• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microfluidic separation of particles by synergistic effect ofgeometry-induced hydrodynamics and magnetic field

    2024-04-05 02:28:30DuQioHongxiLiWeipingZhuLiliZhuDnyngZhoHonglinLi
    Chinese Chemical Letters 2024年2期

    Du Qio ,Hongxi Li,* ,Weiping Zhu ,Lili Zhu ,Dnyng Zho ,Honglin Li,c

    a Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education,Dalian University of Technology,Dalian 116023,China

    b Shanghai Key Laboratory of New Drug Design,School of Pharmacy,East China University of Science and Technology,Shanghai 200237,China

    c Lingang Lab,Shanghai 200031,China

    Keywords: Microfluidic Particle separation Synergistic effect Hydrodynamics Magnetic field Numerical calculation

    ABSTRACT Microfluidic combined with magnetic field have been demonstrated to be the promising solutions for fast and low-damage particles separation.However,the difficulties in the precise layout of magnets and accurate prediction of particle trajectories lead to under and over separation of target particles.A novel particle separation lab-on-chip (LOC) prototype integrated with microstructures and micropolar arrays is designed and characterized.Meanwhile,a numerical model for the separation of magnetic particles by the synergistic effect of geometry-induced hydrodynamics and magnetic field is constructed.The effect of geometry and magnetic field layout on particle deflection is systematically analyzed to implement accurate prediction of particle trajectories.It is found that the separation efficiency of magnetic particles increased from 50.2% to 91.7% and decreased from 88.6% to 85.7% in the range of depth factors from 15 μm to 27 μm and width factors from 30 μm to 60 μm,respectively.In particular,the combined effect of the offset distance of permanent magnets and the distance from the main flow channel exhibits a significant difference from the conventional perception.Finally,the developed LOC prototype was generalized for extension to arbitrary systems.This work provides a new insight and robust method for the microfluidic separation of magnetic particles.

    Precise separation of bioparticles from complex biofluids has been a landmark in the development of modern biological and medical applications,with rapidly expanding demand to date for de-laboratoryization in areas such as CAR-T cell immunotherapy[1],exosome-based disease diagnosis [2],and circulating tumor cell (CTC) enrichment [3].Recently,lab-on-chip (LOC) combined with microfluidic has shown potential for cell and particle separation [4-8] as an alternative to manual execution with high precision and efficiency.Meanwhile,active and passive microfluidic methods based on different dynamic mechanisms have been developed for the physical and biological properties of the target particles.

    Passive methods mostly achieve particle size-based separations using hydrodynamic effects induced by the geometric characteristics of microfluidic channels in LOC [9-12],such as hydrodynamic focusing [13,14],inertial migration [15,16],and deterministic lateral displacement [17].Geometry-induced hydrodynamic effects provide a simple solution for the separation of target particles.However,the inherent drawbacks of the hydrodynamics-induced particle attachment and low flexibility make it difficult to precisely manipulate the separation process and limit effective separation.As a complement to passive methods,active microfluidic separation [18-20] allows for more flexible control of motion paths to achieve separation process based on target particle biochemistry.In particular,the magnetic field-based operation provides an effi-cient way to separate particles without injury [21].Combining permanent magnets directly with the microfluidic channel by external connection [22-24] is the simplest implementation.Nevertheless,the complexity and sensitivity of the magnetophoretic system makes it difficult to find a balance between multi-impact factors,which leads to over and under deflection of target particles.Besides,manual adjustment of the permanent magnet distribution is unable to accurately predict the particle motion path,resulting in difficult and inefficient particle separation operations.There is no doubt that the layout of permanent magnets and the prediction of particle paths are essential for effective and accurate microfluidic particle separation.

    The constitutive equation of magnetic particle transport [25] is one of the effective approaches to the above problem,but it seems difficult to extend to magnetophoretic systems with arbitrary geometrical coupling due to the lack of magnetic field variation and hydrodynamic considerations so far.Multi-physics field computational modeling based on real systems demonstrates potential for magnetophoretic particle dynamics prediction [26-28].Outokeshetal.[29] proposed that particle multi-process sorting and enrichment be integrated into a numerical model for predicting the trajectories of particles inside droplets.Abhisheketal.[30] performed simultaneous separation operations on two different types of magnetic particles in a free-flow microchannel and numerically investigated the effects of operating parameters on particle separation and capture in a magnetophoretic system.Jiaetal.[31] proposed the use of curved comb structure combined with magnetophoresis technique to achieve size-based separation of magnetic particles.Although numerous useful results have been obtained in magnetophoretic separation of magnetic particles,most interest has focused on particle size-based manipulations.Considerably less attention has been paid to the efficient separation by using the synergistic effect of geometry-induced hydrodynamic and magnetic field to constrain the particle motion trajectory.The combination shows unprecedented potential for accurate particle separation,yet no relevant reports have been seen available.

    In this paper,a novel particle separation LOC prototype integrated with microstructures and micropolar arrays is designed and characterized.By designing the correspondence between microstructure and micropoles,the synergistic effect of magnetic field and geometry-induced hydrodynamics is cleverly achieved.Meanwhile,a numerical model for the separation of magnetic particles by the synergistic effect in a microfluidic channel is constructed using a multi-physics field coupled modeling technique.The effect of geometry and magnetic field layout on particle deflection is systematically analyzed to implement accurate prediction of particle trajectories and separation of magnetic particles.The system was finally generalized dimensionlessly to predict the particle trajectories in arbitrary systems.

    A Y-shaped sorting structure containing a microstructure and an array of micropoles is constructed as examining the synergistic effect of geometry-induced hydrodynamics and magnetic fields on particle separation is of primary interest.As shown in Fig.1,the inlet of the mixed particle sample shows a 90° angle with the inlet of the buffer solution,with flow rates ofV1=7.5×10-5m/s andV2=1.5×10-4m/s,respectively.A series of rectangular microstructures are integrated on one side of the main flow channel,and the geometric characteristics of the cells can be characterized by a width factorWand a depth factorh.Ldenotes the length of the separation area.W*indicates the flow channel width in the transition area andW*=40 μm.The square neodymium iron boron (Nd-FeB) micropole array withH=12 kA/m is integrated on the other side at a distancedfrom the main flow channel,with an initial position directly opposite the rectangular microstructure.Wmdenotes the width of the permanent magnet,andWm=40 μm.Woffdenotes the distance that the micropoles deviate from their initial position,one that will be discussed to investigate the effect of micropole layouts.The waste outlet and the target particle collection outlet are arranged downstream of the main flow channel with the same angle of 90°.The outlet widthWout=40 μm is kept the same as the inlet widthWin.

    Fig.1.Schematic diagram of geometry-induced hydrodynamic and magnetic field synergistic magnetophoretic separation.Fdrag denotes drag force,Fm denotes magnetic force,and Fwl denotes wall lift force.The dashed line indicates that the wall lift force only works when the particles are in contact with the wall.Fp is pressure gradient force.Fsl is saffman lift force.The Magnetization intensity of the micropole is H.The microchannel,magnet and particles are not drawn to scale.

    The local force balance of the two particles is shown in the detailed diagram.The operation claims effective separation only when the magnetic particle trajectory falls within the magnetophoretic width threshold [32].The density of magnetic particles is defined as 2200 kg/m3with the particle size is 4 μm,and the relative magnetic permeability of the particles is 2000.The density of non-magnetic particles is 1050 kg/m3with the particle size is 2 μm,and the relative magnetic permeability of the particles is 1.Separation efficiencyΨis defined as the ratio of the number of magnetic particlesPoexiting the target particle outlet to the total magnetic particlesPtot:

    As attention is focused on sparse flow,which is achieved in practical applications by a dilution step,the carrier phase affects the particle motion mainly by drag force,without enough inertia of the particles to significantly perturb the fluid.Therefore,other forces with second-order effects,e.g.,interparticle forces,particleto-fluid forces,are allowed to be ignored as their contribution to the present study is much less than the burdens [33].In addition,the magnetic field strength is sufficiently small that the temperature change caused by the magnetic field is neglected and the thermophoretic force is not taken into account in the controlling equation of particle motion.Considering such a system modeling,it is effective to first solve for the flow and magnetic fields and then calculate the trajectories of the discrete particles.The numerical implementation can be found in the supplementary data.Grid convergence analysis and model validation show that the present numerical model is a quantitative fit to the experiment,as shown in Figs.S1-S3 (Supporting information).

    The background magnetic field and the geometric-induced flow field characteristics are visually characterized,as shown in Fig.S4a (Supporting information).The flow velocity is affected by the fluid dynamics induced by the geometric features of the contraction and expansion.Considering only the flow effect,the particles will be moved near the microstructure side due to the laminar flow regime,which is influenced by the fluid drag forceFdragand the flow focusing effect of the sheath flow.When the centerline of the micropole coincides with that of the expansion region,the magnetic induction intensity is significantly focused and enhanced in the expansion region,and it is attenuated in the constriction region,as shown in the inset of Fig.S4b (Supporting information),which is called the orthogonal synergy effect.The velocity is minimized while the magnetic induction intensity is in the highest state.It can be expected that the flow velocity of magnetic particles decreases in the expansion region,while the magnetic field force is significant leading to a deflection of the motion path.The magnetic particles are accelerated by the traction force when they pass through the contracting region,where the magnetic field is relatively weak and only a small path deflection occurs.Non-magnetic particles still follow the flow field because they are not subject to magnetic field forces.

    The trajectory of the particles subjected to the synergistic effect of the magnetic field and the geometry-induced flow field is depicted as shown in Fig.S5a (Supporting information),an oscillatory deflection along the Y-direction occurs under the constraint of the contraction geometry and magnetic field force.Oscillatory flow characteristics extend the coupling time over a limited separation length while reducing sensitivity to inappropriate operating parameters.The non-magnetic particle exhibits oscillatory acceleration dynamics,as shown in Fig.S5b (Supporting information),which implicates that the separation of impurity particles can be accelerated by increasing the main channel length.On the other hand,it is expected that the velocity of magnetic particles has no significant fluctuations with the synergistic effect of geometryinduced hydrodynamics and magnetic field,which allows to the robust operation of the system.The fluctuations of the magnetophoretic force shows a similar trend to the distribution of the magnetic flux density (Fig.S4b),with the particles suffering the greatest magnetophoretic force at the outer edge of the micropolar array and decreasing rapidly after separation.

    Rectangular microstructures provide geometric constraints inducing specific hydrodynamics.First,the width factorW=40 μm is fixed and the trajectory of the magnetic particles is shown in Fig.2a whenh=15,20,25 and 27 μm.All snapshots are captured after 20 s of stable system operation.With the increase of depth factorh,the number of magnetic particles flowing out through the target particle collection outlet increases and the separation efficiency improves.The combination of the depth factor,which provides a geometric constraint on particle excursions in the Y-direction,and the geometry-induced hydrodynamics,which lengthens the particle’s travel distance and brings the particle closer to the strong magnetic field,enables particles with a wider distribution to obtain additional deflection capability.The magnetophoretic distribution width factorκis proposed to characterize the distribution width of magnetic particles in the outlet channel.κis defined as the ratio of the distribution range of magnetic particles parallel to the outlet channel cross-sectionWcto the outlet channel widthWout:

    Fig.2.(a) The instantaneous trajectory of magnetic particles after stable operation of the system for 20 s when h=15,20,25,and 27 μm.The red one indicates magnetic particles,and the blue one indicates non-magnetic particles.Effect of h on (b) magnetophoretic distribution width and (c) separation efficiency when W=20 μm,d=30 μm,and Woff=50 μm.The inset shows the distribution of the magnetic particle motion path at the outlet.

    As shown in Fig.2b,the magnetophoresis distribution width increases with increasinghand gradually tends to a constant value.Despite the fact that the increasinghwill lead to more efficient particle separation,the particles will be captured by the wall beyond a specific threshold.The trapped particles will accumulate on the wall under the magnetic field,which in turn decreases the magnetic particle separation efficiency [34].This conclusion can also be obtained from the inset of Fig.2b.Fig.2c demonstrates the variation of magnetic particle separation efficiency withh.It is clear that the separation efficiencyΨincreases from 50.2% to 91.7%with the increase ofhin the range of parameters studied.However,the contribution ofhto separation efficiency will no longer be significant whenh>25 μm,since a highhin practical applications leads to a narrow main channel width,which is prone to damage by aggregation and extrusion of particles or cells.

    Next,the depth factorh=20 μm is fixed and the trajectory of the magnetic particles is shown in Fig.3a whenW=30,40,50,and 60 μm.The number of particles exiting the target outlet decreases over the parameter range of width factorWfrom 30 μm to 60 μm.The geometry-induced hydrodynamics dominates the trajectory of the particles under the condition of largeWcompared to the magnetic field force,resulting in larger Y-directional excursions and longer particle motion distances.However,it is clear that the particle excursion is less sensitive toWcompared toh.Therefore,the hydrodynamics induced by the width factor is convenient to implement coupling with the magnetic field to separate the magnetic particles precisely.The magnetophoretic distribution width tends to decrease linearly with increasing width factorWwith low sensitivity.In the range of available parameters,Wincreases by 50%,whileκdecreases by only 13%.Unexpectedly,the effect ofWon the magnetophoretic distribution range demonstrates a different behavior from that ofh.The magnetophoretic distribution width tends to exhibit uniform boundary shrinkage with the exception ofW=50 μm when an increase inW,which is attributed to the numerical error.Simultaneously,we find that whenWreaches the threshold value,the separation efficiency remains approximately 85%,and the separation efficiency decreases sharply by 3% asWincreases from 30 μm to 40 μm.Nevertheless,it does not mean that the lower theW,the higher the separation efficiency.Because our study shows that the particles are strongly attached to the wall by the magnetic field whenWis reduced to 0 (i.e.,no microstructure and the width of the main flow channel is reduced to half of the present).

    Fig.3.(a) The instantaneous trajectory of magnetic particles after stable operation of the system for 20 s when W=30,40,50,and 60 μm.The red one indicates magnetic particles,and the blue one indicates non-magnetic particles.Effect of W on (b) magnetophoretic distribution width and (c) separation efficiency when h=20 μm,d=30 μm,and Woff=50 μm.The inset shows the distribution of the magnetic particle motion path at the outlet.

    In contrast to the orthogonal synergy,the offset synergy refers to the fact that the micropolar centerline is staggered by a specific offset distanceWofffrom the expansion region,rather than coinciding with the centerline of the expansion region.Here,we fix the depth factorhand the width factorWto investigate the effect of offset distanceWoffand the distance of permanent magnets from the main channeldon the particle separation efficiency.Fig.4 shows the variation curves of magnetophoretic distribution width factorκand particle separation efficiencyΨwith offset distance for variousd.We obtained similar conclusions as forhandW,where the magnetophoresis distribution width is in good agreement with the separation efficiency of magnetic particles.Over a certain range,both the magnetophoretic distribution width factorκand the magnetic particle separation efficiencyΨincrease with the increase of the offset distance.Instead,the separation efficiency decreases once a specific critical value is reached.Moreover,the critical value ofWoffincreases with the increase ofdfrom 29 μm to 31 μm.The decrease in the width of the magnetophoretic distribution in the studied parameter range was attributed to two factors.On the one hand,the offset distance is too large and the strong superimposed magnetic field acts on the contraction channel region.The high flow velocity of particles in the constriction channel with a short offset time fails to reach within the capture range of the collection channel.On the other hand,it is trapped on the wall by the magnetic field,which leads to a further reduction in the number of magnetic particles being separated.It is a consensus that the farther the permanent magnet is from the main channel,the smaller the offset distance of magnetic particles in the flow channel.Unexpectedly the offset synergistic effect of permanent magnet layout and geometry-induced hydrodynamics will instead overturn the conventional perception.It is possible to assume that there is an equilibrium value betweenWoffanddthat determines both the separation efficiency of the particles and the robust operation of the system.As shown in Fig.4b,the intersection of the three curves is the so-called equilibrium point,and the area filled by its conjunction has been filled with the base color to indicate the interval of stable system operation.

    Fig.4.Effect of Woff on (a) magnetophoretic distribution width and (b) separation efficiency when d=29,30,31 μm,W=40 μm and h=20 μm.The area filled by the base color shows the range of parameters for the stable operation of the system.

    Finally,the present model of magnetophoretic separation of particles is further generalized by dimensionless characterization of the system’s characteristic parameters.In this study,it is reasonable that the wall-induced lift is selectively ignored because the magnetic particles are separated before the range of allowable execution is reached.Besides,the virtual mass force only plays a significant role when the particle has a large acceleration,which is also neglected for the convenience of generalization.Therefore,the dominant forces acting on the particles include the drag forceFdrag,the Saffman lift forceFsland the magnetic field forceFm.With derivation and reasonable simplification,the velocity of the particle is expressed as:

    whereλ=μπ+krpkdenotes the velocity gradient in the microfluidic channel.χdenotes magnetic susceptibility andχ=μr-1.

    The magnetic field generated by a permanent magnet is scaled asH≈(d-y)2.When the distancedbetween the permanent magnet and the main channel is much larger than the width of the main channel with microstructure,dH2/dycan be expressed as

    Then,the offset timetoffaffected by the strong magnetic field can be approximated astoff=n·wherendenotes the number of permanent magnet,anddenotes average speed of magnetic particles,which is due to the properties induced by the geometric effects (as shown in the inset of Fig.S4b).Finally,the offset distance of the particle can be dimensionless as:

    where ?h=h/W*,εdenotes a dimensionless scaling constant.Scottetal.[35] show the detailed calculation procedure of the dimensionless scaling parameters.Similarly,εcan be given by the following equation:

    whereη==Woff/L.The lower wall surface of the main channel entrance is defined as the coordinate origin andn=5 in this study.The simulation result of the magnetic particle offset position is compared with the dimensionless model in good agreement as shown in Fig.5 whenh=20 μm.

    Fig.5.Dimensionless position yd plotted versus dimensionless design parameters.The theoretical model is plotted with a solid line and ε ≈0.025.

    In this study,a novel particle separation LOC prototype integrated with microstructures and micropolar arrays is designed and characterized.By designing the correspondence between microstructure and micropoles,the synergistic effect of magnetic field and geometry-induced hydrodynamics is cleverly achieved.The effect of geometry and magnetic field layout on particle deflection is systematically analyzed.With other factors constant,Ψincreases from 50.2% to 91.7% with increasinghand decreases from 88.6%to 85.7% with increasingWover the studied parameter range.Besides,Ψincreases when in the range of 10-60 μm forWoffand then decreases beyond a specific critical value.Unexpectedly,we found that in the range ofWoffparameters studied,dincreasing from 29 μm to 31 μm leads to an increase in particle separation efficiency instead,which is counterintuitive.It means that it is allowed to adjust the layout of the permanent magnets coupled with geometry-induced hydrodynamics to optimize the separation performance of the system.Furthermore,the dimensionlessness of the system allows the prediction of the offset distance of magnetic particles at arbitrary scales,with further expansion of the applicability of the system.It is foreseen that the synergistic effect of geometryinduced hydrodynamics and magnetic field provides a novel and robust approach that will be an attractive addition to microfluidic magnetic particle sorting methods.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.11502044,U1906233),the Fundamental Research Funds for the Central Universities (No.DUT22JC08),the Liaoning Province’s Xing Liao Talents Program (No.XLYC2002108)and the Dalian City Supports Innovation and Entrepreneurship Projects for High-level Talents (No.2021RD16).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108646.

    欧美黑人欧美精品刺激| 视频在线观看一区二区三区| 成年女人毛片免费观看观看9 | 超碰97精品在线观看| 美女午夜性视频免费| 欧美日韩中文字幕国产精品一区二区三区 | 一本综合久久免费| 亚洲伊人色综图| 亚洲精品国产精品久久久不卡| 老鸭窝网址在线观看| 老司机午夜十八禁免费视频| 女人爽到高潮嗷嗷叫在线视频| 日韩免费av在线播放| 欧美日本中文国产一区发布| 精品熟女少妇八av免费久了| 一级毛片高清免费大全| 好男人电影高清在线观看| 日本精品一区二区三区蜜桃| tocl精华| 少妇猛男粗大的猛烈进出视频| 成人特级黄色片久久久久久久| 一区二区日韩欧美中文字幕| 亚洲av欧美aⅴ国产| 中文字幕色久视频| a级毛片黄视频| 在线视频色国产色| 18禁美女被吸乳视频| 国产97色在线日韩免费| 老司机亚洲免费影院| 亚洲全国av大片| 老汉色∧v一级毛片| 欧美成人午夜精品| 老司机亚洲免费影院| 淫妇啪啪啪对白视频| 国产精品一区二区免费欧美| 9191精品国产免费久久| 国产99久久九九免费精品| 国内久久婷婷六月综合欲色啪| 伦理电影免费视频| 久久精品亚洲精品国产色婷小说| 亚洲第一av免费看| av网站免费在线观看视频| 精品欧美一区二区三区在线| 下体分泌物呈黄色| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 欧美中文综合在线视频| 国产精品免费视频内射| 国产免费av片在线观看野外av| 亚洲aⅴ乱码一区二区在线播放 | 好看av亚洲va欧美ⅴa在| 99国产极品粉嫩在线观看| 国产一区二区激情短视频| 亚洲av欧美aⅴ国产| 国产黄色免费在线视频| 国产av精品麻豆| 一个人免费在线观看的高清视频| 久久精品国产清高在天天线| 80岁老熟妇乱子伦牲交| 99精品欧美一区二区三区四区| 国产午夜精品久久久久久| 黑丝袜美女国产一区| 色精品久久人妻99蜜桃| 久久久久久久久免费视频了| 老熟女久久久| а√天堂www在线а√下载 | 亚洲av成人av| 久久久精品国产亚洲av高清涩受| 无限看片的www在线观看| 极品少妇高潮喷水抽搐| 99精品欧美一区二区三区四区| 五月开心婷婷网| 精品欧美一区二区三区在线| 久久亚洲真实| 性色av乱码一区二区三区2| 黄频高清免费视频| 久久99一区二区三区| 青草久久国产| 国产精品亚洲av一区麻豆| av电影中文网址| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆av在线久日| 制服人妻中文乱码| 午夜精品国产一区二区电影| 欧美黑人欧美精品刺激| 国产成人免费观看mmmm| 欧美不卡视频在线免费观看 | 欧美在线一区亚洲| 亚洲在线自拍视频| 亚洲少妇的诱惑av| 欧美精品人与动牲交sv欧美| 国产高清国产精品国产三级| 999久久久国产精品视频| 午夜福利在线免费观看网站| 亚洲avbb在线观看| 国产一区二区三区视频了| 欧美日本中文国产一区发布| 中文字幕色久视频| 美女国产高潮福利片在线看| 久久精品国产清高在天天线| 国产欧美日韩一区二区精品| 亚洲一区二区三区不卡视频| 精品视频人人做人人爽| 久久性视频一级片| 91九色精品人成在线观看| 波多野结衣av一区二区av| 亚洲av日韩在线播放| 国产精品 欧美亚洲| 国产精品亚洲一级av第二区| 午夜福利在线免费观看网站| 成熟少妇高潮喷水视频| 亚洲精品在线美女| 亚洲精品粉嫩美女一区| 交换朋友夫妻互换小说| 中文字幕av电影在线播放| 99精品在免费线老司机午夜| 亚洲中文字幕日韩| 日韩三级视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩瑟瑟在线播放| 在线永久观看黄色视频| 国产国语露脸激情在线看| 午夜福利影视在线免费观看| 丰满饥渴人妻一区二区三| 国产精品亚洲一级av第二区| 99久久精品国产亚洲精品| 久久人妻熟女aⅴ| 免费女性裸体啪啪无遮挡网站| 亚洲第一青青草原| 国产一卡二卡三卡精品| 亚洲精品国产精品久久久不卡| 久久精品国产亚洲av高清一级| 国产精品久久视频播放| 国产极品粉嫩免费观看在线| 欧美一级毛片孕妇| 亚洲欧美激情在线| 成在线人永久免费视频| 亚洲精品国产色婷婷电影| 欧美亚洲日本最大视频资源| 亚洲精品中文字幕一二三四区| 多毛熟女@视频| 精品国产亚洲在线| 少妇裸体淫交视频免费看高清 | 国产男女内射视频| 午夜免费鲁丝| 久热爱精品视频在线9| 99国产极品粉嫩在线观看| 亚洲精品在线观看二区| av在线播放免费不卡| 成人影院久久| 欧美乱妇无乱码| 亚洲avbb在线观看| 我的亚洲天堂| 久久国产亚洲av麻豆专区| 国产精品国产高清国产av | 69av精品久久久久久| 一区在线观看完整版| 久久人妻av系列| 麻豆成人av在线观看| 午夜影院日韩av| 在线永久观看黄色视频| 国产精品98久久久久久宅男小说| 一二三四在线观看免费中文在| 亚洲三区欧美一区| 成人av一区二区三区在线看| 亚洲片人在线观看| 一区二区三区精品91| 中文字幕高清在线视频| 80岁老熟妇乱子伦牲交| 两人在一起打扑克的视频| 激情在线观看视频在线高清 | 99国产精品99久久久久| 天天影视国产精品| 99热国产这里只有精品6| 亚洲专区字幕在线| 国产91精品成人一区二区三区| 欧美色视频一区免费| av电影中文网址| 国产精品国产av在线观看| 精品熟女少妇八av免费久了| 超碰成人久久| 亚洲久久久国产精品| 99久久精品国产亚洲精品| 老司机在亚洲福利影院| 老司机影院毛片| √禁漫天堂资源中文www| 建设人人有责人人尽责人人享有的| 老汉色av国产亚洲站长工具| www.精华液| 天堂俺去俺来也www色官网| 91成年电影在线观看| 国产成人啪精品午夜网站| 久久婷婷成人综合色麻豆| 男女之事视频高清在线观看| 久久 成人 亚洲| 国产一区在线观看成人免费| 香蕉国产在线看| 女人爽到高潮嗷嗷叫在线视频| 午夜免费观看网址| 亚洲第一欧美日韩一区二区三区| 精品国产超薄肉色丝袜足j| 午夜福利在线免费观看网站| 高潮久久久久久久久久久不卡| 久久久国产欧美日韩av| 91国产中文字幕| 国产亚洲精品一区二区www | 亚洲av成人一区二区三| 人妻一区二区av| 国产成人欧美在线观看 | 久久这里只有精品19| 亚洲午夜精品一区,二区,三区| 80岁老熟妇乱子伦牲交| 国产精品九九99| 9热在线视频观看99| 丝袜在线中文字幕| 久热这里只有精品99| 亚洲熟妇熟女久久| a级毛片在线看网站| 成熟少妇高潮喷水视频| 日日摸夜夜添夜夜添小说| 日韩免费高清中文字幕av| 久久精品国产清高在天天线| 亚洲免费av在线视频| 国产精品亚洲一级av第二区| 在线看a的网站| 一区在线观看完整版| 午夜老司机福利片| 天天影视国产精品| 日本精品一区二区三区蜜桃| 日韩人妻精品一区2区三区| 看免费av毛片| 欧美激情 高清一区二区三区| 十分钟在线观看高清视频www| 精品一区二区三区视频在线观看免费 | 国产精品98久久久久久宅男小说| 久久人妻福利社区极品人妻图片| 99国产精品99久久久久| 国产精品国产av在线观看| 久久这里只有精品19| 久热爱精品视频在线9| 久久国产精品大桥未久av| 91大片在线观看| 波多野结衣av一区二区av| 国产欧美日韩一区二区精品| 建设人人有责人人尽责人人享有的| 久久人妻福利社区极品人妻图片| 午夜免费鲁丝| 国产精品国产av在线观看| 十分钟在线观看高清视频www| 亚洲精品中文字幕在线视频| 丝袜人妻中文字幕| 亚洲色图av天堂| 成人亚洲精品一区在线观看| 欧美中文综合在线视频| 精品久久久久久,| av福利片在线| 超碰97精品在线观看| 亚洲黑人精品在线| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲 | 久久精品人人爽人人爽视色| 亚洲情色 制服丝袜| 欧美在线黄色| 亚洲免费av在线视频| 国产成人欧美| 国产精品成人在线| 亚洲专区国产一区二区| 欧美在线一区亚洲| 国产精品乱码一区二三区的特点 | 18禁国产床啪视频网站| 多毛熟女@视频| 村上凉子中文字幕在线| av福利片在线| 欧美 日韩 精品 国产| 色精品久久人妻99蜜桃| 亚洲色图av天堂| 久久中文字幕人妻熟女| 真人做人爱边吃奶动态| 亚洲av成人av| 黄色怎么调成土黄色| 国产免费av片在线观看野外av| 久久久国产成人精品二区 | 国产亚洲欧美在线一区二区| 免费观看精品视频网站| 一本一本久久a久久精品综合妖精| 国产男女内射视频| 午夜福利欧美成人| 成熟少妇高潮喷水视频| 在线观看日韩欧美| 女人爽到高潮嗷嗷叫在线视频| 亚洲久久久国产精品| 国产精品永久免费网站| 天天影视国产精品| 大码成人一级视频| 亚洲国产精品sss在线观看 | 欧美国产精品一级二级三级| 丁香欧美五月| 成年女人毛片免费观看观看9 | 国产欧美日韩一区二区精品| 亚洲精品中文字幕在线视频| 久久午夜亚洲精品久久| 成人特级黄色片久久久久久久| 国产精品久久久久久人妻精品电影| 国产亚洲精品一区二区www | 在线观看免费视频日本深夜| 久久亚洲真实| 曰老女人黄片| 午夜亚洲福利在线播放| 久久 成人 亚洲| 91精品三级在线观看| 欧美精品av麻豆av| 国产91精品成人一区二区三区| 国产激情久久老熟女| 波多野结衣av一区二区av| 精品一区二区三区四区五区乱码| 乱人伦中国视频| 亚洲一卡2卡3卡4卡5卡精品中文| 999精品在线视频| 亚洲人成电影观看| 国产精品一区二区精品视频观看| 欧美精品人与动牲交sv欧美| 777久久人妻少妇嫩草av网站| 男女之事视频高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩视频一区二区在线观看| 亚洲av片天天在线观看| 久久国产精品大桥未久av| 久久国产亚洲av麻豆专区| 久久久久精品人妻al黑| 亚洲色图综合在线观看| 岛国毛片在线播放| 一级毛片高清免费大全| 免费高清在线观看日韩| 好看av亚洲va欧美ⅴa在| 国产成人精品在线电影| 色播在线永久视频| 亚洲性夜色夜夜综合| 一级毛片精品| 成人免费观看视频高清| 色综合婷婷激情| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲人成77777在线视频| 国精品久久久久久国模美| 日本精品一区二区三区蜜桃| xxxhd国产人妻xxx| 亚洲精品国产精品久久久不卡| 怎么达到女性高潮| 黄色视频不卡| 中文字幕高清在线视频| 99国产综合亚洲精品| 丝袜美足系列| 99国产综合亚洲精品| 亚洲欧美一区二区三区久久| 叶爱在线成人免费视频播放| av不卡在线播放| 欧美日韩亚洲综合一区二区三区_| 99久久99久久久精品蜜桃| 五月开心婷婷网| 啦啦啦在线免费观看视频4| 欧美老熟妇乱子伦牲交| 久久人人爽av亚洲精品天堂| 精品人妻熟女毛片av久久网站| 黄色怎么调成土黄色| 91精品三级在线观看| 夜夜躁狠狠躁天天躁| 一二三四社区在线视频社区8| 9色porny在线观看| 成年人免费黄色播放视频| av国产精品久久久久影院| 亚洲精品美女久久久久99蜜臀| 久久热在线av| 啦啦啦 在线观看视频| 亚洲精品av麻豆狂野| 国产精品九九99| 看片在线看免费视频| 亚洲熟妇熟女久久| 成人精品一区二区免费| 国内毛片毛片毛片毛片毛片| 色婷婷久久久亚洲欧美| 色精品久久人妻99蜜桃| 成人特级黄色片久久久久久久| 久久精品亚洲av国产电影网| 免费在线观看影片大全网站| 人人妻人人澡人人看| 亚洲av成人不卡在线观看播放网| 国产精品亚洲av一区麻豆| 国产在线观看jvid| 欧洲精品卡2卡3卡4卡5卡区| 欧美午夜高清在线| 高潮久久久久久久久久久不卡| 捣出白浆h1v1| 一区二区三区国产精品乱码| 国产有黄有色有爽视频| 亚洲午夜精品一区,二区,三区| 久久久久久久久久久久大奶| 亚洲成人免费电影在线观看| 国产av精品麻豆| 午夜久久久在线观看| 美女视频免费永久观看网站| 大香蕉久久网| 国产97色在线日韩免费| 久久久久久人人人人人| 高清毛片免费观看视频网站 | 精品福利观看| 国产亚洲精品久久久久久毛片 | 黑人猛操日本美女一级片| 午夜激情av网站| 99精品欧美一区二区三区四区| 性少妇av在线| 亚洲色图av天堂| 欧美午夜高清在线| 最新在线观看一区二区三区| 下体分泌物呈黄色| 亚洲熟妇中文字幕五十中出 | 最新美女视频免费是黄的| 美女高潮喷水抽搐中文字幕| 在线观看免费高清a一片| 黑丝袜美女国产一区| 免费在线观看视频国产中文字幕亚洲| 狠狠狠狠99中文字幕| 欧美日韩瑟瑟在线播放| 十八禁人妻一区二区| 国产精品亚洲一级av第二区| 国产熟女午夜一区二区三区| 日韩欧美国产一区二区入口| 久久草成人影院| 欧美在线黄色| 亚洲精品国产色婷婷电影| 亚洲av美国av| 日日夜夜操网爽| 精品人妻熟女毛片av久久网站| 成人精品一区二区免费| 日本a在线网址| 黄色成人免费大全| 久久午夜亚洲精品久久| 亚洲伊人色综图| 老司机午夜福利在线观看视频| 亚洲精品久久成人aⅴ小说| 制服人妻中文乱码| 成人免费观看视频高清| 在线十欧美十亚洲十日本专区| 欧美精品人与动牲交sv欧美| 亚洲精品国产区一区二| 性少妇av在线| 久久亚洲精品不卡| 我的亚洲天堂| 国产精品av久久久久免费| 又黄又粗又硬又大视频| 久久精品成人免费网站| 精品电影一区二区在线| 狂野欧美激情性xxxx| 国产av一区二区精品久久| xxx96com| 亚洲熟女毛片儿| 18禁美女被吸乳视频| 国内毛片毛片毛片毛片毛片| 国产成人免费无遮挡视频| 十八禁网站免费在线| av天堂久久9| 美女高潮喷水抽搐中文字幕| 99久久99久久久精品蜜桃| 亚洲av日韩在线播放| 国产亚洲精品久久久久久毛片 | 极品少妇高潮喷水抽搐| 色尼玛亚洲综合影院| 欧美黑人欧美精品刺激| 在线观看舔阴道视频| 99国产精品一区二区蜜桃av | 老司机午夜十八禁免费视频| 精品一品国产午夜福利视频| 久久青草综合色| 天天添夜夜摸| 亚洲一区中文字幕在线| 两性夫妻黄色片| 日韩欧美国产一区二区入口| 亚洲精品乱久久久久久| 国产欧美日韩一区二区三| 啦啦啦在线免费观看视频4| 久久中文字幕一级| 97人妻天天添夜夜摸| 如日韩欧美国产精品一区二区三区| www.自偷自拍.com| av网站在线播放免费| 高清视频免费观看一区二区| 国产亚洲精品一区二区www | 天天躁夜夜躁狠狠躁躁| av网站在线播放免费| 人人妻人人爽人人添夜夜欢视频| 亚洲av片天天在线观看| av超薄肉色丝袜交足视频| 美女视频免费永久观看网站| 久久精品国产99精品国产亚洲性色 | 搡老乐熟女国产| 日韩熟女老妇一区二区性免费视频| 搡老熟女国产l中国老女人| 黄色视频,在线免费观看| 日日爽夜夜爽网站| 91精品三级在线观看| 亚洲avbb在线观看| 美女午夜性视频免费| 精品久久蜜臀av无| 女人高潮潮喷娇喘18禁视频| 精品无人区乱码1区二区| 亚洲精品在线观看二区| av一本久久久久| 成人免费观看视频高清| 777久久人妻少妇嫩草av网站| 一级作爱视频免费观看| 精品国产一区二区三区四区第35| 精品少妇久久久久久888优播| 国产精品av久久久久免费| 久热爱精品视频在线9| 香蕉国产在线看| 国产男靠女视频免费网站| 免费av中文字幕在线| 国产亚洲欧美在线一区二区| 欧美日韩av久久| 欧美日韩一级在线毛片| 久久精品熟女亚洲av麻豆精品| 人人妻人人添人人爽欧美一区卜| 香蕉丝袜av| 侵犯人妻中文字幕一二三四区| 欧美日韩一级在线毛片| av欧美777| 日日摸夜夜添夜夜添小说| 国产成人精品久久二区二区91| 国产成人欧美| 99久久综合精品五月天人人| 亚洲成av片中文字幕在线观看| 成人永久免费在线观看视频| 青草久久国产| 一级a爱片免费观看的视频| 我的亚洲天堂| 男女免费视频国产| 欧美日韩亚洲高清精品| 老司机福利观看| 一本一本久久a久久精品综合妖精| 搡老熟女国产l中国老女人| 夜夜爽天天搞| 国产高清视频在线播放一区| 精品久久蜜臀av无| 91精品三级在线观看| 欧美精品啪啪一区二区三区| 成年人黄色毛片网站| 老熟女久久久| 91大片在线观看| 亚洲九九香蕉| 久久久久久免费高清国产稀缺| 亚洲成国产人片在线观看| 亚洲成av片中文字幕在线观看| 不卡av一区二区三区| 久久久国产成人免费| 精品视频人人做人人爽| 亚洲在线自拍视频| 高清黄色对白视频在线免费看| 一进一出抽搐gif免费好疼 | 一本综合久久免费| 国产精华一区二区三区| 亚洲少妇的诱惑av| 久久人人爽av亚洲精品天堂| 亚洲av日韩在线播放| 中文字幕制服av| 多毛熟女@视频| 老司机影院毛片| 成人特级黄色片久久久久久久| 久久精品国产99精品国产亚洲性色 | 99国产精品99久久久久| 免费看十八禁软件| 女人高潮潮喷娇喘18禁视频| 人人澡人人妻人| а√天堂www在线а√下载 | 国产亚洲欧美精品永久| 亚洲av日韩精品久久久久久密| 亚洲五月色婷婷综合| 精品久久久久久电影网| 免费在线观看完整版高清| 国产精品乱码一区二三区的特点 | 超色免费av| 日韩成人在线观看一区二区三区| 国产99久久九九免费精品| 一级片免费观看大全| av天堂在线播放| 人人澡人人妻人| 69av精品久久久久久| av线在线观看网站| 久久久久久久久免费视频了| 69av精品久久久久久| 国产在线一区二区三区精| 亚洲情色 制服丝袜| 男女下面插进去视频免费观看| 伊人久久大香线蕉亚洲五| 国产精品一区二区在线不卡| 免费女性裸体啪啪无遮挡网站| 一进一出抽搐gif免费好疼 | 黄网站色视频无遮挡免费观看| 狂野欧美激情性xxxx| 女人久久www免费人成看片| 麻豆成人av在线观看| 中文字幕色久视频| 久久久久久久午夜电影 | 免费在线观看完整版高清| 又黄又爽又免费观看的视频| 精品一区二区三区四区五区乱码| 亚洲男人天堂网一区| 欧美不卡视频在线免费观看 | 亚洲欧美一区二区三区久久| tocl精华| 国产免费av片在线观看野外av| 中文字幕精品免费在线观看视频| 欧美日韩一级在线毛片| 国产一卡二卡三卡精品| 女性被躁到高潮视频| 99香蕉大伊视频| 少妇被粗大的猛进出69影院| 一本大道久久a久久精品|