• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Clutter Suppression Algorithm for Low-Slow-Small Targets Detecting Based on Sparse Adaptive Filtering

    2024-03-18 09:00:06ZeqiYangShuaiMaNingLiuKaiChangXiaodeLyu

    Zeqi Yang, Shuai Ma, Ning Liu, Kai Chang, Xiaode Lyu

    Abstract: Passive detection of low-slow-small (LSS) targets is easily interfered by direct signal and multipath clutter, and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper, a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint, and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time, the step size and penalty factor are brought into the adaptive iteration process, and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation, which improves the robustness to parameters such as step size, reduces the weight error of the filter and has a good clutter suppression performance.

    Keywords: passive radar; interference suppression; sparse representation; adaptive filtering

    1 Introduction

    In recent years, the rapid development of small aircraft, such as unmanned aerial vehicles, has brought potential threats to the surveillance of low-altitude areas and air traffic safety, and the research on the detecting, tracking and positioning system of low-slow-small (LSS) targets has gradually become a hot topic [1].The echoes of LSS targets are vulnerable to ground clutter and multipath interference due to their low flying altitude, slow flying speed and small radar cross section (RCS), and the Doppler frequency is small, and the target echo is weak, so it is necessary to detect weak targets in strong clutter environment.It is of great significance to develop the passive detection technology for the efficient detection of LSS targets [2].Passive radar usually uses the third-party non-cooperative radiation sources such as digital television (TV) signals and communication base station signals to detect targets.Illuminators of opportunity are various and widely distributed, which has the advantages of anti-interference, low cost and no occupation of spectrum resources.It is an effective method to detect low-altitude targets by using illuminators of opportunity [3,4].

    In the passive radar detection of LSS targets, due to the complex low-altitude environment and the small RCS of targets, the echo of LSS targets is weak, and it is more vulnerable to interference from ground buildings.The echo of coherent targets is covered by direct signal and multipath clutter, which makes it difficult to detect targets.Therefore, clutter suppression before target detection is an important means to improve the detection performance of the system[5].The commonly used clutter suppression algorithm is mainly adaptive filtering algorithm, and the adaptive filter achieves the best filtering performance by iteratively adjusting the coefficients of the filter.Widrow et al.[6] proposed an adaptive filter represented by least mean square(LMS), which suppresses the clutter signal in the received signal through multiple iterations, with slow convergence rate and poor clutter suppression performance; The extensive cancellation algorithm (ECA) and its improved algorithm proposed in [7,8] complete the interference suppression of direct signal by taking the interference signal as an orthogonal projection matrix,which has high computational complexity and is not conducive to practical application.Reference[9] adopts recursive least square (RLS) algorithm, and its convergence rate is restricted by forgetting factor.The frequency-domain block least mean square filter (FBLMS) [10,11] has the characteristics of fast convergence and real-time processing, and has been widely used in clutter suppression of passive radar.However, the traditional LMS algorithm has the contradiction between step size and convergence rate.To solve this problem, many improved adaptive filtering algorithms have been proposed.For example,variable step size LMS algorithm (VSS-LMS).Previous scholars focused on using the error signal in the adaptive process, trying to adjust the step size by using the relationship between the error signal and the step size [12].In recent years, Baydin et al.[13,14] introduced the idea of super-optimization to adjust the step size parameters, optimized the step size while optimizing the model parameters, and incorporated the optimization of the step size parameters into the filtering operation.This method improved the convergence rate and increased the robustness of the algorithm to the selection of initial super-parameters.At the same time, compared with the traditional adaptive filtering algorithm, it does not need additional gradient calculation, and the calculation and storage efficiency are higher.Rubio et al.[15] analyzes the convergence of the supergradient descent algorithm, and the simulation proves its advantages in practice.

    In many application scenarios, the radar echo signal is sparse in a certain transform domain.In recent years, inspired by the sparse signal processing theory of compressive sensing, a series of penalty LMS algorithms have appeared,which use norm to add sparsity constraints to the criterion function of updating filter weight coefficients, so that the filter coefficients approach zero and improve the convergence rate of the algorithms, such as ZA-LMS [16], RZA-LMS [17],l0-LMS [18] and so on.This kind of algorithm is affected by random gradient noise in the process of convergence, so fast convergence and small steady-state error cannot be achieved at the same time.When the adaptive process convergences,the algorithm exerts too much attraction on the small coefficient near the zero point, which leads to the increase of the misalignment error.

    In this paper, an LSS passive detection system based on sparse adaptive filtering is proposed.Firstly, a hypergradient descentl0-LMS adaptive filtering model with sparse representation is established.Based on the sparsity of the distance dimension of the target after matched filtering, the results of pulse compression operation between reference signal and error signal in iterative process is constrained by sparsity to construct a new cost function.In the iteration, it improves the filter’s weight updating criterion by restricting the sparsity of the target distance dimension, and obtains a purer echo signal.At the same time, the step parameters and balance factors are brought into the adaptive loop process, and the input data is used to drive the adaptive changes of parameters such as step size.Its convergence and steady-state error are analyzed theoretically.Compared with the traditional clutter suppression algorithm, the improved algorithm with sparse super-optimization idea has better clutter suppression performance and stronger robustness to step parameters and input data.Then the range and velocity information of the target is estimated by piecewise range Doppler processing [19,20].

    2 Algorithm

    2.1 Adaptive Filtering Algorithm for Sparse Representation

    The echo signal model received by the surveillance channel of passive radar is defined as

    wheres(t) is a direct signal;Ad,Ai,Birepresent signal amplitude;τiandτdirepresent multipath delay and target delay respectively;M1andM2represent multipath number and target number respectively;fdirepresents Doppler frequency of target;ns(t) represents zero mean noise, and is independent of the signal.

    The signal received by the reference channel is defined as

    whereArrepresents signal amplitude;nr(t) represents zero mean noise of the reference channel.

    Direct signal and multipath clutter in echo signals are clutter signals to be cancelled.Passive detection systems based on illuminators of opportunity usually use pulse compression operation to coherently accumulate the echo signals received by the main channel and the direct signal received by the auxiliary channel.The target echo signals obtained after correlation processing are only distributed in a few distance points under ideal conditions, which is sparse.However,the signal intensity of interference such as direct signal and multipath clutter in the echo signal received by the main channel is much greater than the echo signal of the target, so it is necessary to suppress clutter first and establish an adaptive filtering algorithm model with sparse representation.Adaptive filter is shown in Fig.1.

    Fig.1 Schematic diagram of adaptive filter

    Let the input vector of the filter beS(t)=[Sref(t),Sref(t-1),···,Sref(t-M+1)]Tand the tap weight vector beW? (t)=[w?0(t),w?1(t),···,w?M-1(t)]T.Mis the filter order andtis the response time.The output of the adaptive filter is

    In the echo signal, the interference of direct signal and multipath clutter with strong amplitude will affect the detection of LSS targets.Ideally, the pulse compression result |R(τ)| of signale(t) and reference signalSref(t) after the direct signal and multipath clutter are filtered by adaptive filtering in the echo signal has a nonzero value only where the target exists, which is sparse.

    whereTis the length of the integration time, *indicates the complex conjugate form of the signal, andτis the time-delay variable in the function.The time-domain data after coherent accumulation of the two signals are constrained by sparsity, and the cost function of the filter is constructed.The cost function of the adaptive clutter suppression algorithm defined in this paper is

    whereris the penalty factor,‖*‖0is thel0norm, andnis the discrete time.

    l0norm is the number of non-zero elements in the vector.l0norm makes the values of most mutual ambiguity functions converge to zero in the iterative process, thus ensuring the sparsity of the solution.Its numerical solution is NP-hard problem, andl0norm is not derivable.Reference[16] gives the approximate value ofl0norm of a typical sparse system, namely,

    whereRi(n) is thei-th pulse compression result attdiscrete time,βis the expansion coefficient.

    The approximate value ofl0norm is brought into the cost function of this paper, and it is concluded that

    Derivation ofwis

    where

    Letfβ(Ri(n))be

    Update criteria for obtaining weights is

    whereμis the step size parameter,κ=μ×ris the balance factor between the constraint term and the estimation error.

    By adding sparsity constraint, the adaptive filter can suppress clutter components better.The algorithm is affected by random gradient noise in the convergence process, which makes it impossible to possess both fast convergence and small steady-state error.The convergence rate is related to the step size and the eigenvalue of the input data correlation matrix.When the adaptive process convergences, the algorithm exerts too much attraction on the small coefficient near the zero point, which leads to the increase of the misalignment error.Therefore, based on the idea of super-optimization, this paper iteratively updates the step size parameterμand the penalty factorrin the adaptive loop, and brings the step size and the penalty factor into the filtering operation to obtain information from the data, thus adjusting the super-parameters.Namely,

    By adjusting the step size and penalty factor, the convergence rate is not affected by the initial value of step size.And this process can exploit the results of the last iteration without increasing the amount of calculation.If the initial value of the step size is large, the algorithm is iteratively updated with a larger step size to improve the convergence rate of the algorithm.When the step size is close to the steady state,the step size update criterion keeps the step size smaller, and the penalty factor update criterion reduces the constraint on the weight vector near the steady state, thus maintaining a smaller steady-state error.If the initial step size is small,the algorithm will adaptively adjust to the appropriate step size for iteration.

    The updated formula of step size parameter and penalty factor is as follows

    And weight vector updating formula

    In order to reduce the calculation amount of the proposed algorithm, this paper adopts the method of fast calculation in frequency domain,blocks the data and calculates it by fast Fourier transform (FFT).The specific calculation flow is shown as follows.

    Algorithm 1 Optimal power allocation algorithm based on Lagrangian dual method ?w0, μ0,r0, α,γ,Initialization: weight vector step size penalty factor hyperparametric learning rate filter order M, k is the k-th block of data Input:diag{FFT[s(kM -M),···s(kM +M -1)]}S(k)=d(k)=[d(kM),···d(kM +M -1)]T ?w0=zeros (2M,1)Adaptive filtering:y(k) [y(kM),···y(kM +M -1)]T =IFFT[S(k) ?W(k)]T=e(k) [e(kM),···e(kM +M -1)]T =d(k)-y(k)=]FFT[0 e(k)E(k)=Step 1:Φ(k) first M elements of IFFT[S*(k)E(k)]=?wξ(k) -2Φ(k)-rfβ(Ri(k))Rss(i),i=0,1,···,M -1=?μξ(k) -?wξ(k)·?wξ(k-1)=?rξ(k) ?wξ(k)μ(k)·fβ(Ri(k-1))Rss(i)=Step 2:μ(k+1) μ(k)+α?ξ(k)·?ξ(k-1)=r(k+1) r(k)-γμ(k)?ξ(k)·fβ(Ri(k-1))Rss(i)=Step 3:?W (k+1) ?W (k)+μ(k+1)FFT]=[Φ(k)0+μ(k+1)r(k+1) FFT[fβ(Ri(k))Rss(i)]·?w(n+1) IFFT[?W (k)]=

    2.2 Convergence Analysis

    Letε(n)=wopt-w?(n),woptis the optimal weight vector of adaptive filtering, then

    When the step size is small, the solution ofε(n+1)can be replaced by the solution after the expectation of the above formula.

    Sincefβ(Ri(n))Rss(i) is bounded, the unitary similarity transformation is applied to the correlation matrixR:QHRQ=Λ.WhereQis a unitary matrix, its columns are eigenvectors related to the eigenvalues ofR, and Λ is a diagonal matrix composed of eigenvalues.

    Assuming that the step size is very small,the instantaneous value can be used instead of the set average value.

    Thus, the convergence condition can be obtained

    2.3 Steady State Error Analysis

    Su et al.[21] put forward two indexes to evaluate the steady-state performance.

    1) Instantaneous mean square deviation(MSD): defined as the square of 2 norm based on the weight error vector, i.e.

    2) Excess mean square error (EMSE):

    When the step size is small, the cost function of the algorithm will approach a minimum value with the increase ofn.Because the value ofμ(n+1)r(n+1)is small, it is assumed to be close to 0.

    Therefore, the steady-state error is related to the upper limit of step size and the eigenvalue of input matrix.Because at this time

    Whenn →∞, the steady-state error of the learning curve is

    Then

    The steady-state MSD is

    whereLis the filter length andNis the number of rows of the correlation matrix.

    3 Simulation Results

    The following simulation analysis is carried out.It is assumed that the echo channel contains the target signal, multipath clutter and direct signal,and the reference channel contains the purified direct signal.The system parameters used in the simulation are shown in Tab.1.The simulation parameters of the echo channel are shown in Tab.2.

    Fig.2 shows the time delay-Doppler diagram before clutter suppression, and compares the clutter suppression performance of the proposed algorithm, FBLMS algorithm,l0-LMS algo-rithm, NLMS algorithm, ECA-B algorithm and VSS-LMS algorithm [22].For adaptive filtering algorithms, when the initial step size is large, the step size is set to 5.5×10-3, and the time delaydoppler diagram filtered by several algorithms is shown in Fig.3.

    Tab.1 The system parameters used in the simulation

    Tab.2 The simulation parameters of the echo channel

    Fig.2 Time delay-Doppler diagram without clutter suppression

    Fig.3 Time delay-Doppler diagram after clutter suppression: (a) before processing; (b) the proposed algorithm; (c) FBLMS algorithm; (d) l0-LMS algorithm; (e) NLMS algorithm; (f) ECA-B algorithm; (g) VSS-LMS algorithm

    As can be seen from Fig.3, when the step size is large, several algorithms can detect strong target.At the same time, the proposed algorithm can also detect weak target, and ECA-B algorithm produced false peaks.The step size of VSS-LMS algorithm changes with the iterative process.In the initial stage, a larger step size is adopted to speed up the convergence, and in the later stage, a smaller step size is adopted to reduce the steady-state error.However, the stability of the algorithm is easily affected by input noise, and the step size range needs to be limited,so there is still a small amount of clutter energy residual after clutter suppression.The SNR of the proposed algorithm, FBLMS,l0-LMS, NLMS,ECA-B and VSS-LMS after clutter suppression are 9.07 dB, 5.32 dB, 7.76 dB, 7.74 dB, 9.02 dB,8.93 dB, respectively.The proposed algorithm has a good clutter suppression effect, and the step change curve at this time is shown in Fig.4.

    Fig.4 Step size change curve

    When the step size is small, the step size is set to 1×10-6, the clutter suppression performance of several algorithms is shown in Fig.5.FBLMS algorithm,l0-LMS algorithm and NLMS algorithm fail to detect the target, and the noise floor is only reduced by 3 dB compared with the time delay-doppler diagram without clutter suppression.However, the proposed algorithm has sparsity constraints, and the step size is adjusted adaptively in the filtering process, so the clutter suppression effect is better.The noise floor is reduced by 24 dB.The SNR is 10.37 dB after clutter suppression.

    At this point, the adaptive change curve of step size as Fig.6.

    Fig.6 Step size change curve

    By comparing the weights obtained by iteration of the algorithms with the optimal weights,it can be seen from Fig.7 that the proposed algorithm is close to the true values of the weights,and the clutter suppression effect is better.

    Fig.7 Comparison between the weights obtained by six algorithms and the optimal weights

    Fig.8 is the SNR comparison diagram of the several algorithms before and after clutter suppression.It can be seen that the algorithm in this paper has certain advantages, no matter whether it is a big step or a small step, and the SNR after clutter suppression is the highest.Especially under the condition of small step size, the proposed algorithm can still show good clutter suppression result when other algorithms fail.

    Fig.8 Comparison of clutter suppression effects of algorithms with different step sizes

    Comparing the computational complexity of the proposed algorithm with other classical algorithms, the proposed algorithm is implemented in frequency domain.It is the same as the highest power of the multiplication times required by FBLMS, and the computational complexity is low.When the filter order isMand the data length isN(M <N), the computational complexity of several algorithms is shown in Tab.3.

    Tab.3 Comparison of computational complexity of algorithms

    4 Conclusion

    The sparse adaptive filtering algorithm proposed in this paper adds sparsity constraint to the cost function and incorporates the step size into the adaptive filtering process, improving the robustness of the traditional clutter suppression algorithm.

    Through simulation analysis, compared with the traditional clutter suppression algorithm, the proposed algorithm can use the sparsity of the target in the distance dimension to obtain a purer echo signal, thus achieving better clutter suppression performance.At the same time,through adaptive iteration of the step size and other parameters, the algorithm can enhance the robustness of the input data without increasing the computational complexity.The ability of passive radar to detect LSS targets in strong clutter scenario is improved.

    国产极品粉嫩免费观看在线| www.精华液| 黄片播放在线免费| 亚洲欧美日韩另类电影网站| 成年动漫av网址| 欧美日韩综合久久久久久| 亚洲熟女精品中文字幕| 亚洲 欧美一区二区三区| 97精品久久久久久久久久精品| 十八禁高潮呻吟视频| 日韩,欧美,国产一区二区三区| 母亲3免费完整高清在线观看| 国产精品亚洲av一区麻豆 | 伦理电影大哥的女人| 亚洲精品久久久久久婷婷小说| 色综合欧美亚洲国产小说| 午夜91福利影院| 亚洲精品国产av蜜桃| 中文字幕人妻丝袜一区二区 | 国产欧美日韩一区二区三区在线| 亚洲,欧美精品.| 欧美xxⅹ黑人| 久久久久视频综合| 精品国产国语对白av| 久久久久久久国产电影| 黄色一级大片看看| 久久这里只有精品19| 国产99久久九九免费精品| 在线免费观看不下载黄p国产| 男女无遮挡免费网站观看| 精品国产乱码久久久久久男人| 亚洲美女视频黄频| 欧美日韩国产mv在线观看视频| 久久久久久人人人人人| 大香蕉久久网| 国产麻豆69| 亚洲精品av麻豆狂野| 激情视频va一区二区三区| 久久毛片免费看一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| av有码第一页| 久久久久网色| 日本av手机在线免费观看| 夫妻午夜视频| 又粗又硬又长又爽又黄的视频| 一本—道久久a久久精品蜜桃钙片| 爱豆传媒免费全集在线观看| 最近最新中文字幕免费大全7| 亚洲精品日韩在线中文字幕| 一级毛片黄色毛片免费观看视频| 天天添夜夜摸| 中文字幕人妻丝袜制服| 午夜福利网站1000一区二区三区| 亚洲av日韩精品久久久久久密 | 97精品久久久久久久久久精品| 性色av一级| 九九爱精品视频在线观看| 免费黄频网站在线观看国产| 男人添女人高潮全过程视频| 一本一本久久a久久精品综合妖精| 久久精品人人爽人人爽视色| 成年美女黄网站色视频大全免费| 欧美日韩一区二区视频在线观看视频在线| 国产有黄有色有爽视频| 人人妻人人澡人人爽人人夜夜| 免费高清在线观看日韩| 丝袜美腿诱惑在线| 岛国毛片在线播放| 国产精品.久久久| 不卡视频在线观看欧美| 欧美最新免费一区二区三区| 国产免费福利视频在线观看| 男女边摸边吃奶| 日韩人妻精品一区2区三区| 亚洲一区中文字幕在线| 热re99久久精品国产66热6| 蜜桃国产av成人99| 亚洲精品国产av蜜桃| 自线自在国产av| 久久精品aⅴ一区二区三区四区| 丝瓜视频免费看黄片| 日韩视频在线欧美| 十八禁网站网址无遮挡| 欧美在线一区亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 哪个播放器可以免费观看大片| 女人精品久久久久毛片| 国产精品欧美亚洲77777| 精品少妇久久久久久888优播| 我要看黄色一级片免费的| 日韩中文字幕欧美一区二区 | 午夜福利影视在线免费观看| 精品少妇一区二区三区视频日本电影 | 美女大奶头黄色视频| 久久免费观看电影| 精品国产一区二区久久| 久久午夜综合久久蜜桃| 9191精品国产免费久久| 国产 精品1| 亚洲国产成人一精品久久久| 国产成人系列免费观看| 久久久国产欧美日韩av| 亚洲在久久综合| 欧美精品人与动牲交sv欧美| 99热国产这里只有精品6| 成年女人毛片免费观看观看9 | 国产免费又黄又爽又色| 日韩欧美一区视频在线观看| 欧美激情极品国产一区二区三区| 亚洲欧美一区二区三区黑人| 国产熟女午夜一区二区三区| 2018国产大陆天天弄谢| 成人国语在线视频| 亚洲国产精品999| 国产成人系列免费观看| 欧美老熟妇乱子伦牲交| 午夜福利,免费看| 国产在线免费精品| 成年美女黄网站色视频大全免费| 亚洲精品美女久久av网站| 国产男女超爽视频在线观看| 青草久久国产| 色综合欧美亚洲国产小说| 亚洲 欧美一区二区三区| 欧美日韩av久久| 18禁观看日本| 亚洲,欧美精品.| 国产一区二区三区综合在线观看| 国产伦人伦偷精品视频| 亚洲精品视频女| 天天影视国产精品| 亚洲欧美色中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 老汉色av国产亚洲站长工具| 视频在线观看一区二区三区| 日本色播在线视频| 国产精品亚洲av一区麻豆 | 999精品在线视频| 久久狼人影院| 精品国产一区二区三区久久久樱花| 国产黄频视频在线观看| 免费av中文字幕在线| 国产av国产精品国产| 侵犯人妻中文字幕一二三四区| 乱人伦中国视频| 亚洲精品美女久久久久99蜜臀 | 久久久国产精品麻豆| 国产有黄有色有爽视频| 亚洲国产精品一区二区三区在线| 国产欧美日韩综合在线一区二区| 久久久精品94久久精品| av不卡在线播放| 女的被弄到高潮叫床怎么办| 国产色婷婷99| 免费女性裸体啪啪无遮挡网站| 日韩av不卡免费在线播放| 日韩大片免费观看网站| 国产精品久久久久成人av| 午夜精品国产一区二区电影| 亚洲欧美色中文字幕在线| 亚洲国产日韩一区二区| 波多野结衣一区麻豆| 两个人看的免费小视频| 国产亚洲一区二区精品| 精品视频人人做人人爽| 制服丝袜香蕉在线| 最近最新中文字幕免费大全7| 久久 成人 亚洲| 99九九在线精品视频| 国产精品久久久久久精品古装| 精品亚洲成a人片在线观看| 久久狼人影院| 制服丝袜香蕉在线| 精品一区二区免费观看| 男男h啪啪无遮挡| 午夜精品国产一区二区电影| 两个人免费观看高清视频| 国产成人精品在线电影| 美女大奶头黄色视频| 国产一区二区在线观看av| 一二三四中文在线观看免费高清| 在线免费观看不下载黄p国产| 国产淫语在线视频| 一区二区三区乱码不卡18| 日韩免费高清中文字幕av| 飞空精品影院首页| 精品人妻在线不人妻| 一级毛片黄色毛片免费观看视频| 婷婷色麻豆天堂久久| 中文精品一卡2卡3卡4更新| 热re99久久国产66热| 欧美成人精品欧美一级黄| 热99久久久久精品小说推荐| 国产精品久久久久久人妻精品电影 | 天堂中文最新版在线下载| 视频区图区小说| www.精华液| 丰满饥渴人妻一区二区三| 国产在线视频一区二区| 这个男人来自地球电影免费观看 | 久久久久久久国产电影| 国产淫语在线视频| www.av在线官网国产| 国产精品久久久久久人妻精品电影 | 国产精品av久久久久免费| 日本av免费视频播放| 狂野欧美激情性xxxx| 嫩草影院入口| 麻豆乱淫一区二区| 99久久人妻综合| 女性生殖器流出的白浆| 国产欧美日韩综合在线一区二区| 久久影院123| 蜜桃国产av成人99| 欧美人与善性xxx| 日韩av在线免费看完整版不卡| 精品一区在线观看国产| 一边摸一边做爽爽视频免费| 成人午夜精彩视频在线观看| 大陆偷拍与自拍| 亚洲av福利一区| 亚洲欧美精品综合一区二区三区| 精品亚洲成a人片在线观看| 99国产精品免费福利视频| 男人操女人黄网站| av天堂久久9| 99久久99久久久精品蜜桃| 日韩制服丝袜自拍偷拍| 精品人妻熟女毛片av久久网站| 女人久久www免费人成看片| 亚洲精品,欧美精品| 大片电影免费在线观看免费| 9191精品国产免费久久| 欧美精品高潮呻吟av久久| 国产精品二区激情视频| 国产欧美日韩综合在线一区二区| 国产成人免费无遮挡视频| 纯流量卡能插随身wifi吗| 亚洲国产日韩一区二区| bbb黄色大片| 国产免费视频播放在线视频| 亚洲欧美一区二区三区国产| 美女午夜性视频免费| 欧美xxⅹ黑人| 亚洲精品国产色婷婷电影| 日韩一区二区三区影片| 欧美黑人精品巨大| 成年美女黄网站色视频大全免费| 最近最新中文字幕免费大全7| 久久青草综合色| 国产爽快片一区二区三区| 欧美黑人精品巨大| 最新的欧美精品一区二区| 亚洲 欧美一区二区三区| 亚洲欧美激情在线| 免费看不卡的av| 日韩av不卡免费在线播放| 日韩不卡一区二区三区视频在线| 丝袜美足系列| 亚洲少妇的诱惑av| 久久久久久久久久久免费av| 久久性视频一级片| 亚洲欧洲精品一区二区精品久久久 | 热99国产精品久久久久久7| 国产日韩欧美亚洲二区| 国产精品一区二区在线观看99| 777米奇影视久久| 免费在线观看视频国产中文字幕亚洲 | 欧美人与善性xxx| 交换朋友夫妻互换小说| 国产亚洲午夜精品一区二区久久| 亚洲精品日本国产第一区| 十八禁高潮呻吟视频| 亚洲精品aⅴ在线观看| 亚洲综合色网址| 九色亚洲精品在线播放| 久久精品国产亚洲av涩爱| 视频区图区小说| av电影中文网址| 午夜免费观看性视频| 免费人妻精品一区二区三区视频| 一边摸一边抽搐一进一出视频| 国产毛片在线视频| 黑人猛操日本美女一级片| 亚洲成人免费av在线播放| 久久精品亚洲av国产电影网| 国产 精品1| 看十八女毛片水多多多| 天天躁夜夜躁狠狠久久av| 人人妻人人澡人人看| 天美传媒精品一区二区| 啦啦啦视频在线资源免费观看| 丝袜在线中文字幕| 国产在线视频一区二区| 国产国语露脸激情在线看| 亚洲欧美一区二区三区久久| 伊人久久国产一区二区| 你懂的网址亚洲精品在线观看| 在线观看三级黄色| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区四区第35| 亚洲第一区二区三区不卡| 男女边吃奶边做爰视频| 视频区图区小说| 久久影院123| 另类精品久久| 伦理电影大哥的女人| 色婷婷av一区二区三区视频| 免费日韩欧美在线观看| 久久狼人影院| 亚洲精品久久久久久婷婷小说| 一级毛片电影观看| 在线免费观看不下载黄p国产| 亚洲精华国产精华液的使用体验| 一级,二级,三级黄色视频| 久久ye,这里只有精品| 韩国av在线不卡| 国产午夜精品一二区理论片| 一边亲一边摸免费视频| 巨乳人妻的诱惑在线观看| 少妇人妻久久综合中文| 男人舔女人的私密视频| 男人操女人黄网站| 国产亚洲av高清不卡| 制服丝袜香蕉在线| 热99国产精品久久久久久7| 精品国产一区二区三区久久久樱花| 亚洲精品久久午夜乱码| 国产毛片在线视频| 激情五月婷婷亚洲| 欧美变态另类bdsm刘玥| 免费av中文字幕在线| 国产xxxxx性猛交| 99热网站在线观看| 亚洲精品国产av蜜桃| 久久久久久久久久久久大奶| 亚洲欧洲日产国产| 婷婷色麻豆天堂久久| 丰满迷人的少妇在线观看| 久久久久久免费高清国产稀缺| 亚洲av日韩精品久久久久久密 | 精品一品国产午夜福利视频| 人体艺术视频欧美日本| 日本猛色少妇xxxxx猛交久久| 另类精品久久| 成人亚洲精品一区在线观看| 狂野欧美激情性xxxx| 亚洲欧美日韩另类电影网站| 国产在线免费精品| 亚洲欧洲日产国产| 成年动漫av网址| 精品午夜福利在线看| 涩涩av久久男人的天堂| 色吧在线观看| 一级爰片在线观看| 日韩大片免费观看网站| 亚洲国产毛片av蜜桃av| 国产一区亚洲一区在线观看| 国产又爽黄色视频| 亚洲综合色网址| 国产精品久久久av美女十八| 亚洲精品乱久久久久久| tube8黄色片| 中国三级夫妇交换| 伊人久久大香线蕉亚洲五| 亚洲一区二区三区欧美精品| 精品卡一卡二卡四卡免费| 国产亚洲av片在线观看秒播厂| 制服丝袜香蕉在线| 男女边吃奶边做爰视频| 一区二区三区激情视频| 国产欧美亚洲国产| 可以免费在线观看a视频的电影网站 | 一级毛片我不卡| 久久毛片免费看一区二区三区| 可以免费在线观看a视频的电影网站 | 最黄视频免费看| 欧美成人精品欧美一级黄| 如日韩欧美国产精品一区二区三区| 激情视频va一区二区三区| 免费高清在线观看视频在线观看| 啦啦啦啦在线视频资源| 欧美日韩视频精品一区| 亚洲国产成人一精品久久久| 又大又黄又爽视频免费| 97在线人人人人妻| 精品久久蜜臀av无| 午夜免费观看性视频| 夫妻午夜视频| 国产午夜精品一二区理论片| 成人漫画全彩无遮挡| a级片在线免费高清观看视频| 搡老乐熟女国产| 亚洲成人国产一区在线观看 | 亚洲熟女毛片儿| 18在线观看网站| 国产精品国产三级国产专区5o| 免费人妻精品一区二区三区视频| 欧美亚洲日本最大视频资源| 看非洲黑人一级黄片| 狠狠精品人妻久久久久久综合| 日韩精品有码人妻一区| 亚洲少妇的诱惑av| 成人三级做爰电影| 亚洲人成网站在线观看播放| 久久热在线av| 一区福利在线观看| 久久久精品国产亚洲av高清涩受| 2021少妇久久久久久久久久久| 赤兔流量卡办理| 精品一区二区免费观看| 亚洲欧美日韩另类电影网站| 伦理电影大哥的女人| 色综合欧美亚洲国产小说| 18禁动态无遮挡网站| 午夜福利网站1000一区二区三区| 成人18禁高潮啪啪吃奶动态图| 97在线人人人人妻| 国产黄频视频在线观看| 欧美人与性动交α欧美软件| 在线看a的网站| 美女国产高潮福利片在线看| a级毛片在线看网站| 国产亚洲av高清不卡| 亚洲精品,欧美精品| 妹子高潮喷水视频| 99精品久久久久人妻精品| 自线自在国产av| 日日撸夜夜添| 久久国产精品男人的天堂亚洲| 啦啦啦在线观看免费高清www| 青春草视频在线免费观看| 国产精品 欧美亚洲| 宅男免费午夜| av在线播放精品| 午夜福利免费观看在线| 婷婷色综合www| 国产成人精品久久二区二区91 | 成人免费观看视频高清| 一本大道久久a久久精品| 精品国产乱码久久久久久男人| 色婷婷久久久亚洲欧美| 丝袜在线中文字幕| 日本色播在线视频| 亚洲精品一区蜜桃| 亚洲av福利一区| 人妻 亚洲 视频| 成人18禁高潮啪啪吃奶动态图| 亚洲精品美女久久久久99蜜臀 | videos熟女内射| av网站在线播放免费| 国产不卡av网站在线观看| 看免费av毛片| 一级毛片黄色毛片免费观看视频| 国产精品一区二区精品视频观看| 亚洲熟女精品中文字幕| 欧美亚洲 丝袜 人妻 在线| 国产成人a∨麻豆精品| 国产精品.久久久| 国产在视频线精品| 亚洲精品视频女| 国产精品久久久久久精品古装| 精品国产一区二区久久| 男女无遮挡免费网站观看| 国产精品一区二区在线不卡| 五月开心婷婷网| 最近手机中文字幕大全| 一级,二级,三级黄色视频| 亚洲精品国产区一区二| 精品久久久久久电影网| 一区福利在线观看| 午夜免费鲁丝| 国产熟女欧美一区二区| 9热在线视频观看99| 大香蕉久久成人网| 亚洲国产成人一精品久久久| 可以免费在线观看a视频的电影网站 | 欧美日韩福利视频一区二区| 国产精品麻豆人妻色哟哟久久| 一级毛片电影观看| 黄色一级大片看看| 在现免费观看毛片| 在线观看免费日韩欧美大片| 九九爱精品视频在线观看| av又黄又爽大尺度在线免费看| 热99久久久久精品小说推荐| 一二三四中文在线观看免费高清| 51午夜福利影视在线观看| 麻豆乱淫一区二区| 看非洲黑人一级黄片| 国产成人系列免费观看| 丰满迷人的少妇在线观看| 波野结衣二区三区在线| a级毛片黄视频| 91aial.com中文字幕在线观看| 男人舔女人的私密视频| 啦啦啦在线观看免费高清www| 欧美老熟妇乱子伦牲交| 色播在线永久视频| av网站免费在线观看视频| 97人妻天天添夜夜摸| 电影成人av| 秋霞在线观看毛片| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av成人精品| 中文字幕人妻丝袜一区二区 | 国产精品香港三级国产av潘金莲 | 精品一区二区三区四区五区乱码 | 久久97久久精品| 秋霞伦理黄片| 日韩中文字幕视频在线看片| 久久久久久久国产电影| 老鸭窝网址在线观看| 又黄又粗又硬又大视频| 国产精品.久久久| 人人澡人人妻人| 美女中出高潮动态图| 婷婷色综合大香蕉| 国产老妇伦熟女老妇高清| 99国产综合亚洲精品| 丁香六月欧美| 亚洲精品美女久久久久99蜜臀 | 搡老乐熟女国产| 亚洲精华国产精华液的使用体验| svipshipincom国产片| 无遮挡黄片免费观看| 十分钟在线观看高清视频www| 黄色视频在线播放观看不卡| 免费女性裸体啪啪无遮挡网站| 天堂8中文在线网| 天天躁狠狠躁夜夜躁狠狠躁| 国产 一区精品| 水蜜桃什么品种好| 天天添夜夜摸| 9色porny在线观看| 80岁老熟妇乱子伦牲交| 亚洲国产av新网站| 97精品久久久久久久久久精品| 性高湖久久久久久久久免费观看| 亚洲情色 制服丝袜| 久久毛片免费看一区二区三区| 国产男人的电影天堂91| 18禁动态无遮挡网站| 一区二区三区精品91| 最近2019中文字幕mv第一页| 亚洲精品aⅴ在线观看| 在线 av 中文字幕| 伊人亚洲综合成人网| 国产精品久久久久久精品电影小说| 亚洲国产精品一区二区三区在线| 2021少妇久久久久久久久久久| 天堂中文最新版在线下载| 亚洲欧美清纯卡通| 天天添夜夜摸| 久久精品国产综合久久久| 亚洲成色77777| 王馨瑶露胸无遮挡在线观看| 亚洲精品美女久久av网站| 久久99热这里只频精品6学生| 亚洲,欧美,日韩| 老司机深夜福利视频在线观看 | 51午夜福利影视在线观看| 国产一级毛片在线| 可以免费在线观看a视频的电影网站 | 啦啦啦在线观看免费高清www| 日本黄色日本黄色录像| a级毛片黄视频| 国产国语露脸激情在线看| 80岁老熟妇乱子伦牲交| netflix在线观看网站| 亚洲精品久久久久久婷婷小说| 在线观看人妻少妇| 精品少妇久久久久久888优播| 高清黄色对白视频在线免费看| 晚上一个人看的免费电影| 夫妻午夜视频| 亚洲成人av在线免费| 中文字幕av电影在线播放| 国产成人精品久久久久久| 午夜精品国产一区二区电影| 欧美另类一区| 精品国产露脸久久av麻豆| 超碰97精品在线观看| 狂野欧美激情性xxxx| 国产在线免费精品| 免费黄色在线免费观看| 最近最新中文字幕免费大全7| 亚洲久久久国产精品| 成年人午夜在线观看视频| 中文字幕人妻熟女乱码| 午夜福利一区二区在线看| 99九九在线精品视频| 两性夫妻黄色片| 一区福利在线观看| netflix在线观看网站| 久久性视频一级片| 国产色婷婷99| 中文字幕高清在线视频| 亚洲人成电影观看| 少妇精品久久久久久久| 亚洲 欧美一区二区三区| 亚洲精品自拍成人| 国产亚洲精品第一综合不卡| 日本爱情动作片www.在线观看| 国产精品久久久久久人妻精品电影 | 亚洲激情五月婷婷啪啪| 91成人精品电影| 久久99热这里只频精品6学生| 久久天躁狠狠躁夜夜2o2o | 亚洲成人av在线免费| 超碰97精品在线观看| www.精华液| 中文字幕另类日韩欧美亚洲嫩草| 国产精品蜜桃在线观看| 男女高潮啪啪啪动态图|