• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of proton structure function at HERA in light of an analytical solution to the Balitsky-Kovchegov equation

    2024-04-02 07:47:44RanjanSaikiaPragyanPhukanandJayantaKumarSarma
    Communications in Theoretical Physics 2024年3期

    Ranjan Saikia ,Pragyan Phukan and Jayanta Kumar Sarma

    1 HEP laboratory,Department of Physics,Tezpur University,Tezpur,Assam-784028,India

    2 Department of Physics,Moran College,Moranhat,Assam-785670,India

    Abstract In this paper,the proton structure functionat small-x is investigated using an analytical solution to the Balitsky–Kovchegov(BK)equation.In the context of the color dipole description of deep inelastic scattering (DIS),the structure functionis computed by applying the analytical expression for the scattering amplitude N(k,Y) derived from the BK solution.At transverse momentum k and total rapidity Y,the scattering amplitude N(k,Y)represents the propagation of the quark-antiquark dipole in the color dipole description of DIS.Using the BK solution we extracted the integrated gluon density xg(x,Q2) and then compared our theoretical estimation with the LHAPDF global data fits,NNPDF3.1sx and CT18.Finally,we have investigated the behavior ofin the kinematic region of 10-5 ≤x ≤10-2 and 2.5 GeV2 ≤Q2 ≤60 GeV2.Our predicted results forwithin the specified kinematic region are in good agreement with the recent high-precision data forfrom HERA(H1 Collaboration) and the LHAPDF global parametrization group NNPDF3.1sx.

    Keywords: quantum chromodynamics (QCD),perturbative QCD (pQCD),proton structure function,small-x,Balitsky–Kovchegov equation

    1.Introduction

    Understanding the substructure of the nucleon within matter is one of the fundamental research topics in high-energy particle physics.It is crucial to understand the structure of the nucleon in order to comprehend the fundamental structure of matter.With the introduction of high-energy accelerator facilities,we have been able to understand the substructure of the nucleon within the framework of quantum chromodynamics(QCD).Understanding the substructure of the nucleon has relied heavily on the structure functions of the nucleon.Deep inelastic scattering (DIS) experiments on hadrons by leptons have yielded significant data on the distribution of partons within hadrons in terms of the quark and gluon distributions.The DIS cross section is associated with the structure functions of the nucleon in relation to parton distributions.The measurements of the proton’s structure functionsat HERA have begun a new era of parton density measurement within the nucleon [1–4].These structure functions can be correlated with the momentum distributions of partons within the nucleon,and thus the parton distribution functions (PDFs).At high energies,or equivalently at small-x(Bjorkenx) values,the gluon density dominates among partons,and hence the dominant contribution inobservations comes exclusively from gluons.Therefore,measurements of these structure functions at small-xare essential for calculating gluon distribution functions and visualising the overall hadronic wave function in high-density QCD.

    The DGLAP (DokshitzerGribovLipatovAltarelliParisi)evolution equation [5–9],the famous and well-established evolution equation,acts as a basic tool for the theoretical investigation of DIS structure functions.This equation has been successfully applied to address available HERA data in the moderate kinematical region of Bjorken’sx(x≥0.01).At small-x,HERA data shows a steep rise in the behaviour of gluons in the region.This steep behaviour of gluons at small-xis well described by the famous BFKL (Balitsky–Fadin–Kuraev–Lipatov) evolution equation [10,11].However,the rapid growth of gluons at small-xcannot continue indefinitely;otherwise,the physical cross-sections will violate unitarity and the Froissart–Martin bound [12].As a result,both the DGLAP and BFKL evolution equations fail to account for implicit physics in high-density QCD.In order to maintain the unitarity of the theory,the infinite growth of gluons must be slowed down by certain processes.The phenomena of gluon recombination and saturation have provided the solution to the problems faced at small-xby the linear evolution equations [13–17].The nonlinear phenomena of gluon recombination and saturation lead to nonlinear terms in the DGLAP and BFKL equations.The Balitsky–Kovchegov(BK) equation [18–21],nonlinearization of the BFKL equation,and mean-field approximation to the Jalilian–Marian–Iancu–McLerran–Weigert–Leonidov–Kovner(JIMWLK)equation [22–25] describe the behaviour of gluon density in the small-xregion.The BK equation is an integro-differential equation in coordinate space that can be transformed to momentum space to yield a partial differential equation useful for phenomenological studies at various high-energy accelerator facilities.This equation has been studied and solved numerically;however,due to its complexity,we have not seen an exact analytical solution to this equation to date.We recently proposed an approximate analytical solution to the BK equation that can be useful for phenomenology in the context of gluon saturation and hence small-xphysics [26].

    The collaborations at HERA contributed high-precision data for measuring the proton structure functionat different kinematical regions ofxandQ2[27,28].Some recent works on the measurement of proton structure functions using various evolution equations and approaches are described in[29–33],and the results correlate well with the experimental data.In [34],for the first time,the reproduction of measurements of the DIS proton structure function at high energy from the color dipole description in momentum space was investigated.Using the knowledge of asymptotic solutions of the BK equation,the authors of [34] measured the charm structure functionas a function ofxfor various values ofQ2and compared their results favourably with those of the HERA experiment.At small-x,it has been shown at HERA that the contributions in PDFs come exclusively from gluons.Thus,the determination of gluon density is essential in order to understand the overall hadronic wave function at small-x.We do not see any theoretical measurement of gluon density at small-xusing BK evolution theory,which motivates the current work.We previously presented an analytical expression for the scattering amplitudeN(k,Y),which describes the propagation of the quark-antiquark dipole through the target color field in the color dipole model at various rapidities,Y[26].In this work,we want to extract the gluon densityxg(x,Q2) and analyze the proton structure functionat small-xby combining experimental data with QCD evolution theory using the analytical solution of the BK equation in momentum space.We compute the gluon densityxg(x,Q2)and the proton structure functionat various kinematical regions of HERA and analyze their behavior at small-x.

    The plan of the paper is as follows:in section 2,we relate the dipole-proton cross-section with forward scattering amplitude within the color dipole description of DIS in QCD.Then,using the analytical solution of the BK equation,we discuss how the structure functionof the proton can be obtained from the color dipole description.In section 3,we present thexevolution of the integrated gluon densityxg(x,Q2) for twoQ2values,viz.35 GeV2and 100 GeV2using the BK evolution theory.Our results are compared with the LHAPDF global data fits NNPDF3.1sx [35] and CT18[36].Both have LHC and HERA data included in their analyses.Finally,the obtained numerical results on the proton structure functionusing the analytical solution of the BK equation and comparison with the data from the H1 Collaboration and LHAPDF global parameterization group NNPDF3.1sx [35] are shown.Section 4 follows the discussion of the summary and the conclusion of our work.

    2.Proton structure functions in the color dipole description

    2.1.Color dipole description

    In QCD,the color dipole description of DIS[37–39]has been a useful tool for various perturbative QCD (pQCD) calculations at small-xof high density QCD.It is especially convenient to work with the pQCD dipole description of DIS when it comes to the energy dependence of the scattering amplitude of any DIS event.The scattering process in the color dipole description of DIS can be factored into several steps where an incoming high-speed virtual photon (γ*) after fluctuation from QCD vacuum changes to a quark-antiquarkdipole.The formed dipole then scatters off the target proton,eventually forming the final-state particles.In the color dipole description,following [40],the total γ*pcross section for the γ*pscattering can be factored as

    ΨT,Lrepresents the wave function for the virtual photon (γ*)to fluctuate into the quark-antiquarkdipole with a transverse size ofr.T,Lrepresent the transverse and longitudinal polarisation states of the virtual photon,respectively,andzrepresents the longitudinal momentum fraction of the virtual photon carried by the quark (or antiquark).Q2represents the virtuality of the photon,whileYrepresents the total rapidity.The dipole-proton cross section(r,Y),which is the imaginary component of the forward scattering amplitude of the dipole on the target proton,contains all the information on the hadronic interactions.

    The dipole-proton cross section,(r,Y),can be obtained from the elastic dipole-proton scattering amplitude A (r,Y)using the optical theorem as [41,42]

    N(r,Y,b) is the value for the imaginary part of the forward elastic dipole-proton scattering amplitude.Now,if one considers the target proton as a homogeneous disk of radiusRp,then the dipole-proton cross section can be related to the forward scattering amplitudeN(r,Y)by the following relation[34] :

    The scattering amplitudeN(r,Y) will come from the solution of the BK equation.

    After obtaining the γ*pcross-section,one can obtain directly the proton structure functionfrom the γ*pcrosssection through the relation

    Now,we see how the structure functionFp2 can be obtained using the scattering amplitudeN(r,Y) obtained from the analytical solution of the BK equation.The BK equation describes the high-energy evolution of the dipole-target proton scattering amplitudeN(r,Y) in the dipole description,which in turn describes the propagation of the quark-antiquark dipole through the target color field.We express the γ*pcross-section inN(k,Y)and hence the structure function of the proton in momentum space,as the asymptotic behaviour of the solution of the BK equation can be expressed naturally in momentum space.For that,let us transformN(r,Y)toN(k,Y)by the following simple Fourier transform

    The proton structure functionin momentum space related toN(k,Y) can be expressed as follows using the discussion from above and some algebraic calculations [34]:

    where the photon wave function ?Ψ is now expressed in the momentum space and can be found in [34] andNcare the number of colors.The scattering amplitudeN(k,Y) comes from the solution of the BK equation.The scattering amplitudeN(k,Y) at total rapidityYand transverse momentumkobeys the BK equation in the momentum space as [20]

    Both the equations belong to the same universality class,and their solutions are of the same nature,i.e.travelling wave nature.We suggested an approximate analytical solution of the BK equation(7)in connection with the FKPP equation(8)using the homotopy perturbation method (HPM) in [26].Following [26],the solution of the BK equation (7) in connection with the FKPP equation (8) is given by

    Nis the initial condition atY=0 i.e.N(k,0)=N.This solution of the BK equation gives the scattering amplitudeN(k,Y) at any given rapidityY>0,once the initial conditionNis known to us.For the initial conditionN,we use the GBW(Golec–Biernat and Wusthoff) initial condition given by [48]

    Qis the squared value of the initial saturation momentum of gluons that can be fitted from the existing HERA data,and its value is 0.24 GeV2[49].As we are dealing with the the BK equation in momentum space,the use of the GBW initial condition would be helpful as this can be transformed into momentum space simply,resulting in

    Therefore,we can write the GBW initial condition (10) in momentum space as

    Now,we use the above equation in equation (9) and replace the initial conditionNwith the GBW initial condition in momentum space,which gives

    The scattering amplitude expression given above is an approximate analytical solution to the BK equation (7).

    Figure 1.The probability distribution of the virtual photon to emit a quark-antiquark pair as a function of k with mq →0 and z for various Q2.

    In light of the above discussions,we will now investigate the proton structure functionFp2 by combining experimental data from the HERA experiment with QCD evolution theory.To do this,we will use the analytical solution of the BK equation,which is expressed above.

    3.Results and discussions

    To investigate the proton structure function,we use the expression equation(6)with the analytical solution of the BK equation (14).We handle the expression equation (6)numerically for various inputs ofxandQ2.In equation (6),)z;Q2represents the probability of a virtual photon emitting a quark-antiquark pair with the momentum fractionz(quark) and (1-z) (antiquark) of the virtual photon in the momentum space.Its expression is given by [34]

    The solution (14) gives the propagation of thedipole in the color dipole description of QCD,which in turn gives the gluon content of the proton,i.e.the unintegrated gluon density.To calculate conventional gluon densityxg(x,Q2),we integrate the BK solution(14)over transverse momentum with the relation

    The extracted results of the gluon density from the BK solution are compared with the global data fits NNPDF3.1sx and CT18.The results are shown in figure 2.

    For the proton structure functionwe plug the expression given in equation (15) (withmq→0 andz=1/2)together with the BK solution given in equation (14) into equation(6).We setNc=3 andRp≈0.831fm≈4.22 GeV-1in the expression equation (6) and solve the expression numerically for variousQ2.The value of theRpis taken from the recent study on the proton radius [50].We analyse the expression equation (6) numerically and compare our results with the HERA measurements of the proton structure function from the H1 Collaboration [28] with constraints to the kinematic region: 10-5≤x≤10-2and 2.5 ≤Q2≤60 GeV2.We also compare our results with the LHAPDF global parameterization group NNPDF3.1sx [35].The reason for choosing the particular kinematic regionx≤10-2is to describe the small-xbehaviour of high-energy amplitude as the BK equation is only applicable at small-x.For theQ2range which is too high,we would need corrections from the DGLAP equation,which we cannot skip atQ2which is too high.The results are shown in figure 3.

    4.Summary and conclusion

    In this work,we have investigated the proton structure functionin light of an analytical solution of the BK equation.Proton structure functions have been investigated by different collaborations at experimental facilities such as HERA and the LHC.On the phenomenological side,the proton structure functions have been investigated by studying different QCD evolution equations and well tested at existing experimental facilities.To investigate the proton structure functions at small-x,the BK equation is most suitable for testing the experimental data on observables.In this work,we have stated our discussion on how we can obtain the proton structure functionfrom the color dipole description of the DIS in QCD.In the color dipole approach,the proton structure functionis obtained directly from the virtual photon-proton cross-section,which can be expressed in the dipole-proton scattering amplitudeN(k,Y).The dipole-proton scattering amplitudeN(k,Y) is obtained from the solution of the BK equation.Using the BK solution,we extracted thexevolution of the integrated gluon densityxg(x,Q2) and compared our results with those of LHAPDF global data fits NNPDF3.1sx and CT18.Both NNPDF3.1sx and CT18 have HERA and LHC data included in their analyses.Finally,we computed the proton structure functionand compared it with the measurement ofat HERA from the H1 Collaboration and the LHAPDF global parameterization group NNPDF3.1sx.Our predicted results are in good agreement with the experimental results within the kinematic region we have constrained.Beyond that,we have to consider corrections to the DGLAP equation.We have also shown in this work how the virtual photon wave function Ψ would behave against transverse momentumkwithmq→0,z=1/2 at variousQ2.We found that the probability of the virtual photon emitting a quark-antiquark pair increases askincreases to a certain peak value,after which it starts to fall askincreases.We have seen that the maximum probability is the same for differentQ2values,irrespective of the value ofkat the maximum peak for differentQ2values.

    Figure 2.x evolution of gluon density xg(x,Q2)extracted from the BK solution compared with the global data fits NNPDF3.1sx and CT18.

    Figure 3.The results of the proton structure function as a function of x at various Q2 obtained in this work are compared with the data from the H1 Collaboration [28] and global data fit NNPDF3.1sx [35].

    In this work,we have seen the ability of our BK solution to describe physics at small-x.We have successfully applied our BK solution to calculate the gluon densityxg(x,Q2) and the proton’s structure functionat small-xwithin the kinematic region we have constrained.Also,our results are testable at future experimental facilities such as the LHeC(Large Hadron electron Collider) [51,52],EIC (Electron Ion Collider) [53],and the FCC-eh (Future Circular Collider electron-hadron) [54].In these future experimental facilities,the measurement of the proton structure function will be performed at much lower values ofxwith increased precision.Nevertheless,we could investigate the proton structure functionusing an analytical solution of the BK equation within the constrained region.We conclude that the analytical solution of the BK equation can serve as a convenient tool for further studies at small-xand high-density QCD.We hope that the BK equation,together with future experimental facilities,will help us understand and explore phenomena inside hadrons at small-xin the near future.

    ORCID iDs

    免费观看精品视频网站| 亚洲一区高清亚洲精品| 3wmmmm亚洲av在线观看| 51国产日韩欧美| 国产精品伦人一区二区| 中国国产av一级| 精品一区二区三区人妻视频| a级一级毛片免费在线观看| 最新在线观看一区二区三区| 综合色av麻豆| 国产精品久久久久久亚洲av鲁大| 如何舔出高潮| 欧美一区二区亚洲| 2021天堂中文幕一二区在线观| 国产高清三级在线| 一边摸一边抽搐一进一小说| 久久久久国产精品人妻aⅴ院| av视频在线观看入口| 国产爱豆传媒在线观看| 久久久精品大字幕| 成人无遮挡网站| 国产精品久久久久久精品电影| 成人综合一区亚洲| 极品教师在线视频| 久久久国产成人免费| 国产一区亚洲一区在线观看| 免费观看在线日韩| 夜夜夜夜夜久久久久| 美女xxoo啪啪120秒动态图| 一级毛片aaaaaa免费看小| 久久九九热精品免费| 久久久久久大精品| 无遮挡黄片免费观看| 亚洲丝袜综合中文字幕| 日韩av在线大香蕉| 欧美精品国产亚洲| 天天躁夜夜躁狠狠久久av| 最后的刺客免费高清国语| 少妇丰满av| 免费av不卡在线播放| 亚洲欧美中文字幕日韩二区| 国国产精品蜜臀av免费| 亚洲成人中文字幕在线播放| 日本熟妇午夜| 国产aⅴ精品一区二区三区波| 欧美在线一区亚洲| 国产精品,欧美在线| 成人特级黄色片久久久久久久| a级毛片a级免费在线| 亚洲精品一区av在线观看| 午夜福利成人在线免费观看| 亚洲七黄色美女视频| 网址你懂的国产日韩在线| 天堂av国产一区二区熟女人妻| 精品久久久久久久久亚洲| 看免费成人av毛片| 中出人妻视频一区二区| 亚洲熟妇熟女久久| 欧美+亚洲+日韩+国产| 亚洲在线自拍视频| 男女视频在线观看网站免费| 久久精品国产自在天天线| 少妇熟女aⅴ在线视频| 成熟少妇高潮喷水视频| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美成人精品一区二区| 性欧美人与动物交配| 久久久久久久午夜电影| 久久精品国产亚洲av香蕉五月| 变态另类成人亚洲欧美熟女| 色尼玛亚洲综合影院| 国产精华一区二区三区| 国产高清有码在线观看视频| 亚洲欧美精品自产自拍| 又爽又黄a免费视频| 国产成人a∨麻豆精品| 丰满人妻一区二区三区视频av| 成人av一区二区三区在线看| 国产免费男女视频| 韩国av在线不卡| eeuss影院久久| 国产精品一区二区三区四区免费观看 | 一级毛片aaaaaa免费看小| 免费看日本二区| 亚洲av成人av| 日本五十路高清| 大香蕉久久网| 少妇的逼水好多| 精品人妻熟女av久视频| 国产精品精品国产色婷婷| 久久这里只有精品中国| 永久网站在线| 三级经典国产精品| 欧美日本视频| 日韩成人伦理影院| 国产伦精品一区二区三区四那| 精品久久久久久成人av| 99热这里只有是精品在线观看| 日日干狠狠操夜夜爽| 最近视频中文字幕2019在线8| 美女免费视频网站| 久久热精品热| 一级黄色大片毛片| 啦啦啦观看免费观看视频高清| 少妇猛男粗大的猛烈进出视频 | 免费观看人在逋| 中文字幕av成人在线电影| 亚洲精华国产精华液的使用体验 | 国产精品电影一区二区三区| 日韩三级伦理在线观看| 国产三级中文精品| 国产精品国产高清国产av| 精品人妻一区二区三区麻豆 | 国产亚洲精品久久久com| 国产精品,欧美在线| 日本黄色视频三级网站网址| 国产精品乱码一区二三区的特点| 久久久久久久久久久丰满| 1024手机看黄色片| 舔av片在线| 一进一出好大好爽视频| 中文字幕av成人在线电影| 久久99热6这里只有精品| 国产一区二区三区av在线 | 亚洲精品一区av在线观看| 欧美最新免费一区二区三区| 波多野结衣巨乳人妻| 国产在视频线在精品| 欧美xxxx黑人xx丫x性爽| 亚洲内射少妇av| 久久这里只有精品中国| 无遮挡黄片免费观看| 国产av在哪里看| 亚洲人成网站在线播放欧美日韩| 国产色爽女视频免费观看| 日本黄色片子视频| 一本一本综合久久| 我要搜黄色片| 精品乱码久久久久久99久播| 91av网一区二区| 在线观看av片永久免费下载| 国产伦在线观看视频一区| 欧美色欧美亚洲另类二区| 毛片一级片免费看久久久久| a级毛片免费高清观看在线播放| 我的老师免费观看完整版| 一个人看视频在线观看www免费| 国产精品伦人一区二区| 国产亚洲av嫩草精品影院| 一级黄片播放器| 天堂动漫精品| 久久精品国产自在天天线| 国产精品亚洲一级av第二区| 亚洲成av人片在线播放无| 精品午夜福利视频在线观看一区| 亚洲精品粉嫩美女一区| 午夜福利高清视频| 国产乱人偷精品视频| 非洲黑人性xxxx精品又粗又长| 俄罗斯特黄特色一大片| 国产国拍精品亚洲av在线观看| 免费不卡的大黄色大毛片视频在线观看 | 日韩中字成人| 午夜影院日韩av| 亚洲中文日韩欧美视频| 亚洲三级黄色毛片| 久久久精品大字幕| 高清毛片免费看| 欧美激情在线99| 色吧在线观看| 精品乱码久久久久久99久播| 亚洲精品亚洲一区二区| 国产精品乱码一区二三区的特点| 欧美在线一区亚洲| 18禁在线播放成人免费| 男女下面进入的视频免费午夜| 成人毛片a级毛片在线播放| 一个人看视频在线观看www免费| 欧美国产日韩亚洲一区| 夜夜夜夜夜久久久久| 99久国产av精品国产电影| 日韩强制内射视频| 亚洲av免费在线观看| 日本五十路高清| 日韩精品有码人妻一区| 一a级毛片在线观看| 日本五十路高清| 国产男靠女视频免费网站| 亚洲电影在线观看av| 亚洲色图av天堂| 搡老熟女国产l中国老女人| 午夜福利成人在线免费观看| 亚洲不卡免费看| 精品午夜福利视频在线观看一区| 成年版毛片免费区| 国产午夜精品论理片| 久久久欧美国产精品| 成人二区视频| 九九爱精品视频在线观看| 成年女人毛片免费观看观看9| 欧美xxxx性猛交bbbb| www日本黄色视频网| 国内精品久久久久精免费| 国产精品亚洲美女久久久| 三级国产精品欧美在线观看| 日本色播在线视频| 国产黄a三级三级三级人| 日日摸夜夜添夜夜爱| 在线免费观看不下载黄p国产| 日韩成人av中文字幕在线观看 | 99久国产av精品| 成人美女网站在线观看视频| 天天一区二区日本电影三级| 午夜福利在线观看免费完整高清在 | 桃色一区二区三区在线观看| 乱码一卡2卡4卡精品| 亚洲性久久影院| av.在线天堂| 国产精品无大码| 国产av不卡久久| 我要搜黄色片| 午夜福利视频1000在线观看| 成人鲁丝片一二三区免费| 色综合亚洲欧美另类图片| 人妻制服诱惑在线中文字幕| 久久热精品热| 精品久久久久久久久亚洲| 国产男人的电影天堂91| 一个人免费在线观看电影| 18禁裸乳无遮挡免费网站照片| 色播亚洲综合网| 一级黄片播放器| 午夜精品一区二区三区免费看| 白带黄色成豆腐渣| 久久99热这里只有精品18| 久久综合国产亚洲精品| 久99久视频精品免费| 国产aⅴ精品一区二区三区波| 美女被艹到高潮喷水动态| 人人妻人人澡人人爽人人夜夜 | 少妇人妻精品综合一区二区 | 国产午夜精品久久久久久一区二区三区 | 在线观看av片永久免费下载| 菩萨蛮人人尽说江南好唐韦庄 | 精品欧美国产一区二区三| 免费黄网站久久成人精品| 免费看光身美女| 18禁黄网站禁片免费观看直播| 亚洲国产欧美人成| 噜噜噜噜噜久久久久久91| 欧美日本亚洲视频在线播放| 中国国产av一级| 一进一出抽搐动态| 亚洲最大成人中文| 3wmmmm亚洲av在线观看| 我要搜黄色片| 成熟少妇高潮喷水视频| 高清午夜精品一区二区三区 | 欧美一区二区精品小视频在线| 亚洲精品在线观看二区| 国产一区二区亚洲精品在线观看| 日韩亚洲欧美综合| 免费一级毛片在线播放高清视频| 日本黄大片高清| 12—13女人毛片做爰片一| 日本 av在线| 99在线人妻在线中文字幕| 男女视频在线观看网站免费| 亚洲美女搞黄在线观看 | 欧美一区二区国产精品久久精品| 日本一二三区视频观看| 真实男女啪啪啪动态图| 人人妻人人澡人人爽人人夜夜 | 黄色日韩在线| 在线观看免费视频日本深夜| 精品国产三级普通话版| 99国产精品一区二区蜜桃av| 欧美3d第一页| 亚洲性久久影院| 久久鲁丝午夜福利片| av福利片在线观看| 婷婷色综合大香蕉| 69av精品久久久久久| 老司机午夜福利在线观看视频| 青春草视频在线免费观看| 日韩欧美 国产精品| 亚洲精品国产成人久久av| 日本一二三区视频观看| 中文字幕精品亚洲无线码一区| 亚洲久久久久久中文字幕| 国产成人一区二区在线| 亚洲成人精品中文字幕电影| 欧美性猛交╳xxx乱大交人| 啦啦啦啦在线视频资源| 麻豆一二三区av精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲成人精品中文字幕电影| 欧美一区二区亚洲| aaaaa片日本免费| 亚洲av成人精品一区久久| 国产三级中文精品| 18禁在线播放成人免费| 色视频www国产| 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女黄片视频| 长腿黑丝高跟| 一本一本综合久久| 国产aⅴ精品一区二区三区波| 亚洲av电影不卡..在线观看| 变态另类成人亚洲欧美熟女| 成人国产麻豆网| 男人的好看免费观看在线视频| 精品久久久久久久久久免费视频| 看免费成人av毛片| 精华霜和精华液先用哪个| 午夜免费激情av| 国产午夜精品论理片| 无遮挡黄片免费观看| 露出奶头的视频| 人妻少妇偷人精品九色| 联通29元200g的流量卡| 九九在线视频观看精品| 亚洲成人中文字幕在线播放| 淫秽高清视频在线观看| 亚洲国产精品成人久久小说 | 老司机影院成人| 精品一区二区三区av网在线观看| 欧美激情久久久久久爽电影| 在线观看66精品国产| 日日啪夜夜撸| 久久久久久久午夜电影| 久久午夜亚洲精品久久| 人妻丰满熟妇av一区二区三区| 亚洲电影在线观看av| 国产精品亚洲一级av第二区| a级毛片免费高清观看在线播放| 在线免费十八禁| 伦理电影大哥的女人| 少妇丰满av| 一级毛片久久久久久久久女| 一进一出抽搐动态| 日韩在线高清观看一区二区三区| 3wmmmm亚洲av在线观看| 嫩草影院精品99| 中文在线观看免费www的网站| 97超碰精品成人国产| 深夜a级毛片| 最近中文字幕高清免费大全6| 少妇人妻精品综合一区二区 | 免费观看人在逋| 久久精品国产亚洲av天美| 三级男女做爰猛烈吃奶摸视频| 久久中文看片网| 国产69精品久久久久777片| 亚洲av五月六月丁香网| 免费高清视频大片| 久久精品国产亚洲网站| 国产成人freesex在线 | 美女内射精品一级片tv| 久久精品国产亚洲网站| 91狼人影院| 久久久久国产精品人妻aⅴ院| 三级经典国产精品| 国产精品免费一区二区三区在线| а√天堂www在线а√下载| 特大巨黑吊av在线直播| 黄色一级大片看看| 婷婷精品国产亚洲av在线| 精品久久国产蜜桃| 久99久视频精品免费| 日日摸夜夜添夜夜添小说| 人妻夜夜爽99麻豆av| 哪里可以看免费的av片| 毛片女人毛片| 国产高清三级在线| 国产成人精品久久久久久| 在线免费观看的www视频| 久久午夜亚洲精品久久| 99精品在免费线老司机午夜| 国内少妇人妻偷人精品xxx网站| 国产一区二区在线观看日韩| av卡一久久| 亚洲国产精品久久男人天堂| 亚洲中文字幕日韩| 色综合亚洲欧美另类图片| 99久久无色码亚洲精品果冻| 九九爱精品视频在线观看| 欧美激情久久久久久爽电影| 搡老岳熟女国产| 亚洲五月天丁香| 成人美女网站在线观看视频| 国产精品久久久久久亚洲av鲁大| 麻豆国产97在线/欧美| 乱系列少妇在线播放| 日韩在线高清观看一区二区三区| av天堂在线播放| 成人午夜高清在线视频| 乱码一卡2卡4卡精品| 三级国产精品欧美在线观看| 久久人人爽人人爽人人片va| 亚洲国产色片| 亚洲第一电影网av| 一个人看的www免费观看视频| av天堂在线播放| 美女内射精品一级片tv| 欧美最黄视频在线播放免费| 久久人人精品亚洲av| 18禁在线播放成人免费| 韩国av在线不卡| 欧美激情久久久久久爽电影| 国产精品免费一区二区三区在线| 毛片一级片免费看久久久久| 久久精品国产鲁丝片午夜精品| 波野结衣二区三区在线| 长腿黑丝高跟| 麻豆精品久久久久久蜜桃| 99久久九九国产精品国产免费| 国产成人91sexporn| 久久午夜亚洲精品久久| 精品国内亚洲2022精品成人| 2021天堂中文幕一二区在线观| 亚洲性夜色夜夜综合| 最近2019中文字幕mv第一页| 欧美激情国产日韩精品一区| 欧美又色又爽又黄视频| 综合色丁香网| 午夜精品一区二区三区免费看| 亚洲激情五月婷婷啪啪| 亚洲七黄色美女视频| 美女被艹到高潮喷水动态| 欧美又色又爽又黄视频| 欧美在线一区亚洲| 乱码一卡2卡4卡精品| 在线观看av片永久免费下载| 偷拍熟女少妇极品色| 精品日产1卡2卡| av天堂中文字幕网| 国产不卡一卡二| 久久久久国内视频| 精品久久久久久久久久免费视频| 中文字幕av在线有码专区| 亚洲乱码一区二区免费版| 午夜亚洲福利在线播放| 日本一二三区视频观看| 中文字幕免费在线视频6| 成人特级黄色片久久久久久久| 美女黄网站色视频| 欧美色视频一区免费| 亚洲av中文字字幕乱码综合| 欧美bdsm另类| 亚洲欧美日韩高清专用| 国产av麻豆久久久久久久| 亚洲精品日韩av片在线观看| 国产成人影院久久av| 别揉我奶头 嗯啊视频| 高清午夜精品一区二区三区 | 中文亚洲av片在线观看爽| 露出奶头的视频| 久久久久久久久久久丰满| 欧美日本视频| 草草在线视频免费看| 日韩欧美精品免费久久| 特级一级黄色大片| 丰满人妻一区二区三区视频av| 夜夜爽天天搞| 免费搜索国产男女视频| 欧美丝袜亚洲另类| 成年av动漫网址| 国产成人freesex在线 | 亚洲成a人片在线一区二区| 中国美白少妇内射xxxbb| 搡女人真爽免费视频火全软件 | 国产一区二区三区av在线 | 成人三级黄色视频| 久久午夜福利片| 久久久久久九九精品二区国产| 亚洲美女视频黄频| 99久国产av精品国产电影| 午夜精品一区二区三区免费看| 欧美另类亚洲清纯唯美| 国内精品一区二区在线观看| 国产av不卡久久| 少妇熟女欧美另类| 在线观看66精品国产| 亚洲性夜色夜夜综合| 欧美色欧美亚洲另类二区| 日韩大尺度精品在线看网址| 亚洲精品日韩在线中文字幕 | 此物有八面人人有两片| 高清毛片免费观看视频网站| 天堂影院成人在线观看| 久久久欧美国产精品| 免费电影在线观看免费观看| 性欧美人与动物交配| 国产高清视频在线播放一区| 嫩草影院入口| 日韩欧美在线乱码| 男女啪啪激烈高潮av片| 久久久久九九精品影院| 日本熟妇午夜| 久久久久久大精品| 观看免费一级毛片| 欧美+亚洲+日韩+国产| 日韩欧美精品v在线| 亚洲国产精品成人久久小说 | 校园春色视频在线观看| 一个人看的www免费观看视频| 亚洲成人中文字幕在线播放| 高清毛片免费观看视频网站| 97超碰精品成人国产| 午夜a级毛片| 热99re8久久精品国产| 国产亚洲精品久久久久久毛片| 久久精品国产清高在天天线| 三级毛片av免费| 老熟妇乱子伦视频在线观看| 国产亚洲91精品色在线| 99热这里只有精品一区| 人人妻,人人澡人人爽秒播| 国产精华一区二区三区| 久久久久国产精品人妻aⅴ院| 丰满人妻一区二区三区视频av| 99热6这里只有精品| 日本黄色视频三级网站网址| 搡老妇女老女人老熟妇| 免费人成在线观看视频色| 久久婷婷人人爽人人干人人爱| 国产美女午夜福利| 在线天堂最新版资源| 一级毛片久久久久久久久女| 天堂影院成人在线观看| 国产真实伦视频高清在线观看| 少妇猛男粗大的猛烈进出视频 | 精品一区二区三区视频在线观看免费| 男女做爰动态图高潮gif福利片| 久久久久九九精品影院| 亚洲欧美日韩东京热| 男女边吃奶边做爰视频| 成年av动漫网址| 精品人妻视频免费看| 一级黄片播放器| 日本免费一区二区三区高清不卡| а√天堂www在线а√下载| 最近最新中文字幕大全电影3| 国产精品一区二区性色av| 日本一二三区视频观看| 亚洲成人av在线免费| 99国产精品一区二区蜜桃av| 赤兔流量卡办理| 国产精品人妻久久久影院| 久久久久久久久久久丰满| 五月伊人婷婷丁香| 夜夜夜夜夜久久久久| 亚洲精品亚洲一区二区| 国产欧美日韩一区二区精品| 欧美日韩一区二区视频在线观看视频在线 | 黄片wwwwww| 免费看日本二区| 午夜影院日韩av| 成人av在线播放网站| 亚洲一区二区三区色噜噜| 久久久久九九精品影院| 在线观看免费视频日本深夜| 亚洲婷婷狠狠爱综合网| 看十八女毛片水多多多| 夜夜爽天天搞| 免费av不卡在线播放| 色播亚洲综合网| 国产乱人视频| 老司机影院成人| 日本黄大片高清| 日本欧美国产在线视频| 国内精品美女久久久久久| 久久九九热精品免费| 一级黄色大片毛片| 女人十人毛片免费观看3o分钟| 亚洲成av人片在线播放无| 精品久久国产蜜桃| 看片在线看免费视频| 国产一区二区激情短视频| 亚洲丝袜综合中文字幕| 国产欧美日韩精品亚洲av| 青春草视频在线免费观看| 久久久久久国产a免费观看| 日韩一区二区视频免费看| 色吧在线观看| 久久久a久久爽久久v久久| 免费av毛片视频| 国产又黄又爽又无遮挡在线| 国产精品一及| 久久久久久久久久久丰满| 久久久久久伊人网av| 真实男女啪啪啪动态图| 亚洲精品色激情综合| 成人综合一区亚洲| 精品久久久久久久久av| 麻豆一二三区av精品| 日韩强制内射视频| av在线亚洲专区| 免费观看人在逋| 看免费成人av毛片| 日韩av在线大香蕉| av天堂中文字幕网| 男插女下体视频免费在线播放| 亚洲成av人片在线播放无| 国产精品精品国产色婷婷| 尾随美女入室| 97超视频在线观看视频| 99久国产av精品| 午夜a级毛片| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区av在线 | 天天躁日日操中文字幕| 国产高清不卡午夜福利| 插阴视频在线观看视频|