected the scope of hydrosilanes (Scheme 3).Under optimal conditions,arylsubstituted silanes such as triphenylsilane,diphenylmethylsilane and phenyldimethylsilane could be gave the desired products3k(proved by X-ray crystallography),3land3min 42%-55% yields.Trialkylsilanes showed good selectivity to afford the desired products3n-3qin 54%-66% yields,whereas the competing reaction of the C–H adjacent to silicon was not observed.Moreover,2-aryl-N-acryloyl indoles and hydrosilanes could also combine freely to make new products,such as substrates1cand triphenylsilane worked smoothly.But the synthesis of triethoxysilylated product3swas failed,presumably because the BDE of Si-H bond in triethoxysilane is high.

    Scheme 3.Scope of hydrosilanes.Reaction conditions: 1a or 1c (0.1 mmol), 2 (1 mmol),PC (DCA,10 mol%),HAT cat. 1 (12.5 mol%),dry MeCN (2 mL),10 W blue LEDs,N2,r.t.,30 h.Isolated yields.

    We further found that 2-aryl-N-acryloyl indoles could successfully react with (TMS)3SiH under 10 W blue LEDs irradiation(Scheme 4).The reaction conditions were optimized and displayed in Tables S6-S9 (Supporting information).Under the optimized reaction conditions,expected products3t(confirmed by X-ray crystallography),3u-3w,3yfrom F-,Cl-,Br-,and CF3O-groups located at C4-or C5-position of indole ring could be gained with moderate yields of 50%-66%.The 6,7-dichloro substituted product was also obtained,although the product3xwith a low yield.Electrondonating groups (5-methyl,5-isopropyl,4,6-dimethyl) were tolerated,giving the desired products (3aa,3ab,3ac) in 58%-69% yields.

    Scheme 4.Scope of reaction between 2-aryl-N-acryloyl indoles and (TMS)3SiH.Reaction conditions: 1 (0.1 mmol), 2 (1 mmol),dry EtOHb or MeCNc (1 mL),10 W blue LEDs,N2,r.t.,30 h.Isolated yields.

    The synthetic application of compound3twas presentedviafurther transformations (Scheme 5).Reduction of3twas investigated,the carbonyl group could be reduced to obtain compound5in 60% yield.Desilylation of the tri(trimethylsilyl)silyl group in3twas performed with Bu4NF (TBAF) to give a disilane product6in 38% yield under microwave irradiation.

    Scheme 5.Synthetic transformations of 3t.

    To explore the reaction mechanism,control experiments were implemented.The photocatalytic reaction was completely restrained while adding 2 equiv.of TEMPO under the standard conditions.Similarly,the reaction was conducted in the presence of BHT or 1,1-diphenylethane,the yield of3awas significantly reduced(Fig.2a),which demonstrated that a radical process might be involved.Furthermore,the BHT-trapped product7was detected by HRMS.Besides,no reaction happened while employing deuterated diphenylmethyl silane (Ph2MeSiD) (Fig.2b).Such a significant kinetic isotope effect (KIE) suggested that the rate-determining step involved the cleavage of the Si–H bonds.The H2was monitored by H2detector and GC under standard conditions (Fig.S4 in Supporting information).“On/off” experiments indicated that visible light played an important role (Fig.2c).In addition,Stern-Volmer fluorescence quenching experiments demonstrated that the excitedstate DCA?was quenched by HAT cat.1(Figs.2d and e) through single electron transfer (SET) process.

    Fig.2.Mechanistic investigations.(a) Radical trapping experiment;(b) Investigation of the KIE;(c) ON/off experiments;(d) Fluorescence quenching experiment (DCA (1 μmol/L in MeCN) with different concentration of HAT cat. 1 were irradiated by 365 nm);(e) Stern-Volmer plot of HAT cat. 1.

    On the basis of the above mechanistic investigations,a plausible mechanism was proposed,as depicted in Fig.3a.Initially,DCA was excited to produce the long-life photoexcited-state DCA?(t=14.9 ns) [80].The reductive quenching of DCA?=+1.97 Vvs.SCE in MeCN] [81] by 3-acetoxyquinuclidine (Ep=+1.22 Vvs.SCE in MeCN) [82] leaded to the radical anionAand a radical cation intermediateB.Due to its high electrophilicity,quinuclidinium radical cationBselectively abstracted the hydrogen atom from the more hydridic Si-H bonds of hydrosilanes to produce the corresponding silyl radicalC,as well as quinuclidinium cationD.This abstraction event should be thermosdynamically favorable because the BDESi–Hof hydrosilanes was up to 94.6 kcal/mol and the BDEN+–Hin quinuclidinium cationDwas 100 kcal/mol.Subsequently,a carbon-centered radical intermediateEwas generated by the addition of the silylic radicalCto the C=C bond of the indole substrate1a,then the radical intermediateEwas cyclizedvia6-exo-trigpathway to afford the radical intermediateF.Afterwards,the single-electron oxidation process ofFandA[E1/2(P/P–)=–0.97 Vvs.SCE in MeCN] [81] occurred simultaneously to give the cationGand regenerate the DCA.In this process,there was sufficient driving forces to yield H2through the reduction of two protons[83,84].Finally,the deprotonation of the cationGgave the silylated product3.

    Fig.3.Proposed reaction mechanism for the formation of silylated indolo[2,1-a]isoquinoline-6(5H)-ones.

    Fig.4.1H NMR experiments between 1c and 4.

    Particularly,controlled experiments were performed to study the mechanism of the reaction that1creact with (TMS)3SiH (4)under the photoinduced conditions in Scheme 4.The product3twas fully inhibited when 2 equiv.of TEMPO was added.Meanwhile,the BHT or 1,1-diphenylethane was added,the yield of3twas decreased (Section 4.1 in Supporting information),which demonstrated a radical pathway might also be involved.With the reaction proceeded,the color of the solution became yellow gradually,the H2was observed clearly and the concentration increased gradually (Fig.S5 in Supporting information).Subsequently,“on/off” LED irradiation experiments also showed that visible light played a key role in the reaction (Fig.S6b in Supporting information).We tested optical absorption of the EtOH solution of1cand4,it was not observed the red-shift or new absorption peak in the UV-vis absorption spectra (Fig.S8 in Supporting information).Next,we conducted1H NMR experiments,and the chemical shift of4shifted downfield with increasing amounts of1c(Fig.4).These experimental results showed the formation of EDA complexes from 2-aryl-N-acryloyl indoles1with4.So the (TMS)3Si?radical could be formed by excited EDA complexes and an energy transfer under blue LEDs irradiation (Fig.3b).The remaining mechanism including (TMS)3Si?radical addition and cascade cyclization was the same as described in Fig.3a.It was worth noting that the single electron oxidation ofF’was accompanied by the reduction of protons.

    In summary,we developed green and simple photocatalytic and photoinduced silyl radicals cascade cyclization protocols for the synthesis of silylated indolo[2,1-a]-isoquinoline-6(5H)-ones.The photocatalytic procedure was conducted in the presence of DCA as photocatalyst and 3-acetoxyquinuclidine as HAT catalyst.To implement the desired silylation,the reductive quenching of DCA?by HAT catalyst,the abstraction hydrogen using “aggressive” radical were necessary,and the polaritymatched effect was also the key factor in success.The simple photoinduced method achieved the straightforward preparation of tris(trimethylsilyl)silylated indolo[2,1-a]-isoquinoline-6(5H)-onesviaEDA complex.These two facile and greener procedures have the advantages including high atomic economy,H2as by-product,metal-free,oxidant-free,easy operation,and mild reaction conditions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research was supported by the Tianshan Talents Program for Leading Talents in Science and Technology Innovation (No.2022TSYCLJ0016),the National Natural Science Foundation of China(Nos.21961037 and 22201241),the Program for Tianshan Innovative Research Team of Xinjiang Uygur Autonomous Region (No.2021D14011),the Graduate Innovation Project of Xinjiang Uygur Autonomous Region (No.XJ2021G036),the Key Program of Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01D06),and the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Nos.2021D01E10 and 2022E01042).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108633.

    91av网一区二区| 一级毛片电影观看 | 久久99热6这里只有精品| 中文字幕久久专区| 人体艺术视频欧美日本| 国产不卡一卡二| 在线观看美女被高潮喷水网站| 午夜激情福利司机影院| 中文字幕久久专区| 国产三级中文精品| 97在线视频观看| 老司机影院成人| 久久人妻av系列| av天堂中文字幕网| 久久这里只有精品中国| 91久久精品国产一区二区成人| 韩国av在线不卡| 国产激情偷乱视频一区二区| 亚洲精品亚洲一区二区| 久久久久久国产a免费观看| 禁无遮挡网站| 亚洲av成人精品一区久久| 精品国产一区二区三区久久久樱花 | av国产免费在线观看| 欧美性猛交╳xxx乱大交人| 一级黄片播放器| 99久久精品一区二区三区| 国产免费一级a男人的天堂| 男人舔女人下体高潮全视频| 亚洲av电影在线观看一区二区三区 | 亚洲av成人av| 国产精品久久久久久精品电影小说 | 国产伦一二天堂av在线观看| 久久久午夜欧美精品| 天堂√8在线中文| 免费观看的影片在线观看| 中文在线观看免费www的网站| 国产成人freesex在线| 三级国产精品欧美在线观看| 成人高潮视频无遮挡免费网站| 中文字幕熟女人妻在线| 中国国产av一级| av视频在线观看入口| 嫩草影院入口| 韩国av在线不卡| 久久人人爽人人片av| 国产乱人偷精品视频| 国产淫语在线视频| 国产成人精品一,二区| 中文字幕人妻熟人妻熟丝袜美| 乱码一卡2卡4卡精品| 久久久精品大字幕| 国产淫语在线视频| 一个人看视频在线观看www免费| 三级经典国产精品| 国产精品一区二区性色av| 中文欧美无线码| 日日撸夜夜添| 听说在线观看完整版免费高清| 亚洲国产最新在线播放| 51国产日韩欧美| 直男gayav资源| 国产在线男女| 成人亚洲欧美一区二区av| 2022亚洲国产成人精品| 久久久久久伊人网av| 97在线视频观看| 天天躁日日操中文字幕| 51国产日韩欧美| 国产综合懂色| 亚洲欧美成人精品一区二区| 九九在线视频观看精品| 午夜免费男女啪啪视频观看| 日韩 亚洲 欧美在线| 一区二区三区四区激情视频| 国产极品精品免费视频能看的| 人人妻人人澡人人爽人人夜夜 | 国产精品久久视频播放| 精品人妻熟女av久视频| 18禁动态无遮挡网站| 真实男女啪啪啪动态图| 天堂av国产一区二区熟女人妻| 国产毛片a区久久久久| 国产爱豆传媒在线观看| www.色视频.com| or卡值多少钱| 亚洲欧美清纯卡通| 男人狂女人下面高潮的视频| 国产精品电影一区二区三区| 黄色日韩在线| 午夜福利在线在线| 超碰av人人做人人爽久久| 欧美成人免费av一区二区三区| 少妇熟女aⅴ在线视频| 精品久久久久久久久亚洲| 日韩av在线大香蕉| 亚洲丝袜综合中文字幕| 亚洲国产精品sss在线观看| 日日干狠狠操夜夜爽| 国产91av在线免费观看| 日本黄大片高清| 日本猛色少妇xxxxx猛交久久| 最近的中文字幕免费完整| 91精品一卡2卡3卡4卡| 亚洲欧美精品专区久久| 久久精品久久精品一区二区三区| 亚洲人成网站高清观看| 人妻夜夜爽99麻豆av| 一级毛片电影观看 | 国产精品久久视频播放| 视频中文字幕在线观看| 乱系列少妇在线播放| 极品教师在线视频| 国产精品电影一区二区三区| 成人综合一区亚洲| 亚洲久久久久久中文字幕| 舔av片在线| 两个人视频免费观看高清| 国产精品久久视频播放| 亚洲四区av| 男人的好看免费观看在线视频| 国产精品伦人一区二区| 免费人成在线观看视频色| 网址你懂的国产日韩在线| 自拍偷自拍亚洲精品老妇| 亚洲熟妇中文字幕五十中出| 亚洲高清免费不卡视频| 韩国高清视频一区二区三区| 成人一区二区视频在线观看| 老司机影院毛片| 日韩欧美精品v在线| 男女边吃奶边做爰视频| 禁无遮挡网站| 久久精品国产亚洲av天美| .国产精品久久| 亚洲国产欧洲综合997久久,| 又爽又黄无遮挡网站| 欧美最新免费一区二区三区| 男女国产视频网站| 亚洲久久久久久中文字幕| 精品熟女少妇av免费看| 天堂√8在线中文| 三级国产精品片| 人妻制服诱惑在线中文字幕| 九九久久精品国产亚洲av麻豆| 一区二区三区乱码不卡18| 国产精品电影一区二区三区| 亚洲av成人精品一二三区| 国语对白做爰xxxⅹ性视频网站| 丝袜喷水一区| 天天躁夜夜躁狠狠久久av| 亚洲一级一片aⅴ在线观看| 美女内射精品一级片tv| 久久久精品大字幕| 亚洲中文字幕一区二区三区有码在线看| 黑人高潮一二区| 久久久久性生活片| 成年女人看的毛片在线观看| 91久久精品国产一区二区三区| 亚洲av不卡在线观看| 美女脱内裤让男人舔精品视频| 国产精品日韩av在线免费观看| 久久精品国产99精品国产亚洲性色| h日本视频在线播放| 97超视频在线观看视频| 国产国拍精品亚洲av在线观看| 午夜精品在线福利| 国内精品一区二区在线观看| 国产精品一及| 国产精品一二三区在线看| 国产白丝娇喘喷水9色精品| 亚洲自偷自拍三级| 一卡2卡三卡四卡精品乱码亚洲| 精品酒店卫生间| 国产亚洲91精品色在线| 成人鲁丝片一二三区免费| 人体艺术视频欧美日本| 高清av免费在线| 日本av手机在线免费观看| 1000部很黄的大片| 看非洲黑人一级黄片| 床上黄色一级片| 非洲黑人性xxxx精品又粗又长| 成人高潮视频无遮挡免费网站| 亚洲av男天堂| 国产乱来视频区| 亚洲经典国产精华液单| 亚洲最大成人av| av线在线观看网站| 国产精品福利在线免费观看| 免费观看的影片在线观看| 久久久久免费精品人妻一区二区| 亚洲国产欧美在线一区| 国产精品久久电影中文字幕| av在线观看视频网站免费| 国产精品久久视频播放| 国产亚洲精品av在线| 免费播放大片免费观看视频在线观看 | 精品久久久久久久末码| 久久精品熟女亚洲av麻豆精品 | 国产高清视频在线观看网站| 欧美高清性xxxxhd video| 中文天堂在线官网| 男人的好看免费观看在线视频| 日日摸夜夜添夜夜添av毛片| 九色成人免费人妻av| 欧美极品一区二区三区四区| 国产三级中文精品| 精品欧美国产一区二区三| 免费看光身美女| 亚洲av成人av| 又爽又黄a免费视频| 国产精品国产三级专区第一集| 成人午夜高清在线视频| 日韩在线高清观看一区二区三区| 久久精品影院6| 欧美另类亚洲清纯唯美| 2021天堂中文幕一二区在线观| 一区二区三区乱码不卡18| 久久亚洲国产成人精品v| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 嫩草影院精品99| 级片在线观看| 色噜噜av男人的天堂激情| 国产精品美女特级片免费视频播放器| 在线观看66精品国产| 国产精品爽爽va在线观看网站| 99久久成人亚洲精品观看| 2022亚洲国产成人精品| 2021少妇久久久久久久久久久| 伊人久久精品亚洲午夜| 国产高清国产精品国产三级 | 中国国产av一级| 国产色爽女视频免费观看| 深夜a级毛片| 在现免费观看毛片| 99视频精品全部免费 在线| 激情 狠狠 欧美| 丝袜喷水一区| 九九久久精品国产亚洲av麻豆| 建设人人有责人人尽责人人享有的 | 免费电影在线观看免费观看| 美女高潮的动态| 成人毛片60女人毛片免费| 99久久无色码亚洲精品果冻| 不卡视频在线观看欧美| 最近视频中文字幕2019在线8| av黄色大香蕉| 搡女人真爽免费视频火全软件| 久久人人爽人人片av| 精品熟女少妇av免费看| 丰满少妇做爰视频| 伦理电影大哥的女人| 久久久精品94久久精品| 亚洲天堂国产精品一区在线| 国产一区二区在线观看日韩| 男人狂女人下面高潮的视频| 男人舔奶头视频| 午夜福利视频1000在线观看| 色网站视频免费| 校园人妻丝袜中文字幕| 91精品一卡2卡3卡4卡| av免费在线看不卡| 国产精品久久久久久久久免| 久久热精品热| 国产淫片久久久久久久久| 99久久九九国产精品国产免费| 精品久久久久久久久av| 亚洲精品乱码久久久v下载方式| 久久久亚洲精品成人影院| 国语对白做爰xxxⅹ性视频网站| 欧美+日韩+精品| 精品久久国产蜜桃| 十八禁国产超污无遮挡网站| 日韩精品有码人妻一区| 国产精品伦人一区二区| 黄片无遮挡物在线观看| 一级黄片播放器| av在线蜜桃| 嫩草影院入口| 国产精品国产高清国产av| or卡值多少钱| 波多野结衣巨乳人妻| 国产精品国产三级国产av玫瑰| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看| 成人性生交大片免费视频hd| 日本黄色视频三级网站网址| 美女内射精品一级片tv| 伦理电影大哥的女人| 亚洲av电影在线观看一区二区三区 | 国产精品熟女久久久久浪| 国产精品一区二区三区四区免费观看| 一个人免费在线观看电影| 国产探花在线观看一区二区| 日韩三级伦理在线观看| 日本一本二区三区精品| 国产成人91sexporn| 欧美成人精品欧美一级黄| 久久精品人妻少妇| 精品人妻熟女av久视频| 久久热精品热| 久99久视频精品免费| 日韩欧美在线乱码| 少妇丰满av| 18禁在线无遮挡免费观看视频| 日韩欧美国产在线观看| 日本黄大片高清| 噜噜噜噜噜久久久久久91| 国产精品蜜桃在线观看| 三级男女做爰猛烈吃奶摸视频| 久久人人爽人人爽人人片va| 少妇人妻精品综合一区二区| 一个人看视频在线观看www免费| 草草在线视频免费看| 欧美色视频一区免费| 日韩在线高清观看一区二区三区| eeuss影院久久| 一本一本综合久久| 直男gayav资源| 边亲边吃奶的免费视频| 嫩草影院新地址| 午夜久久久久精精品| 男人舔奶头视频| 美女xxoo啪啪120秒动态图| 91精品国产九色| 中文字幕av成人在线电影| 99久久精品国产国产毛片| 波野结衣二区三区在线| 搡老妇女老女人老熟妇| 久久人妻av系列| 国内精品美女久久久久久| 国产亚洲91精品色在线| 2021少妇久久久久久久久久久| 亚洲av成人精品一区久久| 午夜福利在线在线| 色播亚洲综合网| 国产精品麻豆人妻色哟哟久久 | 久久热精品热| or卡值多少钱| 国产一区亚洲一区在线观看| 亚洲国产精品成人久久小说| 天堂av国产一区二区熟女人妻| 午夜日本视频在线| 国模一区二区三区四区视频| 日韩一区二区视频免费看| 国产精品.久久久| 中文精品一卡2卡3卡4更新| av女优亚洲男人天堂| 免费一级毛片在线播放高清视频| 久久久午夜欧美精品| 一个人观看的视频www高清免费观看| 中文字幕人妻熟人妻熟丝袜美| 婷婷色麻豆天堂久久 | 夜夜爽夜夜爽视频| 欧美日韩在线观看h| 亚洲va在线va天堂va国产| 秋霞伦理黄片| 国产真实伦视频高清在线观看| 欧美激情在线99| 精品久久久噜噜| 人人妻人人澡欧美一区二区| 亚洲国产最新在线播放| 赤兔流量卡办理| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区三区视频在线| 国产免费男女视频| av又黄又爽大尺度在线免费看 | 国产成人freesex在线| 97超视频在线观看视频| 国产单亲对白刺激| 一个人看视频在线观看www免费| 老师上课跳d突然被开到最大视频| 亚洲av成人精品一区久久| 国产精品无大码| 日韩亚洲欧美综合| 97超碰精品成人国产| 日本wwww免费看| 久久精品夜色国产| 国产精品一区二区在线观看99 | 国内少妇人妻偷人精品xxx网站| 亚洲成人中文字幕在线播放| 亚洲最大成人手机在线| 欧美日韩国产亚洲二区| 国产精品一及| 午夜激情欧美在线| 黄色配什么色好看| 黑人高潮一二区| 一区二区三区免费毛片| 男女那种视频在线观看| 天堂中文最新版在线下载 | 国产一级毛片在线| 夜夜看夜夜爽夜夜摸| 69人妻影院| 成人欧美大片| 婷婷六月久久综合丁香| 国产乱来视频区| av.在线天堂| 少妇裸体淫交视频免费看高清| 亚洲三级黄色毛片| eeuss影院久久| 国产精品美女特级片免费视频播放器| 亚洲av二区三区四区| 亚洲av一区综合| 久久久精品大字幕| 日本午夜av视频| 最近的中文字幕免费完整| 国产熟女欧美一区二区| 国产黄片视频在线免费观看| 久久久欧美国产精品| 日韩大片免费观看网站 | 人人妻人人澡人人爽人人夜夜 | 成人av在线播放网站| 久久热精品热| 国产一级毛片在线| 日本wwww免费看| 国产色爽女视频免费观看| av又黄又爽大尺度在线免费看 | 亚州av有码| 亚洲三级黄色毛片| av在线天堂中文字幕| 搞女人的毛片| 欧美成人一区二区免费高清观看| 99视频精品全部免费 在线| 男人和女人高潮做爰伦理| 麻豆久久精品国产亚洲av| 国产精品嫩草影院av在线观看| 精品一区二区三区人妻视频| 日韩一区二区三区影片| 亚洲国产精品sss在线观看| 精品久久久久久成人av| 美女黄网站色视频| 国产探花在线观看一区二区| 深爱激情五月婷婷| 国产白丝娇喘喷水9色精品| 亚洲欧美清纯卡通| 欧美一区二区精品小视频在线| 人妻系列 视频| 91av网一区二区| 别揉我奶头 嗯啊视频| 美女国产视频在线观看| 99热精品在线国产| 一级二级三级毛片免费看| 大香蕉久久网| 午夜福利在线观看吧| 亚洲av日韩在线播放| 最近的中文字幕免费完整| 黄片无遮挡物在线观看| 国产av一区在线观看免费| 国产一区亚洲一区在线观看| 免费av观看视频| 亚洲av一区综合| 亚洲成色77777| 亚洲精品国产av成人精品| 日本黄大片高清| 韩国av在线不卡| 日本午夜av视频| videos熟女内射| 在线免费观看的www视频| 啦啦啦韩国在线观看视频| 噜噜噜噜噜久久久久久91| 久久这里有精品视频免费| 久久久亚洲精品成人影院| 麻豆av噜噜一区二区三区| 91av网一区二区| 级片在线观看| 色哟哟·www| 欧美激情国产日韩精品一区| 一个人观看的视频www高清免费观看| 亚洲电影在线观看av| 人妻少妇偷人精品九色| 日韩av不卡免费在线播放| 亚洲va在线va天堂va国产| 国产高清不卡午夜福利| 97超视频在线观看视频| 激情 狠狠 欧美| 日本一本二区三区精品| 少妇人妻一区二区三区视频| 国产精品一二三区在线看| av在线蜜桃| 毛片女人毛片| av福利片在线观看| 日本免费a在线| 水蜜桃什么品种好| 国内精品美女久久久久久| 国产精品久久久久久av不卡| 波多野结衣巨乳人妻| 亚洲精品色激情综合| 高清毛片免费看| 男女啪啪激烈高潮av片| 国产淫片久久久久久久久| 亚洲成人av在线免费| 少妇裸体淫交视频免费看高清| 欧美高清成人免费视频www| 精品国产三级普通话版| 少妇熟女欧美另类| 国产免费一级a男人的天堂| 我要看日韩黄色一级片| 欧美潮喷喷水| 亚洲精品色激情综合| 欧美高清性xxxxhd video| 91av网一区二区| 免费黄色在线免费观看| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影小说 | 国产精品一区二区三区四区久久| 97超碰精品成人国产| 少妇猛男粗大的猛烈进出视频 | 欧美日韩一区二区视频在线观看视频在线 | www日本黄色视频网| 尤物成人国产欧美一区二区三区| 长腿黑丝高跟| 成人高潮视频无遮挡免费网站| 午夜免费激情av| 只有这里有精品99| 精品人妻一区二区三区麻豆| 成人特级av手机在线观看| 国产毛片a区久久久久| av女优亚洲男人天堂| 成人三级黄色视频| 成人综合一区亚洲| 日韩成人av中文字幕在线观看| 99视频精品全部免费 在线| 久久精品国产亚洲网站| 精品久久久久久电影网 | 91久久精品国产一区二区成人| 国产成人精品久久久久久| 麻豆av噜噜一区二区三区| 我的女老师完整版在线观看| kizo精华| 日本一二三区视频观看| 久久99蜜桃精品久久| av在线老鸭窝| 欧美性猛交╳xxx乱大交人| 国产av码专区亚洲av| 麻豆乱淫一区二区| 久久久久久久久大av| 看黄色毛片网站| 97热精品久久久久久| 男人舔奶头视频| 尤物成人国产欧美一区二区三区| a级毛片免费高清观看在线播放| 亚洲成色77777| 最近2019中文字幕mv第一页| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产欧洲综合997久久,| 欧美+日韩+精品| 久久久色成人| 日韩中字成人| 看片在线看免费视频| 91精品伊人久久大香线蕉| 日韩一本色道免费dvd| 亚洲美女搞黄在线观看| 亚洲精品国产成人久久av| 国产老妇女一区| a级毛色黄片| 亚洲精品色激情综合| 熟妇人妻久久中文字幕3abv| 在现免费观看毛片| 日韩中字成人| 亚洲人成网站在线观看播放| 欧美成人a在线观看| 亚洲精品亚洲一区二区| 亚洲国产精品国产精品| 青春草亚洲视频在线观看| 日本-黄色视频高清免费观看| 成人二区视频| 国产一区二区在线av高清观看| 国产毛片a区久久久久| 久久精品夜色国产| 亚洲av男天堂| 久久精品国产亚洲av涩爱| 性插视频无遮挡在线免费观看| 汤姆久久久久久久影院中文字幕 | 成人一区二区视频在线观看| 日日干狠狠操夜夜爽| 日韩av不卡免费在线播放| 色尼玛亚洲综合影院| 舔av片在线| 你懂的网址亚洲精品在线观看 | av又黄又爽大尺度在线免费看 | 国产精品精品国产色婷婷| 99视频精品全部免费 在线| 欧美丝袜亚洲另类| 国产精品一区二区三区四区久久| 久久鲁丝午夜福利片| 午夜爱爱视频在线播放| 日韩制服骚丝袜av| 国产精品99久久久久久久久| 老司机影院成人| 日本wwww免费看| 亚洲,欧美,日韩| 精品一区二区三区视频在线| 亚洲怡红院男人天堂| 亚洲国产日韩欧美精品在线观看| 国产精品嫩草影院av在线观看| 成人国产麻豆网| 人人妻人人看人人澡| 国产亚洲av嫩草精品影院| 3wmmmm亚洲av在线观看| 免费av观看视频| 亚洲最大成人手机在线| 亚洲av成人精品一二三区| 91精品一卡2卡3卡4卡| 中文乱码字字幕精品一区二区三区 | 天堂√8在线中文| 国产黄片美女视频| 亚洲一区高清亚洲精品| 国产av不卡久久| 老司机影院毛片| 成人二区视频| a级毛片免费高清观看在线播放| 亚洲第一区二区三区不卡| 欧美成人精品欧美一级黄| 嫩草影院精品99|