趙銅鐵鋼 張弛 田雨 李昱 陳澤鑫 陳曉宏
摘要:全球氣象模型及新興人工智能模型為流域水文預(yù)報(bào)提供了日、次季節(jié)、季節(jié)等不同時(shí)間尺度的海量氣象預(yù)報(bào)數(shù)據(jù)。與此同時(shí),基于氣象預(yù)報(bào)開展水文預(yù)報(bào),涉及到數(shù)據(jù)獲取、模型構(gòu)建、評(píng)估檢驗(yàn)等技術(shù)問題。本文以全球氣象預(yù)報(bào)相關(guān)的研究計(jì)劃為切入點(diǎn),調(diào)研現(xiàn)有的1 d至2周小時(shí)尺度中短期天氣預(yù)報(bào)、1~60 d次季節(jié)尺度氣象預(yù)報(bào)、1~12個(gè)月季節(jié)尺度氣象預(yù)報(bào)以及新興的人工智能氣象預(yù)報(bào);梳理氣象預(yù)報(bào)驅(qū)動(dòng)下流域水文預(yù)報(bào)模型方法,闡述氣象預(yù)報(bào)訂正、水文模型設(shè)置和預(yù)報(bào)評(píng)估檢驗(yàn)等技術(shù)環(huán)節(jié)?;谌驓庀箢A(yù)報(bào)生成實(shí)時(shí)和回顧性流域水文預(yù)報(bào),定量檢驗(yàn)不同預(yù)見期下預(yù)報(bào)精度以評(píng)估相關(guān)模型方法的預(yù)報(bào)性能,為水利工程預(yù)報(bào)-調(diào)度實(shí)踐應(yīng)用打下堅(jiān)實(shí)的基礎(chǔ)。
關(guān)鍵詞:全球氣象模型;氣象預(yù)報(bào);流域水文模型;水文預(yù)報(bào);實(shí)時(shí)預(yù)報(bào);回顧性預(yù)報(bào);預(yù)報(bào)檢驗(yàn)
中圖分類號(hào):TV11??文獻(xiàn)標(biāo)志碼:A??文章編號(hào):1001-6791(2024)01-0156-11
在全球氣候變化的背景下,流域水文要素呈現(xiàn)非一致性的特征,給水利工程調(diào)度運(yùn)行帶來巨大挑戰(zhàn)[1-3]。傳統(tǒng)的工程水文設(shè)計(jì),如設(shè)計(jì)洪水計(jì)算、干旱重現(xiàn)期評(píng)估等,主要基于一致性假設(shè),認(rèn)為“過去的水文序列代表未來的水文情景”;然而,非一致性意味著“過去不再代表未來”[4-5]。全球范圍內(nèi),徑流統(tǒng)計(jì)分布受氣候變化和人類活動(dòng)影響而整體發(fā)生變化,并且極大值、極小值與均值常呈現(xiàn)出相似的變化趨勢[6]?;春印㈤L江、珠江等江河由于水量相對(duì)充沛,徑流量受人類活動(dòng)影響相對(duì)較小,整體變化不大;黃河、海河、遼河、松花江等江河徑流量則呈現(xiàn)不同程度變化,海河流域尤為顯著[7]。
開發(fā)水文預(yù)報(bào)進(jìn)行適應(yīng)性管理,是應(yīng)對(duì)氣候變化下水文非一致性的有效途徑[1,4]。以最長預(yù)見期分類,水文預(yù)報(bào)整體上可以分為3 d以內(nèi)的短期預(yù)報(bào)、3~14 d的中期預(yù)報(bào)、15 d至1 a的長期預(yù)報(bào),乃至1 a以上的超長期預(yù)報(bào)[8-9]。其中,短期降水預(yù)報(bào)應(yīng)用于短期洪水預(yù)報(bào),進(jìn)而支撐水庫防洪調(diào)度;防洪預(yù)報(bào)-調(diào)度是提升洪水資源化效率和提高防洪減災(zāi)效益的有效途徑之一[10-12]。與此同時(shí),中長期預(yù)報(bào)應(yīng)用于制定周、月、季節(jié)等時(shí)間尺度的水庫防洪、供水、發(fā)電、灌溉等調(diào)度計(jì)劃[13-14]。由于中長期預(yù)報(bào)信息包含相當(dāng)?shù)牟淮_定性,預(yù)報(bào)調(diào)度通常制定相對(duì)保守的決策以應(yīng)對(duì)風(fēng)險(xiǎn),即風(fēng)險(xiǎn)對(duì)沖決策[15-16]。
氣象條件是流域水文過程的重要驅(qū)動(dòng)要素,氣象預(yù)報(bào)預(yù)見期和精度直接影響著不同預(yù)見期下的水文預(yù)報(bào)精度[17-19]。近年來,全球氣象模型(Global Climate Model,GCM)穩(wěn)步發(fā)展,人工智能氣象預(yù)報(bào)模型方興未艾,為流域水文預(yù)報(bào)提供了日、次季節(jié)、季節(jié)等不同時(shí)間尺度的海量氣象預(yù)報(bào)數(shù)據(jù)[20-22]。與此同時(shí),氣象預(yù)報(bào)驅(qū)動(dòng)下的流域水文預(yù)報(bào),包含著初始狀態(tài)設(shè)置、預(yù)報(bào)檢驗(yàn)評(píng)估和預(yù)報(bào)統(tǒng)計(jì)訂正等關(guān)鍵技術(shù)環(huán)節(jié)[23-24]。相應(yīng)的,水文預(yù)報(bào)既受到氣象預(yù)報(bào)的直接影響,又與水文模型結(jié)構(gòu)、參數(shù)以及流域初始狀態(tài)等要素緊密相關(guān)[25-27]。立足于全球氣象預(yù)報(bào)領(lǐng)域國內(nèi)外相關(guān)綜述[20,25,28-30],本文致力于梳理全球氣象預(yù)報(bào)驅(qū)動(dòng)流域水文預(yù)報(bào)的模型方法研究進(jìn)展并進(jìn)行展望,期望為預(yù)報(bào)、預(yù)警、預(yù)演、預(yù)案“四預(yù)”工作提供有益的借鑒和參考。
1 全球氣象預(yù)報(bào)
1.1 全球氣象模型的發(fā)展
全球氣象模型通過定義旋轉(zhuǎn)球體的Navier-Stokes偏微分方程組來刻畫全球水量與能量平衡相關(guān)物理過程,進(jìn)而耦合陸地、海洋、大氣、海冰等模塊從物理機(jī)制上來預(yù)報(bào)未來氣象狀況[20]。全球氣象模型的緣起可以追溯到1904年,挪威氣象學(xué)家Vilhelm Bjerknes發(fā)表著名論文《從力學(xué)和物理學(xué)的角度考慮天氣預(yù)報(bào)問題》,提出采用數(shù)學(xué)物理方程處理大氣數(shù)據(jù)信息和開展數(shù)值預(yù)報(bào)的構(gòu)想;時(shí)隔近50 a后,美國氣象學(xué)家Jule Charney于1950年首次實(shí)現(xiàn)對(duì)于實(shí)際天氣過程的數(shù)值預(yù)報(bào),開啟了天氣預(yù)報(bào)向客觀化、數(shù)字化和自動(dòng)化轉(zhuǎn)型的時(shí)代[31]。近年來,得益于偏微分方程數(shù)值求解、大規(guī)模并行計(jì)算、衛(wèi)星遙感與地面觀測同化等先進(jìn)技術(shù)的發(fā)展,全球氣象模型取得了長足的進(jìn)步,全球和區(qū)域尺度氣象預(yù)報(bào)日益成為世界各大超級(jí)計(jì)算中心核心業(yè)務(wù)工作[28-30]。與此同時(shí),歐洲中期天氣預(yù)報(bào)中心(European Centre for Medium-Range Weather Forecasts,ECMWF)、美國國家環(huán)境預(yù)測中心(National Centers for Environmental Prediction,NCEP)等重要?dú)庀髾C(jī)構(gòu)面向不同時(shí)間尺度的氣象預(yù)報(bào)推進(jìn)了一系列國際合作研究計(jì)劃,如表1所示。
從偏微分方程組求解的角度,全球氣象預(yù)報(bào)主要受到初始狀態(tài)和邊界條件影響[32,20]。對(duì)于表1所示3種類型的氣象預(yù)報(bào),中短期天氣預(yù)報(bào)主要受初始狀態(tài)影響,也即模型初始時(shí)刻狀態(tài)直接影響未來中短期預(yù)報(bào)結(jié)果[28,33];次季節(jié)尺度氣象預(yù)報(bào),既會(huì)受到初始狀態(tài)的影響,又會(huì)受到邊界條件的制約,因而更加復(fù)雜[30,34-35];進(jìn)一步的,季節(jié)到年際氣象預(yù)報(bào)主要受邊界條件制約,也即海洋、海冰、陸地等下墊面條件對(duì)于大氣的強(qiáng)迫作用[29]。
1.2 中短期天氣預(yù)報(bào)
面向未來1—14 d的小時(shí)尺度中短期天氣預(yù)報(bào),世界氣象組織(World Meteorological Organization,WMO)在全球觀測系統(tǒng)研究與可預(yù)報(bào)性試驗(yàn)(The Observing system Research and Predictability EXperiment,THORPEX)科學(xué)計(jì)劃中設(shè)置了TIGGE[28,36]。TIGGE名稱中的“大集合”指的是通過一定的數(shù)據(jù)協(xié)議整合發(fā)布源自全球13個(gè)氣象中心的天氣預(yù)報(bào)數(shù)據(jù),包括歐洲中期天氣預(yù)報(bào)中心、中國氣象局(China Meteorological Administration,CMA)、英國氣象局(United Kingdom Met Office,UKMO)等;“交互式”指的是根據(jù)用戶需求來更新模型設(shè)置以改進(jìn)預(yù)報(bào)結(jié)果,包括集合成員數(shù)量、網(wǎng)格空間分辨率、區(qū)域尺度預(yù)報(bào)等[36]。
相比單一機(jī)構(gòu)預(yù)報(bào)結(jié)果,TIGGE綜合多個(gè)機(jī)構(gòu)預(yù)報(bào)結(jié)果,能夠從整體上顯著地提升對(duì)于未來數(shù)天小雨、中雨到暴雨、大暴雨等不同天氣事件的預(yù)報(bào)精度[36-37]。與此同時(shí),隨著預(yù)見期增加,集合預(yù)報(bào)可能會(huì)高估未來小雨、中雨等降水事件,同時(shí)會(huì)低估暴雨、大暴雨等降水事件;對(duì)此,需要引入統(tǒng)計(jì)訂正方法以改進(jìn)預(yù)報(bào)結(jié)果[38-40]。值得指出的是,中短期天氣過程呈現(xiàn)混沌特性:天氣預(yù)報(bào)對(duì)于初值較為敏感;相應(yīng)的,預(yù)報(bào)誤差隨著預(yù)見期延長而迅速增加[28,41]。受限于混沌特性,中短期天氣理論上的可預(yù)報(bào)性局限在2周以內(nèi)[32]。
1.3 次季節(jié)氣象預(yù)報(bào)
面向未來1~60 d的次季節(jié)氣象預(yù)報(bào),世界氣象組織在全球氣候服務(wù)框架(Global Framework for Climate Services,GFCS)的基礎(chǔ)上提出S2S,旨在為水資源管理、農(nóng)業(yè)與食品、能源與健康、災(zāi)害風(fēng)險(xiǎn)管理等行業(yè)提供氣象預(yù)報(bào)基礎(chǔ)數(shù)據(jù)[30]??紤]到初始值的混沌效應(yīng)[32],次季節(jié)預(yù)報(bào)把用于天氣預(yù)報(bào)的大氣模式與海洋、陸地、海冰等模式耦合起來,通過考慮大氣-海洋-陸地-海冰等相互作用以延長預(yù)見期[30]。參照TIGGE的運(yùn)行模式,S2S統(tǒng)籌發(fā)布?xì)W洲中期天氣預(yù)報(bào)中心、美國國家環(huán)境預(yù)測中心和中國氣象局等機(jī)構(gòu)開發(fā)的10余套全球預(yù)報(bào)數(shù)據(jù)[34,36,42]。
相比于TIGGE僅僅發(fā)布實(shí)時(shí)預(yù)報(bào)[28,36],S2S在業(yè)務(wù)運(yùn)行過程中不僅采用耦合模式進(jìn)行未來1~60 d的實(shí)時(shí)氣象預(yù)報(bào),還面向歷史同期進(jìn)行回顧性的氣象預(yù)報(bào)[30]。例如,歐洲中期天氣預(yù)報(bào)中心的回顧性預(yù)報(bào)為過去20 a;即2023年10月1日(起報(bào)時(shí)間)對(duì)2023年10月1日至11月30日(預(yù)見期60 d)進(jìn)行實(shí)時(shí)氣象預(yù)報(bào),同時(shí)還會(huì)生成2003—2022年(過去20 a)10月1日至11月30日(歷史同期)的回顧性預(yù)報(bào)?;仡櫺灶A(yù)報(bào)不僅可以檢驗(yàn)同一模型對(duì)于歷史事件的預(yù)報(bào)效果,還可以定量評(píng)估不同預(yù)見期下系統(tǒng)與隨機(jī)誤差,有助于訂正實(shí)時(shí)預(yù)報(bào)以提高預(yù)報(bào)精度[35,40-41]。
1.4 季節(jié)氣象預(yù)報(bào)
面向未來1~12個(gè)月的季節(jié)尺度氣象預(yù)報(bào),美國國家科學(xué)基金會(huì)(National Science Foundation,NSF)聯(lián)合美國海洋與大氣管理局(National Oceanic and Atmospheric Administration,NOAA)、美國國家宇航局(National Aeronautics and Space Administration,NASA)等多個(gè)部門聯(lián)合設(shè)立NMME[29]。NMME名稱中的“北美”指的是該計(jì)劃主要面向美國和加拿大的10余個(gè)季節(jié)氣象預(yù)報(bào)模型。例如,美國國家環(huán)境預(yù)測中心的氣象預(yù)報(bào)系統(tǒng)第一代(Climate Forecast System version 1,CFSv1)和第二代(CFSv2)季節(jié)預(yù)報(bào),都通過NMME發(fā)布預(yù)報(bào)數(shù)據(jù)[43];美國地球流體動(dòng)力實(shí)驗(yàn)室(Geophysical Fluid Dynamics Laboratory,GFDL)第二代氣象模型(Climate Model version 2,CM2)曾經(jīng)同時(shí)運(yùn)行4個(gè)版本CM2p1、CM2p1-aer04、CM2p5-FLOR-A06和CM2p5-FLOR-B01,并且新開發(fā)了無縫預(yù)測和地球系統(tǒng)研究系統(tǒng)(Seamless System for Prediction and EArth System Research,SPEAR),這5套季節(jié)預(yù)報(bào)也都通過NMME發(fā)布數(shù)據(jù)[44-45]。
不同氣象中心開發(fā)的不同版本預(yù)報(bào)模型,通常給出不同時(shí)間步長和不同空間分辨率的預(yù)報(bào)數(shù)據(jù),數(shù)據(jù)之間的差異性限制了相關(guān)研究的推進(jìn)。針對(duì)這個(gè)問題,北美多模型集合預(yù)報(bào)研究計(jì)劃先進(jìn)行時(shí)間-空間重采樣,即把時(shí)間步長統(tǒng)一為1個(gè)月、把空間分辨率統(tǒng)一為1°,而后才公開發(fā)布預(yù)報(bào)數(shù)據(jù)[29]。這一舉措極大地促進(jìn)了多模型季節(jié)氣象集合預(yù)報(bào)研究,包括精度檢驗(yàn)、評(píng)估對(duì)比和推廣應(yīng)用等方面[45-47]。
1.5 新興的人工智能氣象預(yù)報(bào)
全球氣象模型及各種遙感監(jiān)測技術(shù)生成海量的地球系統(tǒng)數(shù)據(jù)集,推動(dòng)人工智能(AI)預(yù)報(bào)模型迅速發(fā)展[48,21-22]。其中的標(biāo)志性成果,當(dāng)屬華為云盤古氣象大模型(Pangu-Weather)被開發(fā)和應(yīng)用于全球氣象預(yù)報(bào)[22]。從輸入與輸出2個(gè)方面,盤古氣象大模型類似于全球氣象模型:一方面,模型輸入數(shù)據(jù)為0.25°×0.25°的網(wǎng)格化全球氣象場數(shù)據(jù),具體而言,包括13個(gè)氣壓層的位勢高度、比濕、溫度、經(jīng)向風(fēng)速和緯向風(fēng)速,以及海平面氣壓、地面2 m溫度、10 m經(jīng)向風(fēng)速、10 m緯向風(fēng)速,共69個(gè)變量;另一方面,模型輸出數(shù)據(jù)對(duì)應(yīng)于輸入的69個(gè)變量,同樣為0.25°×0.25°的網(wǎng)格化全球數(shù)據(jù)。得益于“相同的輸入與輸出數(shù)據(jù)”這種模型設(shè)置,華為云提供時(shí)間步長分別為1、3、6、24 h的4個(gè)盤古氣象預(yù)訓(xùn)練大模型,以迭代運(yùn)算的方式生成未來的全球氣象預(yù)報(bào)[22]。具體而言,對(duì)于18 h后的全球氣象預(yù)報(bào),只需要把6 h步長盤古氣象大模型迭代運(yùn)行3次:第1次運(yùn)行采用觀測的全球氣象場作為輸入;第2、3次運(yùn)行均采用上一次的全球氣象預(yù)報(bào)作為輸入。
依托華為云計(jì)算平臺(tái),盤古氣象大模型采用歐洲中期天氣預(yù)報(bào)中心的第五代全球再分析數(shù)據(jù)集(ERA5)作為驅(qū)動(dòng),以1979—2017年的數(shù)據(jù)用作訓(xùn)練,2018年的數(shù)據(jù)用作測試,2019年的數(shù)據(jù)用作驗(yàn)證。面向位勢高度、溫度、經(jīng)向風(fēng)速、緯向風(fēng)速等多個(gè)氣象變量進(jìn)行預(yù)報(bào)檢驗(yàn),盤古氣象大模型相比歐洲中期天氣預(yù)報(bào)中心的集成天氣預(yù)報(bào)系統(tǒng)(Integrated Forecasting System,IFS)呈現(xiàn)出更高的預(yù)報(bào)精度[22]。
2 氣象預(yù)報(bào)驅(qū)動(dòng)水文預(yù)報(bào)
2.1 氣象預(yù)報(bào)數(shù)據(jù)獲取與訂正
氣象預(yù)報(bào)數(shù)據(jù)是流域水文預(yù)報(bào)的重要基礎(chǔ)[3,17,19]。在20世紀(jì)七八十年代,氣象模型尚不發(fā)達(dá),氣象預(yù)報(bào)能力極為有限;當(dāng)時(shí),美國國家天氣局(National Weather Service,NWS)提出以歷史同期氣象條件作為流域水文模型的驅(qū)動(dòng)要素來構(gòu)建河流預(yù)報(bào)系統(tǒng)(River Forecast System,RFS),即主要基于流域干濕狀態(tài)的時(shí)限延長徑流預(yù)報(bào)(Extended Streamflow Forecasting,ESP);以實(shí)際需求為導(dǎo)向,該預(yù)報(bào)系統(tǒng)提供最大徑流、最小徑流、累積徑流量、河流水位等一系列水文預(yù)報(bào)數(shù)據(jù),得到了相當(dāng)廣泛的工程應(yīng)用[49]。從概念上,ESP方法基于“一致性”假設(shè),也即假設(shè)未來降水具有與歷史同期降水相同的統(tǒng)計(jì)性質(zhì);這種情況下,徑流預(yù)報(bào)精度主要取決于流域干濕狀態(tài),也即土壤水、地下水、積雪等蓄水單元的存蓄狀態(tài)[50]。
伴隨著天氣預(yù)報(bào)技術(shù)和氣象預(yù)報(bào)模型的發(fā)展,確定性預(yù)報(bào)被應(yīng)用于驅(qū)動(dòng)水文模型,生成單一情景的確定性水文預(yù)報(bào);進(jìn)一步的,氣象集合預(yù)報(bào)也被應(yīng)用于驅(qū)動(dòng)水文模型,得到包含諸多情景的水文集合預(yù)報(bào)[17,25]。相比于歷史同期氣象條件,確定性氣象預(yù)報(bào)和氣象集合預(yù)報(bào)能夠更為有效地反映實(shí)時(shí)氣象情況;采用氣象預(yù)報(bào)作為驅(qū)動(dòng)可以生成更高精度的水文預(yù)報(bào),不同預(yù)見期下預(yù)報(bào)精度的提升,既歸功于流域干濕狀態(tài),又得益于高精度的氣象預(yù)報(bào)精度[23,51]。如表2所示,TIGGE、NMME、S2S等氣象預(yù)報(bào)國際合作研究計(jì)劃,以及最新開發(fā)的Pangu-Weather等,提供了小時(shí)、日、月等不同時(shí)間步長和周、月、季節(jié)等不同預(yù)見期的全球氣象預(yù)報(bào)。不同流域的水文預(yù)報(bào)通常會(huì)采用小時(shí)、日、月等不同時(shí)間尺度的水文模型;實(shí)際預(yù)報(bào)業(yè)務(wù)中,需要根據(jù)不同時(shí)間步長的水文模型建模靈活地獲取對(duì)應(yīng)的氣象預(yù)報(bào)數(shù)據(jù)[52-53]。
值得指出的是,受系統(tǒng)與隨機(jī)誤差影響,全球氣象模型原始預(yù)報(bào)的精度往往并不理想;如果采用原始?xì)庀箢A(yù)報(bào)驅(qū)動(dòng)水文模型,水文預(yù)報(bào)不確定性既會(huì)受到原始?xì)庀箢A(yù)報(bào)誤差的制約,又會(huì)受到流域水文模型的影響[23,37,52]。對(duì)此,需要對(duì)氣象預(yù)報(bào)進(jìn)行統(tǒng)計(jì)訂正以控制水文預(yù)報(bào)的誤差來源[38,40,54]。比較簡單的訂正方法有同倍比縮放法和同差值加減法,即把所有原始預(yù)報(bào)的均值與所有觀測的均值做對(duì)比,從而獲得倍比因子和加減差值來訂正原始預(yù)報(bào),這2種方法可以快速消除系統(tǒng)誤差[39,54];稍微復(fù)雜一些的有分位數(shù)映射方法,即分別擬合原始預(yù)報(bào)與觀測的邊緣分布,根據(jù)邊緣分布獲得預(yù)報(bào)與觀測的累積分布,由累積分布的統(tǒng)計(jì)分位數(shù)來確定原始預(yù)報(bào)與觀測的映射關(guān)系從而訂正原始預(yù)報(bào),該方法既能消除系統(tǒng)誤差,又能一定程度上處理隨機(jī)誤差[38,53];更為復(fù)雜的有Copula和貝葉斯聯(lián)合概率等模型方法,這些模型不僅考慮預(yù)報(bào)和觀測的邊緣分布,而且考慮預(yù)報(bào)與觀測之間關(guān)聯(lián)關(guān)系的強(qiáng)弱,依據(jù)二者的關(guān)聯(lián)關(guān)系估算觀測值對(duì)應(yīng)于預(yù)報(bào)值的條件分布,由此訂正原始降水預(yù)報(bào)[23,40,54]。
2.2 流域水文預(yù)報(bào)模型設(shè)置
對(duì)接氣象預(yù)報(bào)相關(guān)國際研究計(jì)劃,國際水文集合預(yù)報(bào)研究計(jì)劃(Hydrological Ensemble Prediction Experiment,HEPEX)從2004年延續(xù)至今,旨在開發(fā)水文學(xué)模型方法把氣象預(yù)報(bào)轉(zhuǎn)化為水文預(yù)報(bào),更好地服務(wù)于水利工程調(diào)度管理[55]。面向預(yù)報(bào)模型方法開發(fā),HEPEX提出六大研究主題(https:∥hepex.org.au/about-hepex/),分別是:① 氣象預(yù)報(bào)數(shù)據(jù)降尺度用作水文模型輸入;② 基于水文模型的集合預(yù)報(bào)方法;③ 水文學(xué)及水力學(xué)預(yù)報(bào)模型的數(shù)據(jù)同化;④ 預(yù)報(bào)數(shù)據(jù)后處理與多模型預(yù)報(bào)集成;⑤ 預(yù)報(bào)檢驗(yàn)及價(jià)值評(píng)估;⑥ 面向決策的預(yù)報(bào)需求識(shí)別、可視化及案例應(yīng)用。TIGGE、S2S和NMME等國際合作計(jì)劃以公開數(shù)據(jù)庫的形式提供全球氣象預(yù)報(bào),極大地降低了水文工作面臨的氣象數(shù)據(jù)門檻(表2),為流域水文預(yù)報(bào)提供基礎(chǔ)數(shù)據(jù)。相關(guān)科研團(tuán)隊(duì)下載氣象預(yù)報(bào)作為集總和分布式水文模型的驅(qū)動(dòng)條件,面向具體流域開展短期與中長期水文集合預(yù)報(bào)研究,取得了良好的效果[23,37,52]。與此同時(shí),歐洲中期天氣預(yù)報(bào)中心等氣象機(jī)構(gòu)建立起區(qū)域尺度乃至全球尺度水文模型,采用自己的氣象預(yù)報(bào)驅(qū)動(dòng)水文模型從而生成區(qū)域及全球水文預(yù)報(bào)[56]。例如,歐洲中期天氣預(yù)報(bào)中心構(gòu)建全球洪水預(yù)報(bào)系統(tǒng)(Global Flood Awareness System,GloFAS),采用集成天氣預(yù)報(bào)系統(tǒng)IFS氣象預(yù)報(bào)作為驅(qū)動(dòng)生成未來1~30 d的日尺度全球徑流預(yù)報(bào),實(shí)時(shí)預(yù)報(bào)從2019年11月至今,回顧性預(yù)報(bào)為1999年1月至2018年12月。
以氣象預(yù)報(bào)作為驅(qū)動(dòng)要素進(jìn)行水文預(yù)報(bào),流域水文模型參數(shù)率定和土壤水、地下水、積雪等蓄水單元初始狀態(tài)取值等技術(shù)環(huán)節(jié)相當(dāng)關(guān)鍵[19,50,57]。一方面,可以借助于流域水文模擬,即對(duì)于每一次實(shí)時(shí)預(yù)報(bào)都依據(jù)前期觀測的降水與徑流進(jìn)行模型參數(shù)率定和模擬計(jì)算,基于前期的降水—徑流過程連續(xù)模擬來設(shè)定各個(gè)蓄水單元的初始狀態(tài)[52,56-57]。另一方面,如果參數(shù)已經(jīng)率定完成,則可以采用數(shù)據(jù)同化來更新模型狀態(tài),即引入土壤水、地下水、積雪等蓄水單元相關(guān)的站點(diǎn)觀測及衛(wèi)星遙感等信息,隨著實(shí)時(shí)預(yù)報(bào)進(jìn)行不斷引入觀測和遙感信息以調(diào)整蓄水單元取值從而改進(jìn)徑流預(yù)報(bào)[50]。對(duì)于水文模擬的思路,優(yōu)點(diǎn)在于簡單易行和對(duì)于數(shù)據(jù)要求較低,可以根據(jù)實(shí)時(shí)預(yù)報(bào)需要相對(duì)快速地率定模型參數(shù)和設(shè)置初始狀態(tài);局限性是前期降水—徑流關(guān)系可能存在過擬合,并且前期模擬誤差會(huì)影響后期徑流預(yù)報(bào),對(duì)此需要開發(fā)定量化的誤差統(tǒng)計(jì)模型[52]。對(duì)于數(shù)據(jù)同化的思路,優(yōu)點(diǎn)是綜合地面觀測和衛(wèi)星遙感等多源信息;局限性在于卡爾曼濾波、粒子濾波等同化算法相對(duì)復(fù)雜,需要大量的長序列數(shù)據(jù)以支撐模型訓(xùn)練和結(jié)果校驗(yàn)等步驟[17,50]。
2.3 流域水文預(yù)報(bào)評(píng)估檢驗(yàn)
以觀測作為基準(zhǔn)進(jìn)行流域水文預(yù)報(bào)評(píng)估檢驗(yàn),既是預(yù)報(bào)模型性能評(píng)價(jià)的主要依據(jù),又是預(yù)報(bào)數(shù)據(jù)工程應(yīng)用的重要支撐[24,46,49]。流域水文預(yù)報(bào)具有偏度、可靠度、精度等不同的屬性,分別對(duì)應(yīng)不同的指標(biāo)[58]。例如,偏度屬性面向集合預(yù)報(bào)整體均值與觀測整體均值大小差異,可以用相對(duì)偏差(Relative Bias,RB)指標(biāo)來評(píng)估;可靠度屬性面向集合預(yù)報(bào)區(qū)間是否能夠有效概括觀測值變化范圍,可以用概率積分轉(zhuǎn)換(Probability Integral Transform,PIT)指標(biāo)來評(píng)估;精度屬性面向集合預(yù)報(bào)與對(duì)應(yīng)觀測之間的差異值,可以用連續(xù)分級(jí)概率評(píng)分(Continuous Ranked Probability Score,CRPS)指標(biāo)來評(píng)估[28,37,58]??紤]到統(tǒng)計(jì)指標(biāo)計(jì)算通常需要20~30個(gè)樣本,預(yù)報(bào)檢驗(yàn)既需要實(shí)時(shí)預(yù)報(bào),還有賴于長序列的歷史同期回顧性預(yù)報(bào)[20,44-45]。
不確定性是預(yù)報(bào)信息的固有屬性,集合預(yù)報(bào)采用多組情景來定量地描述預(yù)報(bào)不確定性及其統(tǒng)計(jì)分布,近年來在水文氣象領(lǐng)域得到了廣泛關(guān)注和長足發(fā)展[17,23,25]。從水利工程調(diào)度管理的角度,集合預(yù)報(bào)所包含的系統(tǒng)與隨機(jī)誤差,直接影響相關(guān)決策的最優(yōu)性[10-12]。受水文模型結(jié)構(gòu)、參數(shù)等要素影響,流域水文預(yù)報(bào)誤差通常呈現(xiàn)有偏、非正態(tài)分布的特征,并且相鄰時(shí)段之間的誤差相互關(guān)聯(lián)[52,59]。相比于單一時(shí)段的氣象預(yù)報(bào)訂正,水文集合預(yù)報(bào)受制于誤差自相關(guān)性的影響,其統(tǒng)計(jì)訂正需要同時(shí)考慮多個(gè)時(shí)段,訂正問題所涉及的統(tǒng)計(jì)變量個(gè)數(shù)大為增加。對(duì)此,一種經(jīng)典思路是誤差時(shí)間序列分析,首先對(duì)比預(yù)報(bào)與觀測數(shù)據(jù)得到預(yù)報(bào)誤差,接著構(gòu)建自回歸等模型以擬合相鄰時(shí)段之間誤差關(guān)聯(lián)關(guān)系,然后根據(jù)預(yù)見期從近到遠(yuǎn)對(duì)誤差進(jìn)行累積分析[52,60]。與此同時(shí),一種新的思路在于依托多元統(tǒng)計(jì)算法直接構(gòu)建多時(shí)段預(yù)報(bào)與觀測之間的高維聯(lián)合分布,根據(jù)聯(lián)合分布生成給定預(yù)報(bào)值時(shí)觀測值的條件分布,直接從條件分布抽樣而得到訂正預(yù)報(bào)[53]。以上2種訂正水文預(yù)報(bào)的思路都有賴于實(shí)時(shí)預(yù)報(bào)與對(duì)應(yīng)的回顧性預(yù)報(bào)[50,56]。
3 討? 論
作為世界頂級(jí)的氣象模型研發(fā)機(jī)構(gòu),歐洲中期天氣預(yù)報(bào)中心團(tuán)隊(duì)曾經(jīng)于2015年在Nature撰文“The quiet revolution of numerical weather prediction”,梳理20世紀(jì)50年代以來氣象模型穩(wěn)步發(fā)展的歷程[20];近期,該團(tuán)隊(duì)在Nature Reviews Earth & Environment撰文“Deep learning and a changing economy in weather and climate prediction”,指出以深度學(xué)習(xí)為代表的人工智能模型將會(huì)為氣象預(yù)報(bào)帶來變革性的影響[61]。對(duì)于水文預(yù)報(bào),既可以采用全球氣象模型預(yù)報(bào)數(shù)據(jù)作為驅(qū)動(dòng)[28-30],又可以嘗試采用盤古氣象大模型等人工智能模型生成的全球氣象預(yù)報(bào)數(shù)據(jù)作為驅(qū)動(dòng)[21-22]。與此同時(shí),人工智能模型不僅可以提供輸入數(shù)據(jù),更是被廣泛用于構(gòu)建流域降水—徑流模型[62-64]。流域水文預(yù)報(bào)通常采用模塊化的建模思路,即把整個(gè)模塊分解為氣象輸入、流域產(chǎn)流、流域匯流等模塊[17,56]。人工智能模型可以有力支撐相關(guān)水文預(yù)報(bào)模型的模塊開發(fā),并且與已有的水文模塊組合成為預(yù)報(bào)系統(tǒng),促進(jìn)不同預(yù)見期下水文預(yù)報(bào)精度提升[63-65]。
為了充分檢驗(yàn)預(yù)報(bào)模型系統(tǒng)的性能,既需要生成實(shí)時(shí)水文預(yù)報(bào),還需要生成回顧性預(yù)報(bào)[29-30,45]?;仡櫺灶A(yù)報(bào)的概念源自于大氣科學(xué)領(lǐng)域:回顧性指的是開發(fā)氣象模型進(jìn)行實(shí)時(shí)天氣或氣象預(yù)報(bào)的過程中,也用該模型對(duì)于歷史同期的過往天氣或氣象進(jìn)行預(yù)報(bào)。實(shí)時(shí)預(yù)報(bào)基于當(dāng)前氣象初始場;與之對(duì)應(yīng),回顧性預(yù)報(bào)必須把歷史上當(dāng)時(shí)的(而不是事后的)氣象場作為初始場;由此,實(shí)時(shí)預(yù)報(bào)與回顧性預(yù)報(bào)是基于相同的模型設(shè)置而生成的,二者相結(jié)合可以充分地評(píng)估預(yù)報(bào)模型的性能[20]。例如,華為云盤古氣象大模型與歐洲中期天氣預(yù)報(bào)中心模型性能比較,正是得益于針對(duì)歷史事件,尤其是臺(tái)風(fēng)極端事件,回顧性預(yù)報(bào)對(duì)比分析[22]。豐富的實(shí)時(shí)與回顧性全球氣象預(yù)報(bào)數(shù)據(jù)集,為生成實(shí)時(shí)和回顧性流域水文預(yù)報(bào)提供了有利條件?;跉庀箢A(yù)報(bào)生成實(shí)時(shí)與回顧性水文預(yù)報(bào),面向歷史洪水、干旱等代表性事件展開深入分析,定量檢驗(yàn)不同預(yù)見期下的預(yù)報(bào)精度,評(píng)估相關(guān)模型方法預(yù)報(bào)性能,可以為水利工程預(yù)報(bào)-調(diào)度實(shí)踐應(yīng)用打下堅(jiān)實(shí)的基礎(chǔ)。
4 結(jié)論與展望
得益于全球氣象預(yù)報(bào)模型的穩(wěn)步發(fā)展和人工智能模型的飛速進(jìn)步,各種時(shí)間步長、預(yù)見期和空間分辨率的全球氣象預(yù)報(bào)數(shù)據(jù)層出不窮,它們有助于解決傳統(tǒng)水文預(yù)報(bào)所面臨的氣象預(yù)報(bào)數(shù)據(jù)短板問題,為流域水文預(yù)報(bào)模型方法的研究提供肥沃的土壤。相比水文預(yù)報(bào)關(guān)注于具體的流域和預(yù)見期下的預(yù)報(bào)精度,全球氣象預(yù)報(bào)更多的是關(guān)注區(qū)域乃至全球尺度的整體預(yù)報(bào)效果。伴隨著陸地-大氣-海洋-海冰模式、衛(wèi)星觀測、數(shù)據(jù)同化、人工智能等先進(jìn)技術(shù)的進(jìn)步,全球氣象預(yù)報(bào)將會(huì)得到進(jìn)一步的發(fā)展和提升。為了更好地將全球氣象預(yù)報(bào)服務(wù)于流域水文預(yù)報(bào),需要立足于目標(biāo)流域開展3個(gè)方面的工作:
(1) 全球氣象預(yù)報(bào)適用性評(píng)估。長序列水文年鑒、水文站點(diǎn)觀測、場次加密監(jiān)測等水文業(yè)務(wù)工作積累了寶貴的流域歷史水文氣象數(shù)據(jù)集,以歷史數(shù)據(jù)集作為基準(zhǔn),可以評(píng)定不同全球氣象預(yù)報(bào)數(shù)據(jù)的精度,遴選出適宜的全球氣象預(yù)報(bào)數(shù)據(jù)。進(jìn)一步的,還可以依據(jù)歷史數(shù)據(jù)集訂正原始?xì)庀箢A(yù)報(bào),有效地消除系統(tǒng)誤差、量化隨機(jī)誤差,為水文預(yù)報(bào)提供高精度的氣象預(yù)報(bào)驅(qū)動(dòng)數(shù)據(jù)。
(2) 流域氣象預(yù)報(bào)數(shù)據(jù)提取。在適用性評(píng)估基礎(chǔ)上,依據(jù)流域水文模型的需要提取氣象預(yù)報(bào)驅(qū)動(dòng)數(shù)據(jù)。具體而言,對(duì)于集總式水文模型,需要從柵格化的氣象預(yù)報(bào)數(shù)據(jù)提取面平均氣象預(yù)報(bào);對(duì)于分布式水文模型,需要根據(jù)水文模型的空間分辨率對(duì)氣象預(yù)報(bào)數(shù)據(jù)進(jìn)行柵格重采樣。進(jìn)一步的,依據(jù)水文模型的小時(shí)、日、月等不同計(jì)算步長,還需要調(diào)整氣象預(yù)報(bào)時(shí)間步長以適應(yīng)計(jì)算需要。
(3) 流域水文氣象預(yù)報(bào)檢驗(yàn)。以回顧性氣象預(yù)報(bào)驅(qū)動(dòng)水文模型,得到回顧性水文預(yù)報(bào),針對(duì)歷史洪水、典型干旱等目標(biāo)事件進(jìn)行預(yù)報(bào)精度評(píng)估。整體上,水文預(yù)報(bào)精度主要受到氣象預(yù)報(bào)和水文模型2個(gè)方面的影響,通過檢驗(yàn)歸因,可以為水文預(yù)報(bào)的改進(jìn)指明方向。進(jìn)一步的,回顧性與實(shí)時(shí)預(yù)報(bào)還可以與調(diào)度模型相結(jié)合,支撐洪水、干旱等目標(biāo)事件復(fù)盤、推演模擬和預(yù)演、預(yù)案分析。
參考文獻(xiàn):
[1]王浩,王旭,雷曉輝,等.梯級(jí)水庫群聯(lián)合調(diào)度關(guān)鍵技術(shù)發(fā)展歷程與展望[J].水利學(xué)報(bào),2019,50(1):25-37.(WANG H,WANG X,LEI X H,et al.The development and prospect of key techniques in the cascade reservoir operation[J].Journal of Hydraulic Engineering,2019,50(1):25-37.(in Chinese))
[2]胡春宏,鄭春苗,王光謙,等.“西南河流源區(qū)徑流變化和適應(yīng)性利用”重大研究計(jì)劃進(jìn)展綜述[J].水科學(xué)進(jìn)展,2022,33(3):337-359.(HU C H,ZHENG C M,WANG G Q,et al.Reviews of the major research plan “runoff change and its adaptive management in the source region of major rivers in Southwestern China”[J].Advances in Water Science,2022,33(3):337-359.(in Chinese))
[3]張建云,舒章康,王鴻杰,等.鄭州“7·20”暴雨洪澇幾個(gè)水文問題的討論[J].地理學(xué)報(bào),2023,78(7):1618-1626.(ZHANG J Y,SHU Z K,WANG H J,et al.A discussion on several hydrological issues of “7·20” rainstorm and flood in Zhengzhou[J].Acta Geographica Sinica,2023,78(7):1618-1626.(in Chinese))
[4]MILLY P C D,BETANCOURT J,F(xiàn)ALKENMARK M,et al.Stationarity is dead:whither water management?[J].Science,2008,319(5863):573-574.
[5]郭生練,劉章君,熊立華.設(shè)計(jì)洪水計(jì)算方法研究進(jìn)展與評(píng)價(jià)[J].水利學(xué)報(bào),2016,47(3):302-314.(GUO S L,LIU Z J,XIONG L H.Advances and assessment on design flood estimation methods[J].Journal of Hydraulic Engineering,2016,47(3):302-314.(in Chinese))
[6]GUDMUNDSSON L,BOULANGE J,DO H X,et al.Globally observed trends in mean and extreme river flow attributed to climate change[J].Science,2021,371(6534):1159-1162.
[7]王國慶,張建云,管曉祥,等.中國主要江河徑流變化成因定量分析[J].水科學(xué)進(jìn)展,2020,31(3):313-323.(WANG G Q,ZHANG J Y,GUAN X X,et al.Quantifying attribution of runoff change for major rivers in China[J].Advances in Water Science,2020,31(3):313-323.(in Chinese))
[8]王富強(qiáng),霍風(fēng)霖.中長期水文預(yù)報(bào)方法研究綜述[J].人民黃河,2010,32(3):25-28.(WANG F Q,HUO F L.Summary of research on medium and long-term hydrological forecasting methods[J].Yellow River,2010,32(3):25-28.(in Chinese))
[9]孫周亮,劉艷麗,張建云,等.中長期徑流預(yù)報(bào)研究進(jìn)展與展望[J].水資源保護(hù),2023,39(2):136-144,223.(SUN Z L,LIU Y L,ZHANG J Y,et al.Research progress and prospect of mid-long term runoff prediction[J].Water Resources Protection,2023,39(2):136-144,223.(in Chinese))
[10]LU Q W,ZHONG P G,XU B,et al.Multi-objective risk analysis for flood control operation of a complex reservoir system under multiple time-space correlated uncertainties[J].Journal of Hydrology,2022,606:127419.
[11]DING W,ZHANG C,LIN J,et al.Flood risk quantification,transmission,and propagation analysis for flood water utilization of parallel reservoirs[J].Journal of Hydrology,2023,618:129202.
[12]張曉菁,劉攀,周麗婷,等.考慮水文模型參數(shù)時(shí)變的水庫水位多預(yù)見期實(shí)時(shí)預(yù)報(bào):以水布埡水庫為例[J].水利學(xué)報(bào),2023,54(4):426-438,450.(ZHANG X J,LIU P,ZHOU L T,et al.Real-time forecasting of reservoir water levels over multiple lead times considering time-varying hydrological model parameters and its application in the Shuibuya Reservoir[J].Journal of Hydraulic Engineering,2023,54(4):426-438,450.(in Chinese))
[13]TURNER S W D,BENNETT J C,ROBERTSON D E,et al.Complex relationship between seasonal streamflow forecast skill and value in reservoir operations[J].Hydrology and Earth System Sciences,2017,21(9):4841-4859.
[14]ANGHILERI D,VOISIN N,CASTELLETTI A,et al.Value of long-term streamflow forecasts to reservoir operations for water supply in snow-dominated river catchments[J].Water Resources Research,2016,52(6):4209-4225.
[15]CHANG J X,GUO A J,WANG Y M,et al.Reservoir operations to mitigate drought effects with a hedging policy triggered by the drought prevention limiting water level[J].Water Resources Research,2019,55(2):904-922.
[16]LUO C X,XU B,DING W,et al.Characteristics of reservoirs to mitigate drought effects with a hedging rule triggered by drought limited water level[J].Journal of Hydrology,2023,617:129106.
[17]CLOKE H L,PAPPENBERGER F.Ensemble flood forecasting:a review[J].Journal of Hydrology,2009,375(3/4):613-626.
[18]BRUNNER M,SLATER L,TALLAKSEN L,et al.Challenges in modeling and predicting floods and droughts:a review[J].WIREs Water,2021,8(3):e1520.
[19]雍斌,張建云,王國慶.黃河源區(qū)水文預(yù)報(bào)的關(guān)鍵科學(xué)問題[J].水科學(xué)進(jìn)展,2023,34(2):159-171.(YONG B,ZHANG J Y,WANG G Q.Key scientific issues of hydrological forecast in the headwater area of Yellow River[J].Advances in Water Science,2023,34(2):159-171.(in Chinese))
[20]BAUER P,THORPE A,BRUNET G.The quiet revolution of numerical weather prediction[J].Nature,2015,525(7567):47-55.
[21]RAVURI S,LENC K,WILLSON M,et al.Skilful precipitation nowcasting using deep generative models of radar[J].Nature,2021,597(7878):672-677.
[22]BI K F,XIE L X,ZHANG H H,et al.Accurate medium-range global weather forecasting with 3D neural networks[J].Nature,2023,619(7970):533-538.
[23]金君良,舒章康,陳敏,等.基于數(shù)值天氣預(yù)報(bào)產(chǎn)品的氣象水文耦合徑流預(yù)報(bào)[J].水科學(xué)進(jìn)展,2019,30(3):316-325.(JIN J L,SHU Z K,CHEN M,et al.Meteo-hydrological coupled runoff forecasting based on numerical weather prediction products[J].Advances in Water Science,2019,30(3):316-325.(in Chinese))
[24]EMERTON R,ZSOTER E,ARNAL L,et al.Developing a global operational seasonal hydro-meteorological forecasting system:GloFAS-Seasonal v1.0[J].Geoscientific Model Development,2018,11(8):3327-3346.
[25]YUAN X,WOOD E F,MA Z.A review on climate-model-based seasonal hydrologic forecasting:physical understanding and system development[J].WIREs Water,2015,2(5):523-536.
[26]管曉祥,金君良,劉悅,等.基于數(shù)值天氣預(yù)報(bào)模式的流域中期徑流預(yù)報(bào)[J].水利水電技術(shù),2018,49(11):46-53.(GUAN X X,JIN J L,LIU Y,et al.Numerical weather forecast mode-based medium-term runoff prediction of watershed[J].Water Resources and Hydropower Engineering,2018,49(11):46-53.(in Chinese))
[27]HIRPA F A,SALAMON P,BECK H E,et al.Calibration of the Global Flood Awareness System (GloFAS) using daily streamflow data[J].Journal of Hydrology,2018,566:595-606.
[28]PARK Y Y,BUIZZA R,LEUTBECHER M.TIGGE:preliminary results on comparing and combining ensembles[J].Quarterly Journal of the Royal Meteorological Society,2008,134(637):2029-2050.
[29]KIRTMAN B P,MIN D,INFANTI J M,et al.The North American multimodel ensemble:phase-1 seasonal-to-interannual prediction;phase-2 toward developing intraseasonal prediction[J].Bulletin of the American Meteorological Society,2014,95(4):585-601.
[30]VITART F,ARDILOUZE C,BONET A,et al.The subseasonal to seasonal (S2S) prediction project database[J].Bulletin of the American Meteorological Society,2017,98:163-173.
[31]許小峰.“精準(zhǔn)”預(yù)報(bào)的追求與誤區(qū)[J].氣象科技進(jìn)展,2022,12(4):2-6.(XU X F.Pursuit and misunderstanding of “accurate” forecast[J].Advances in Meteorological Science and Technology,2022,12(4):2-6.(in Chinese))
[32]丁一匯.季節(jié)氣候預(yù)測的進(jìn)展和前景[J].氣象科技進(jìn)展,2011,1(3):14-27.(DING Y H.Progress and prospects of seasonal climate prediction[J].Advances in Meteorological Science and Technology,2011,1(3):14-27.(in Chinese))
[33]唐偉,于丹,肖芳,等.美國統(tǒng)一預(yù)報(bào)系統(tǒng)研發(fā)進(jìn)展和展望[J].氣象科技進(jìn)展,2023,13(4):114-120.(TANG W,YU D,XIAO F,et al.Progress and prospect in developing the unified forecast system in USA[J].Advances in Meteorological Science and Technology,2023,13(4):114-120.(in Chinese))
[34]徐邦琪,臧鈺歆,朱志偉,等.時(shí)空投影模型(STPM)的次季節(jié)至季節(jié)(S2S)預(yù)測應(yīng)用進(jìn)展[J].大氣科學(xué)學(xué)報(bào),2020,43(1):212-224.(XU B Q,ZANG Y X,ZHU Z W,et al.Subseasonal-to-seasonal (S2S) prediction using the spatial-temporal projection model (STPM)[J].Transactions of Atmospheric Sciences,2020,43(1):212-224.(in Chinese))
[35]郭渠,黃安寧,付志鵬,等.北京氣候中心次季節(jié)-季節(jié)預(yù)測系統(tǒng)對(duì)西南地區(qū)夏季降水次季節(jié)預(yù)報(bào)技巧評(píng)估及誤差訂正[J].高原氣象,2021,40(3):644-655.(GUO Q,HUANG A N,F(xiàn)U Z P,et al.Evaluation and bias correction on the subseasonal forecast of summer precipitation over southwestern China forecasted by the Beijing climate center sub-seasonal to seasonal predication system[J].Plateau Meteorology,2021,40(3):644-655.(in Chinese))
[36]SWINBANK R,KYOUDA M,BUCHANAN P,et al.The TIGGE project and its Achievements[J].Bulletin of the American Meteorological Society,2016,97(1):49-67.
[37]趙琳娜,劉瑩,黨皓飛,等.集合數(shù)值預(yù)報(bào)在洪水預(yù)報(bào)中的應(yīng)用進(jìn)展[J].應(yīng)用氣象學(xué)報(bào),2014,25(6):641-653.(ZHAO L N,LIU Y,DANG H F,et al.The progress on application of ensemble prediction to flood forecasting[J].Journal of Applied Meteorological Science,2014,25(6):641-653.(in Chinese))
[38]ZHAO T,BENNETT J C,WANG Q J,et al.How suitable is quantile mapping for postprocessing GCM precipitation forecasts?[J].Journal of Climate,2017,30(9):3185-3196.
[39]蘇翔,袁慧玲,朱躍建.四種定量降水預(yù)報(bào)客觀訂正方法對(duì)比研究[J].氣象學(xué)報(bào),2021,79(1):132-149.(SU X,YUAN H L,ZHU Y J.A comparative study of four objective quantitative precipitation forecast calibration methods[J].Acta Meteorologica Sinica,2021,79(1):132-149.(in Chinese))
[40]HUANG Z Q,ZHAO T,XU W X,et al.A seven-parameter Bernoulli-Gamma-Gaussian model to calibrate subseasonal to seasonal precipitation forecasts[J].Journal of Hydrology,2022,610:127896.
[41]HUANG L,LUO Y L.Evaluation of quantitative precipitation forecasts by TIGGE ensembles for South China during the presummer rainy season[J].Journal of Geophysical Research:Atmospheres,2017,122(16):8494-8516.
[42]李恒,朱堅(jiān).BCC_S2S預(yù)報(bào)長江上中游流域夏季降水精度評(píng)估[J].工程科學(xué)與技術(shù),2022,54(6):21-31.(LI H,ZHU J.Accuracy evaluation of BCC_S2S summer precipitation forecast in the upper and middle reaches of the Yangtze River[J].Advanced Engineering Sciences,2022,54(6):21-31.(in Chinese))
[43]SAHA S,MOORTHI S,WU X R,et al.The NCEP climate forecast system version 2[J].Journal of Climate,2014,27(6):2185-2208.
[44]DELWORTH T L,COOKE W F,ADCROFT A,et al.SPEAR:the next generation GFDL modeling system for seasonal to multidecadal prediction and projection[J].Journal of Advances in Modeling Earth Systems,2020,12(3):e2019MS001895.
[45]BECKER E J,KIRTMAN B P,L′HEUREUX M,et al.A decade of the North American multimodel ensemble (NMME):research,application,and future directions[J].Bulletin of the American Meteorological Society,2022,103(3):E973-E995.
[46]SLATER L J,VILLARINI G,BRADLEY A A.Evaluation of the skill of North-American Multi-Model Ensemble (NMME) Global Climate Models in predicting average and extreme precipitation and temperature over the continental USA[J].Climate Dynamics,2019,53(12):7381-7396.
[47]黃澤青,劉洋,楊振華,等.北美多模型集合預(yù)報(bào)實(shí)驗(yàn)(NMME)全球降水預(yù)報(bào)對(duì)長江上游流域夏季降水適用性研究[J].水文,2020,40(6):16-23.(HUANG Z Q,LIU Y,YANG Z H,et al.Global precipitation forecasts of summer precipitation in the Upper Yangtze River basin:an investigation based on the North Americamulti-model ensemble(NMME) experiment[J].Journal of China Hydrology,2020,40(6):16-23.(in Chinese))
[48]SHEN C P.A transdisciplinary review of deep learning research and its relevance for water resources scientists[J].Water Resources Research,2018,54(11):8558-8593.
[49]DAY G N.Extended streamflow forecasting using NWSRFS[J].Journal of Water Resources Planning and Management,1985,111(2):157-170.
[50]TROIN M,ARSENAULT R,WOOD A W,et al.Generating ensemble streamflow forecasts:a review of methods and approaches over the past 40 years[J].Water Resources Research,2021,57(7):e2020WR028392.
[51]侯東儒,張雪麗,鄔強(qiáng),等.一種基于徑流系數(shù)的山洪預(yù)報(bào)模型構(gòu)建及應(yīng)用[J].水電能源科學(xué),2022,40(5):83-86.(HOU D R,ZHANG X L,WU Q,et al.A flood forecast model for small watersheds in mountainous area based on runoff coefficient[J].Water Resources and Power,2022,40(5):83-86.(in Chinese))
[52]BENNETT J C,ROBERTSON D E,WANG Q J,et al.Propagating reliable estimates of hydrological forecast uncertainty to many lead times[J].Journal of Hydrology,2021,603:126798.
[53]MATTHEWS G,BARNARD C,CLOKE H,et al.Evaluating the impact of post-processing medium-range ensemble streamflow forecasts from the European Flood Awareness System[J].Hydrology and Earth System Sciences,2022,26(11):2939-2968.
[54]LI W,DUAN Q,MIAO C,et al.A review on statistical postprocessing methods for hydrometeorological ensemble forecasting[J].WIREs Water,2017,4(6):e1246.
[55]SCHAAKE J C,HAMILL T M,BUIZZA R,et al.HEPEX:the hydrological ensemble prediction experiment[J].Bulletin of the American Meteorological Society,2007,88(10):1541-1548.
[56]HARRIGAN S,ZSOTER E,CLOKE H,et al.Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System[J].Hydrology and Earth System Sciences,2023,27(1):1-19.
[57]茍嬌嬌,繆馳遠(yuǎn),徐宗學(xué),等.大尺度水文模型參數(shù)不確定性分析的挑戰(zhàn)與綜合研究框架[J].水科學(xué)進(jìn)展,2022,33(2):327-335.(GOU J J,MIAO C Y,XU Z X,et al.Parameter uncertainty analysis for large-scale hydrological model:challenges and comprehensive study framework[J].Advances in Water Science,2022,33(2):327-335.(in Chinese))
[58]HUANG Z,ZHAO T.Predictive performance of ensemble hydroclimatic forecasts:verification metrics,diagnostic plots and forecast attributes[J].WIREs Water,2022,9(2).
[59]ZHAO T,WANG Q J,BENNETT J C,et al.Quantifying predictive uncertainty of streamflow forecasts based on a Bayesian joint probability model[J].Journal of Hydrology,2015,528:329-340.
[60]MCINERNEY D,THYER M,KAVETSKI D,et al.Multi-temporal hydrological residual error modeling for seamless subseasonal streamflow forecasting[J].Water Resources Research,2020,56(11):e2019WR026979.
[61]BAUER P,DUEBEN P,CHANTRY M,et al.Deep learning and a changing economy in weather and climate prediction[J].Nature Reviews Earth & Environment,2023,4(8):507-509.
[62]鄧超,陳春宇,尹鑫,等.融合數(shù)據(jù)同化與機(jī)器學(xué)習(xí)的流域徑流模擬方法[J].水科學(xué)進(jìn)展,2023,34(6):839-849.(DENG C,CHEN C Y,YIN X,et al.Catchment runoff simulation by coupling data assimilation and machine learning methods[J].Advances in Water Science,2023,34(6):839-849.(in Chinese))
[63]吳旭樹,王兆禮,陳柯兵,等.基于大氣環(huán)流和海溫場的降水組合預(yù)報(bào)模型[J].水資源保護(hù),2022,38(6):81-87.(WU X S,WANG Z L,CHEN K B,et al.A precipitation combined forecasting model based on atmospheric circulation and sea surface temperature[J].Water Resources Protection,2022,38(6):81-87.(in Chinese))
[64]劉成帥,孫悅,胡彩虹,等.考慮產(chǎn)流模式空間分布的流域-城市復(fù)合系統(tǒng)洪水預(yù)報(bào)模型[J].水科學(xué)進(jìn)展,2023,34(4):530-540.(LIU C S,SUN Y,HU C H,et al.Study on flood forecasting model of watershed-urban complex system considering the spatial distribution of runoff generation pattern[J].Advances in Water Science,2023,34(4):530-540.(in Chinese))
[65]林康聆,陳華,陳清勇,等.耦合Encoder-Decoder的LSTM徑流預(yù)報(bào)模型研究[J].武漢大學(xué)學(xué)報(bào)(工學(xué)版),2022,55(8):755-761.(LIN K L,CHEN H,CHEN Q Y,et al.Research on LSTM runoff forecast model coupled with Encoder-Decoder[J].Engineering Journal of Wuhan University,2022,55(8):755-761.(in Chinese))
Research progresses and prospects of catchment hydrological forecasting driven by global climate forecasts
Abstract:Global climate models and emerging artificial intelligence models generate big climate forecasts data for catchment hydrological forecasting at daily,sub-seasonal and seasonal timescales.The utilization of global climate forecasts to drive catchment hydrological models are confronted with the technical issues of climate forecast data retrieval,hydrological forecasting model set-up and verification of hydro-climatic forecasts.Starting with international collaborative research projects on global climate forecasting,this paper conducts a survey of short-term weather forecasts for the next 1 day to 2 weeks,sub-seasonal climate forecasts for the next 1 to 60 days,seasonal climate forecasts for the next 1 to 12 months and artificial intelligence-based climate forecasts.Furthermore,the processes of catchment hydrological forecasting driven by global climate forecasts are illustrated by detailing the technical aspects on the calibration of climate forecasts,the setting-up of hydrological models and the verification of predictive performance.By generating real-time and retrospective catchment hydrological forecasts from global climate forecasts,the efficacy of forecasting models can be quantitatively examined by verifying forecast skill at different lead times,laying a solid basis for practical forecasts-based operations of hydraulic infrastructure.
Key words:global climate model;climate forecasts;catchment hydrological model;hydrological forecasts;real-time forecasts;retrospective forecasts;forecast verification