• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deformation Characteristics of Hydrate-Bearing Sediments

    2024-03-12 11:14:18DONGLinLIYanlongZHANGYajuanHUGaoweiLIAOHualinCHENQiangandWUNengyou
    Journal of Ocean University of China 2024年1期

    DONG Lin , LI Yanlong , , ZHANG Yajuan , HU Gaowei , LIAO Hualin,CHEN Qiang , and WU Nengyou ,

    1) Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China

    2) Laboratory for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266237, China

    3) College of Oceanography, Hohai University, Nanjing 210098, China

    4) College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266555, China

    Abstract The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs. In this study, a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments. Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively. Results indicate that the sediments with high hydrate saturation show dilative behaviors, which lead to strain-softening characteristics during shearing. The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure. An easy prediction model is proposed to describe the relationship between volumetric and axial strains. The model coefficient β is the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover, a modified model is established for the calculation of lateral strain. The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate. This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.

    Key words gas hydrate; deformation characteristics; volumetric strain; lateral strain; prediction model

    1 Introduction

    As an alternative energy resource, natural gas hydrate(NGH) has great potential for development due to its wide distribution, abundance, and less pollution (Chonget al.,2016; Cuiet al., 2018; Donget al., 2023a). However, the unreasonable development of NGH can also lead to crucial issues, such as landslides (Liuet al., 2020), wellbore stability (Donget al., 2022b, 2023b), sand production (Wuet al., 2021), and other problems (Yanget al., 2017; Wanet al., 2018). Therefore, the deformation behaviors of hydrate-bearing sediments (HBS) are of practical value for the estimation, prediction, and control of geological problems during NGH development.

    The deformation characteristics of HBS have been deeply studied using combined numerical modeling, experimental tests and theoretical analysis (Liuet al., 2017; Lijithet al., 2019). The deformation characteristics of sand, silt,and clay containing tetrahydrofuran hydrate were investigated and compared, and the results indicate that the deformation behaviors of sediments, including volumetric and lateral strains, are affected by the soil type, stress state, and hydrate concentration (Yunet al., 2007; Priest and Hayley,2019; Nakashimaet al., 2021; Huet al., 2023). Furthermore, the variation laws of deformation behaviors of hydrate-bearing silica sand (Miyazakiet al., 2011), Toyoura sand (Hyodoet al., 2013), and Ottawa sand (Pinkert and Grozic, 2014) were studied based on laboratory tests. The results show a slight contraction at the start of shearing,followed by dilative behaviors at the end. High dilation was observed due to the small porosity of specimens. The volumetric and lateral strains of HBS can be estimated efficiently based on constitutive models (Uchidaet al., 2012;Sánchezet al., 2017; Liuet al., 2021), numerical simulation (Zhouet al., 2018; Sunet al., 2019), and empirical models (Kulhawy, 1975; Miyazakiet al., 2012; Yanet al.,2017). The key parameters of models and determination methods are introduced to ensure the accuracy of calculations (Shaibuet al., 2021). However, these calculation models have limited applications due to the determination of model parameters and assumptions. Therefore, developing an easy and efficient way to estimate the deformation properties of HBS is necessary.

    In this study, the deformation behaviors of HBS are investigated through a series of triaxial shearing tests. The effect of hydrate saturation on volumetric and lateral strains is discussed in detail. Moreover, a prediction model is established to estimate the volumetric strain of specimens.The lateral strain is discussed based on the proposed modified model. This study is important in evaluating and predicting the deformation behaviors of reservoirs during NGH development.

    2 Experimental Methods

    2.1 Experimental Setup

    Fig.1 depicts the triaxial shearing test apparatus for HBS illustrated in our previous work (Liet al., 2018, 2021a;Donget al., 2022a). This equipment can provide high-pressure and low-temperature conditions for hydrate formation and further realize triaxial shearing. The volumetric and lateral displacements can be obtained based on test data to reflect the deformation behaviors of specimens.

    Fig.1 Triaxial shearing test apparatus for hydrate-bearing sediments.

    The specimens are prepared with 192 g quartz sand and 99.9% pure methane gas. The particle size distribution is shown in Fig.2. The sample is mainly composed of clay-free medium sand with a porosity of 40.0%.

    Fig.2 Particle size distribution of the specimens.

    2.2 Experimental Procedure

    The specimen is prepared using thein-situmethod by adding a certain volume of water into the sand for target hydrate saturation (Hyodoet al., 2013; Donget al., 2020).The pressure of methane gas is kept at 4.5 MPa (± 0.1 MPa),and the temperature is set as 1℃ (± 0.1℃) throughout the tests. The specimen preparation is considered completed after no methane gas pressure change is observed. The water in the pore of specimens is considered to be entirely consumed for hydrate formation (Liuet al., 2018). The volume of hydrate is identified from the initial volume of water (Ghiassian and Grozic, 2013; Lijithet al., 2019).The hydrate saturation can be determined through calculation (Liuet al., 2018).

    After hydrate formation, the effective confining pressure is maintained at 1 MPa, 2 MPa, and 4 MPa to reflect the effect of stress states. The specimens containing hydrate are sheared at a speed of 0.9 mm min?1. The shearing process continues before the axial strain reaches 15%. Displacement and load are recorded throughout the shearing tests.

    2.3 Calculations of Volumetric and Lateral Strains

    Volumetric strain is defined as the ratio between the change in volume and the original specimen volume, which is given as

    whereεvrepresents the volumetric strain (%);dandhare the diameter and height of the specimen, respectively (unit:mm); andVis the volume change, which equals the difference between the recorded inlet and outlet surrounding fluid (unit: mL).

    Correspondingly, the lateral strain can be calculated by Eq. (2):

    whereεlandεarepresent the lateral and axial strains, respectively (%).

    3 Experimental Results

    3.1 Volumetric Strain

    Fig.3 illustrates the relationship between the volumetric and axial strains of HBS. The positive volumetric strain indicates that the HBS is in compression, and the negative volumetric strain indicates that dilative behaviors are observed.

    Fig.3 Volumetric deformation behaviors of hydrate-bearing sediments. (a), σ3 = 1 MPa; (b), σ3 = 2 MPa; (c), σ3 = 4 MPa.

    Under low effective confining pressure (σ3= 1, 2 MPa), the high hydrate-saturated specimens show compressive behaviors at small strains and shear dilative behaviors at increasing axial strain. The deformation behaviors during shearing are transformed from shear compression to dilatation with the increase in hydrate saturation. Moreover,the axial strain corresponding to the state transformation point increases with the decrease in hydrate saturation. The hydrate-free specimens show shear compressive behaviors during the shearing tests. Compression deformation is remarkably reduced with the increase in hydrate saturation.

    The volumetric deformation shows a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure. Compared with low hydrate saturation, high hydrate saturation brings in high dilatation. Owing to the inhibition effect of confining pressure on deformation, the dilatation degree decreases with the increase in effective confining pressure.

    3.2 Lateral Strain

    Fig.4 displays the lateral strain of HBS during the tests.The positive lateral strain indicates that the specimens show dilative behaviors during shearing, which is similar to previous studies (Yunet al., 2007; Miyazakiet al., 2011; Pinkert and Grozic, 2014). The maximum lateral strain shows a decreasing trend with the hydrate formation. In particular, the value decreases by about 29% with the increase in hydrate saturation from 0 to 40.0% at the effective confining pressure of 1 MPa. In addition, the confining pressure restrains the lateral expansion during deformation. The maximum lateral strain decreases with the increase in the effective confining pressure.

    Fig.4 Lateral strain of hydrate-bearing sediments. (a), σ3 = 1 MPa; (b), σ3 = 2 MPa; (c), σ3 = 4 MPa.

    3.3 Deformation Mechanism

    The test results indicate that deformation behaviors mainly depend on the hydrate saturation and stress states. Sediment particle movements and hydrate cementation damage occur during shearing, which determines the variations of microstructures and deformation characteristics of HBS.

    In general, deformation is rarely observed in the early axial loading stage and is dominantly triggered by the slight compaction of sediments (Miyazakiet al., 2011). Specimens under loading laterally expand, causing nonhomogeneous lateral expansion in the middle and later stages(Liet al., 2021b). Meanwhile, volumetric deformation shows various characteristics of dilatation and compression during shearing, as shown in Fig.5.

    Fig.5 Deformation behaviors of hydrate-bearing sediments during shearing.

    Hydrate formation enhances the cementation between sediment particles, thus increasing the movement resistance of particles and reducing the breakage of cementation bonds (Donget al., 2022a; Zhaoet al., 2022). Confining pressure can limit particle movement, especially lateral motion under loading (Donget al., 2020; Liet al., 2021a).Hydrate content and confining pressure affect the particle movement and cementation damage, altering the volumetric and lateral deformation of HBS, as depicted in Fig.6.

    Fig.6 Micro-mechanisms controlling the deformation behaviors of hydrate-bearing sediments.

    4 Strain Prediction

    4.1 Volumetric Strain Prediction

    On the basis of the above analysis of deformation behaviors, an easy and efficient prediction model is proposed to simulate the relationship between the volumetric and axial strains of HBS. The model can be expressed as follows:

    whereεvandεarepresent the volumetric and axial strain(%);βis the coefficient related to hydrate saturation and the effective confining pressure, dimensionless;Shrepresents hydrate saturation (%); andσ3is the effective confining pressure (MPa).

    Fig.7 shows the comparison between the test and calculated values ofβ.The results indicate thatβincreases with hydrate saturation and is affected by the effective confining pressure. This empirical model forβprediction can be obtained by fitting the above test data. The model error is determined through Eqs. (5) – (7). The error range ofβis 0.99% – 4.96%, and the average error is 2.72%. In general, the error satisfies the engineering requirements.

    Fig.7 Comparison of experimental and calculated value of β.

    whereemin,emax, andeaveare the minimum, maximum, and average errors, respectively (%);βexpandβcalrepresent the test and calculation values ofβ, dimensionless; andnis the number of groups, dimensionless.

    Fig.8 exhibits the effect ofβon volumetric strain curves.With the increase inβ, the degree of compression increases and that of dilatation decreases. The volumetric strain exhibits a steady trend of increasingversusaxial strain withβless than 0.9, indicating dilatant behaviors during shearing. By contrast, the volumetric strain continues to decrease whenβis greater than or equal to 0.9. Behaviors with shear contraction are observed during the triaxial shearing tests.

    Fig.8 Effect of β on volumetric strain curves.

    The predicted volumetric strain of HBS is obtained based on the above-proposed empirical model, as shown in Fig.9. Comparisons between the test and calculated results prove that this model can be used to predict the volumetric strain of NGH reservoirs with high accuracy.

    Fig.9 Prediction of volumetric strain. (a), σ3 = 4 MPa; Sh = 0 – 40.0%; (b), Sh = 40.0%, σ3 = 1, 2, 4 MPa.

    4.2 Lateral Strain Prediction

    Kulhawy (1975) assumed that the relationship between lateral and axial strains can be described by hyperbolic function. Yanet al. (2017) then used this hyperbolic model to simulate the lateral deformation of HBS while considering the effect of hydrate formation. In general, the lateral strain of HBS can be calculated through Eq. (8).

    wherehandDrepresent the model parameters related to hydrate saturation and effective confining pressure, respectively.

    Furthermore, Eq. (8) can be converted into Eq. (9), showing that the valueεa/εlis linear with axial strainεa.

    Fig.10 demonstrates the variation of model parametershandDversushydrate saturation. With the increase in hydrate formation,hincreases andDdecreases. A high effective confining pressure increasesDand decreasesh.handDshow significant correlations with hydrate content and confining pressure and can be obtained through data fitting,as shown in Eqs. (10) and (11).

    Fig.10 Prediction of model coefficient h and D. (a), parameter h; (b), parameter D.

    whereShrepresents hydrate saturation (%); andσ3represents the effective confining pressure (MPa).

    Errors in prediction results can be identified through Eqs. (5) – (7). The error range ofhis 0.11% – 4.75%, and the average error is 2.35%. The error range ofDis 0.15%– 4.93%, and the average error is 3.13%. By bringing these model parameters into Eq. (14), the lateral strain curves of HBS can be obtained efficiently, as shown in Fig.11. This modified model for lateral strain calculation has advantages such as high accuracy, good applicability, and high simplicity, providing a way to describe and estimate the deformation behaviors of reservoirs during NGH develop- ment.

    Fig.11 Prediction of lateral strain based on the modified Kulhawy’s model. (a), σ3 = 1 MPa; (b), σ3 = 2 MPa; (c), σ3 = 4 MPa.

    Poisson’s ratioνtand initial Poisson’s ratioνican be determined through Eqs. (12) and (13).

    The initial Poisson’s ratio from previous experimental data is 0.24 – 0.55 (Miyazakiet al., 2011, 2012), and the calculated initial Poisson’s ratio based on the proposed model is 0.23 – 0.56. According to the discussion above,the initial Poisson’s ratio models can be calculated efficiently using this modified model by considering the effect of hydrate saturation and stress states, as shown in Fig.12.

    Fig.12 Prediction of the initial Poisson’s ratio based on the modified model.

    5 Conclusions

    The evaluation and prediction of deformation characteristics are necessary precursors to the safe and efficient development of NGH. The deformation characteristics of HBS are investigated through a series of triaxial shearing tests. Volumetric and lateral strains are evaluated and estimated using the proposed prediction model. Correlations between the model coefficients and key factors are discussed in detail. The main conclusions are described as follows:

    The higher the hydrate saturation, the more evident the expansion behaviors. Volumetric deformation shows a tendency to transform gradually from dilatation to compression with an increase in effective confining pressure.

    The deformation behaviors of HBS are mainly controlled by sediment particle movements and hydrate cementation damage. Hydrate formation enhances the cementation between particles. A high confining pressure limits the particle displacements.

    Correlations between volumetric and axial strains can be characterized through the proposed prediction model, which is simple, practical, and convenient. Its coefficientβis the dominating factor for the shape of volumetric strain curves.

    The modified Kulhawy’s model can be used to predict the lateral strain of HBS with high precision. Its coefficients,handD, can be calculated based on the test data to determine the variation of lateral strain curves.

    Acknowledgements

    This research was supported by the Qingdao Natural Science Foundation (No. 23-2-1-54-zyyd-jch), the National Natural Science Foundation of China (Nos. 42076217, 41 976074), the Laoshan Laboratory (No. LSKJ202203506),and the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University(No. KLE-TJGE-G2202).

    乱码一卡2卡4卡精品| 免费高清视频大片| 九九爱精品视频在线观看| 亚洲美女黄片视频| 美女高潮的动态| 欧美性感艳星| 精品久久久久久久久久免费视频| 国产精品无大码| 啦啦啦啦在线视频资源| 欧美+亚洲+日韩+国产| 最近在线观看免费完整版| 成人特级黄色片久久久久久久| 成人午夜高清在线视频| 伦精品一区二区三区| 18禁在线播放成人免费| 国产精品野战在线观看| 亚洲内射少妇av| av专区在线播放| 精品久久国产蜜桃| 国产av麻豆久久久久久久| 免费高清视频大片| 一进一出抽搐gif免费好疼| 日本一二三区视频观看| 身体一侧抽搐| 亚洲四区av| 天天躁夜夜躁狠狠久久av| 久久久国产成人免费| 在线观看av片永久免费下载| 非洲黑人性xxxx精品又粗又长| 久久欧美精品欧美久久欧美| 国产69精品久久久久777片| 亚洲国产精品sss在线观看| 国产精品久久久久久久久免| 日韩精品有码人妻一区| 又爽又黄a免费视频| 卡戴珊不雅视频在线播放| 国产亚洲91精品色在线| 精品人妻偷拍中文字幕| 久久久久久久久久成人| 狠狠精品人妻久久久久久综合| 五月伊人婷婷丁香| 中文在线观看免费www的网站| 亚洲欧洲日产国产| 久久久久久久久久成人| 精品久久久精品久久久| 我的老师免费观看完整版| 国产乱来视频区| 国产极品粉嫩免费观看在线 | 国产精品三级大全| 亚洲婷婷狠狠爱综合网| 中文乱码字字幕精品一区二区三区| 丰满饥渴人妻一区二区三| videos熟女内射| 成人午夜精彩视频在线观看| 少妇高潮的动态图| 精品国产一区二区三区久久久樱花| 日本黄大片高清| 日韩av在线免费看完整版不卡| 久久99蜜桃精品久久| 国产极品粉嫩免费观看在线 | 久久久亚洲精品成人影院| 精华霜和精华液先用哪个| 日韩大片免费观看网站| 人人澡人人妻人| 高清不卡的av网站| 日本欧美国产在线视频| 亚洲精品中文字幕在线视频 | 中文字幕久久专区| 精品少妇黑人巨大在线播放| 欧美区成人在线视频| 边亲边吃奶的免费视频| 欧美精品一区二区大全| 免费播放大片免费观看视频在线观看| 少妇的逼好多水| 男女国产视频网站| 校园人妻丝袜中文字幕| 青青草视频在线视频观看| 久久久久人妻精品一区果冻| 国产亚洲最大av| 国产黄片视频在线免费观看| 午夜福利视频精品| 色婷婷久久久亚洲欧美| 国产精品女同一区二区软件| 777米奇影视久久| 日韩精品有码人妻一区| 日本-黄色视频高清免费观看| 亚洲人成网站在线观看播放| 少妇熟女欧美另类| 亚洲成人手机| 曰老女人黄片| 免费黄色在线免费观看| 偷拍熟女少妇极品色| 99久久中文字幕三级久久日本| 亚洲精品久久久久久婷婷小说| 亚洲经典国产精华液单| 国产伦精品一区二区三区四那| 婷婷色av中文字幕| 国产深夜福利视频在线观看| 91精品国产九色| 亚洲va在线va天堂va国产| 国产日韩一区二区三区精品不卡 | 国产日韩欧美亚洲二区| 韩国av在线不卡| 99热这里只有是精品在线观看| 特大巨黑吊av在线直播| 久久久久久久国产电影| 香蕉精品网在线| 久热久热在线精品观看| 日日啪夜夜爽| 国产在线男女| 色94色欧美一区二区| 国产亚洲5aaaaa淫片| 爱豆传媒免费全集在线观看| 高清不卡的av网站| 亚洲精品成人av观看孕妇| videos熟女内射| 国产一区二区三区综合在线观看 | 另类精品久久| 久久久国产欧美日韩av| 久久久久国产网址| 最新的欧美精品一区二区| 亚洲国产欧美在线一区| 大片免费播放器 马上看| 免费在线观看成人毛片| 看十八女毛片水多多多| 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 九九在线视频观看精品| 大片电影免费在线观看免费| 国产一级毛片在线| 天堂中文最新版在线下载| 九色成人免费人妻av| 在线免费观看不下载黄p国产| 亚洲精华国产精华液的使用体验| 搡女人真爽免费视频火全软件| 最近手机中文字幕大全| 国产成人精品一,二区| 黄色配什么色好看| 午夜免费观看性视频| 欧美激情国产日韩精品一区| 国产免费一级a男人的天堂| 国产极品粉嫩免费观看在线 | 国产亚洲欧美精品永久| 天堂俺去俺来也www色官网| 日韩,欧美,国产一区二区三区| 国产伦精品一区二区三区视频9| 中文字幕精品免费在线观看视频 | 亚洲av成人精品一区久久| 日韩av不卡免费在线播放| 嫩草影院新地址| 精品亚洲成a人片在线观看| 交换朋友夫妻互换小说| 国产成人免费无遮挡视频| 精品亚洲成a人片在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲情色 制服丝袜| 国产深夜福利视频在线观看| 汤姆久久久久久久影院中文字幕| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 国产永久视频网站| 国产免费一区二区三区四区乱码| 久久亚洲国产成人精品v| 久久久久精品久久久久真实原创| 欧美精品亚洲一区二区| 大陆偷拍与自拍| 国产精品免费大片| 久久精品国产a三级三级三级| av网站免费在线观看视频| av在线app专区| 人人妻人人爽人人添夜夜欢视频 | 啦啦啦啦在线视频资源| 天堂中文最新版在线下载| 中国国产av一级| 纯流量卡能插随身wifi吗| 肉色欧美久久久久久久蜜桃| av国产精品久久久久影院| 观看免费一级毛片| 国产一区二区在线观看日韩| 欧美 亚洲 国产 日韩一| 赤兔流量卡办理| 26uuu在线亚洲综合色| 日韩亚洲欧美综合| av有码第一页| 亚洲av福利一区| 啦啦啦啦在线视频资源| 全区人妻精品视频| 免费观看性生交大片5| 99热这里只有是精品50| 日本午夜av视频| 男人和女人高潮做爰伦理| 尾随美女入室| 五月玫瑰六月丁香| 亚洲美女搞黄在线观看| 日日啪夜夜撸| 老司机亚洲免费影院| 在线精品无人区一区二区三| 亚洲精品乱久久久久久| 狠狠精品人妻久久久久久综合| 两个人的视频大全免费| 久久韩国三级中文字幕| 中文资源天堂在线| 日韩大片免费观看网站| 久久久久久久国产电影| 免费人妻精品一区二区三区视频| 男人爽女人下面视频在线观看| 日韩,欧美,国产一区二区三区| 午夜激情久久久久久久| 久热久热在线精品观看| 国产成人精品无人区| 日本av手机在线免费观看| 国产一区有黄有色的免费视频| 91aial.com中文字幕在线观看| 最近手机中文字幕大全| 女性生殖器流出的白浆| 国产综合精华液| 又黄又爽又刺激的免费视频.| 国产精品无大码| 亚洲av免费高清在线观看| 十八禁网站网址无遮挡 | 久久久久久久久久成人| 啦啦啦在线观看免费高清www| 欧美 日韩 精品 国产| 边亲边吃奶的免费视频| 婷婷色综合www| 欧美人与善性xxx| 国产男人的电影天堂91| 狠狠精品人妻久久久久久综合| 天天躁夜夜躁狠狠久久av| 99久久综合免费| 少妇的逼水好多| 亚洲av成人精品一二三区| 一级黄片播放器| 九九在线视频观看精品| 国产精品久久久久久av不卡| 十八禁网站网址无遮挡 | 亚洲欧美日韩东京热| 国产精品人妻久久久影院| 欧美日韩亚洲高清精品| 国产精品福利在线免费观看| 亚洲人与动物交配视频| 国产精品一区二区性色av| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 2018国产大陆天天弄谢| 老熟女久久久| 3wmmmm亚洲av在线观看| 日本黄色片子视频| 男女边摸边吃奶| 欧美日韩国产mv在线观看视频| 日日摸夜夜添夜夜添av毛片| 国产亚洲午夜精品一区二区久久| 国产高清三级在线| 久久久久久伊人网av| 国产无遮挡羞羞视频在线观看| 亚洲av日韩在线播放| 卡戴珊不雅视频在线播放| 国产又色又爽无遮挡免| 色哟哟·www| 丁香六月天网| 亚洲怡红院男人天堂| 啦啦啦啦在线视频资源| 国产极品天堂在线| 欧美精品亚洲一区二区| 永久免费av网站大全| 王馨瑶露胸无遮挡在线观看| 一个人看视频在线观看www免费| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美日韩在线播放 | 久久久久久久大尺度免费视频| 亚洲精品自拍成人| 中文乱码字字幕精品一区二区三区| 亚洲经典国产精华液单| 久久国产亚洲av麻豆专区| 久久毛片免费看一区二区三区| 97超视频在线观看视频| 精品人妻一区二区三区麻豆| 日本wwww免费看| 美女视频免费永久观看网站| 欧美日韩在线观看h| 丝袜脚勾引网站| 成人亚洲欧美一区二区av| 嫩草影院新地址| 人人妻人人看人人澡| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲成国产av| 日本wwww免费看| 一级av片app| 亚洲av中文av极速乱| 免费观看的影片在线观看| 久久久久久久久久久免费av| 国产成人免费无遮挡视频| 国产伦在线观看视频一区| 国产精品免费大片| 久久精品熟女亚洲av麻豆精品| 亚洲av男天堂| 国产日韩欧美亚洲二区| 亚洲av男天堂| av在线app专区| 99热国产这里只有精品6| 欧美3d第一页| av播播在线观看一区| 国产美女午夜福利| 美女大奶头黄色视频| 高清欧美精品videossex| 欧美最新免费一区二区三区| 亚洲成人手机| .国产精品久久| 久久97久久精品| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| 午夜免费观看性视频| xxx大片免费视频| videos熟女内射| 精品国产一区二区久久| 久久久久久人妻| 国产真实伦视频高清在线观看| 韩国av在线不卡| 在线观看av片永久免费下载| 最近2019中文字幕mv第一页| 日韩av不卡免费在线播放| 亚洲精品日本国产第一区| 肉色欧美久久久久久久蜜桃| 2021少妇久久久久久久久久久| 色网站视频免费| 久久韩国三级中文字幕| 人人妻人人澡人人爽人人夜夜| 人人妻人人添人人爽欧美一区卜| 欧美人与善性xxx| 我要看日韩黄色一级片| 亚洲精华国产精华液的使用体验| 中国国产av一级| 国产午夜精品一二区理论片| 搡老乐熟女国产| 日韩欧美一区视频在线观看 | 国产精品99久久久久久久久| 黄色怎么调成土黄色| 91精品一卡2卡3卡4卡| 男女边吃奶边做爰视频| 成年女人在线观看亚洲视频| 夫妻午夜视频| h视频一区二区三区| 97在线人人人人妻| 国产精品秋霞免费鲁丝片| 久久久久久久国产电影| 日本wwww免费看| 熟妇人妻不卡中文字幕| 亚洲国产av新网站| 在线观看人妻少妇| 在线观看三级黄色| 国产成人精品一,二区| 97超视频在线观看视频| 成人综合一区亚洲| √禁漫天堂资源中文www| 日本欧美视频一区| 一级a做视频免费观看| 国产成人精品一,二区| 爱豆传媒免费全集在线观看| 欧美97在线视频| 国产男人的电影天堂91| 日韩一区二区视频免费看| 99久久中文字幕三级久久日本| 极品少妇高潮喷水抽搐| 日韩中文字幕视频在线看片| 精品视频人人做人人爽| 伦理电影免费视频| 伦精品一区二区三区| 一级毛片久久久久久久久女| 国产在线视频一区二区| 午夜福利视频精品| 九九在线视频观看精品| 中文字幕精品免费在线观看视频 | 久久 成人 亚洲| 亚洲精品一区蜜桃| 国产高清不卡午夜福利| 中文精品一卡2卡3卡4更新| 少妇人妻精品综合一区二区| 国产探花极品一区二区| 亚洲av成人精品一二三区| 乱系列少妇在线播放| av天堂中文字幕网| 我要看日韩黄色一级片| 国产色爽女视频免费观看| 亚洲精品日韩av片在线观看| 中文乱码字字幕精品一区二区三区| 看免费成人av毛片| 国产亚洲午夜精品一区二区久久| 乱人伦中国视频| 国产黄频视频在线观看| 国产精品熟女久久久久浪| 岛国毛片在线播放| 精品一区在线观看国产| 免费黄频网站在线观看国产| 欧美日韩在线观看h| 亚洲欧美一区二区三区国产| 国产熟女欧美一区二区| 中文字幕av电影在线播放| 国产又色又爽无遮挡免| 国产亚洲91精品色在线| 久久毛片免费看一区二区三区| 国产高清国产精品国产三级| 日本黄色日本黄色录像| 大片免费播放器 马上看| 精品国产一区二区三区久久久樱花| 亚洲综合精品二区| 边亲边吃奶的免费视频| 麻豆精品久久久久久蜜桃| 黄片无遮挡物在线观看| 蜜桃久久精品国产亚洲av| 久久久久精品久久久久真实原创| 国产亚洲av片在线观看秒播厂| 五月玫瑰六月丁香| 蜜桃在线观看..| 成人18禁高潮啪啪吃奶动态图 | 波野结衣二区三区在线| 热99国产精品久久久久久7| 国产免费一级a男人的天堂| 亚洲人与动物交配视频| 成人黄色视频免费在线看| 久久久久久久大尺度免费视频| 国产精品秋霞免费鲁丝片| 涩涩av久久男人的天堂| 日本猛色少妇xxxxx猛交久久| 午夜免费男女啪啪视频观看| av国产精品久久久久影院| 黄色日韩在线| 久久久久网色| 国产精品福利在线免费观看| 欧美成人午夜免费资源| 777米奇影视久久| 国产在线男女| av在线播放精品| 久久久久久久久久人人人人人人| 中文乱码字字幕精品一区二区三区| 久久久亚洲精品成人影院| 性色av一级| 日韩中字成人| 在线观看人妻少妇| 丰满乱子伦码专区| 看免费成人av毛片| 我要看黄色一级片免费的| 亚洲av欧美aⅴ国产| 国产日韩欧美视频二区| 日韩精品有码人妻一区| av在线老鸭窝| 久久ye,这里只有精品| 亚洲欧美日韩东京热| videossex国产| 在线看a的网站| 99热全是精品| 婷婷色综合大香蕉| 国产精品麻豆人妻色哟哟久久| 亚洲欧美清纯卡通| 午夜福利网站1000一区二区三区| 丰满饥渴人妻一区二区三| 国产极品粉嫩免费观看在线 | 熟女av电影| 高清不卡的av网站| 亚洲欧美一区二区三区黑人 | 精品久久久久久电影网| 久久狼人影院| 人人妻人人添人人爽欧美一区卜| 久久国产精品大桥未久av | 亚洲精品日韩av片在线观看| 涩涩av久久男人的天堂| 男女国产视频网站| 伦理电影大哥的女人| 夜夜骑夜夜射夜夜干| 久久免费观看电影| 在线亚洲精品国产二区图片欧美 | 老司机影院成人| 国产亚洲5aaaaa淫片| 久久久久久人妻| 五月玫瑰六月丁香| 亚洲国产精品999| 午夜福利视频精品| 日韩欧美 国产精品| 超碰97精品在线观看| 国产成人91sexporn| 国产淫语在线视频| 日韩成人av中文字幕在线观看| 免费av不卡在线播放| 午夜福利视频精品| 黄色日韩在线| 亚洲欧美日韩卡通动漫| 中文资源天堂在线| 国产精品三级大全| 国产色爽女视频免费观看| 中国三级夫妇交换| 免费少妇av软件| 免费不卡的大黄色大毛片视频在线观看| 精品亚洲成国产av| 久久久久久久久大av| 免费黄网站久久成人精品| 国产一区二区在线观看日韩| 亚洲国产成人一精品久久久| 国产极品粉嫩免费观看在线 | 久久午夜福利片| 人人妻人人澡人人爽人人夜夜| 亚洲色图综合在线观看| 久久久精品免费免费高清| 国产亚洲91精品色在线| 国产一区有黄有色的免费视频| 亚洲一级一片aⅴ在线观看| 亚洲精品乱码久久久v下载方式| 国产精品偷伦视频观看了| 丰满饥渴人妻一区二区三| 久久久亚洲精品成人影院| 日韩亚洲欧美综合| 亚洲成色77777| 天堂8中文在线网| 日韩视频在线欧美| 国产欧美另类精品又又久久亚洲欧美| 国产又色又爽无遮挡免| 大片免费播放器 马上看| 国内少妇人妻偷人精品xxx网站| 女的被弄到高潮叫床怎么办| 大片电影免费在线观看免费| 久久久久国产网址| 曰老女人黄片| 日韩中字成人| 日韩精品免费视频一区二区三区 | 哪个播放器可以免费观看大片| av在线老鸭窝| 色视频在线一区二区三区| 又黄又爽又刺激的免费视频.| 日韩强制内射视频| 大陆偷拍与自拍| 少妇熟女欧美另类| 女人精品久久久久毛片| 日韩成人伦理影院| 高清欧美精品videossex| 久久99蜜桃精品久久| 日本91视频免费播放| 美女xxoo啪啪120秒动态图| 熟女电影av网| 另类精品久久| 国产亚洲91精品色在线| 欧美激情极品国产一区二区三区 | 亚洲精品国产av成人精品| 国产精品偷伦视频观看了| 老女人水多毛片| 9色porny在线观看| 亚洲欧美精品自产自拍| 一级av片app| 自拍欧美九色日韩亚洲蝌蚪91 | 国内精品宾馆在线| av免费观看日本| 久久精品熟女亚洲av麻豆精品| 日日摸夜夜添夜夜爱| 22中文网久久字幕| 亚洲av在线观看美女高潮| 搡老乐熟女国产| 你懂的网址亚洲精品在线观看| 国产无遮挡羞羞视频在线观看| 国产一区亚洲一区在线观看| 人妻制服诱惑在线中文字幕| 人妻少妇偷人精品九色| 日韩制服骚丝袜av| 日日摸夜夜添夜夜添av毛片| 国产亚洲精品久久久com| av免费观看日本| 久久婷婷青草| 好男人视频免费观看在线| 亚洲真实伦在线观看| 观看免费一级毛片| 久久精品久久精品一区二区三区| 男的添女的下面高潮视频| av线在线观看网站| 18禁在线播放成人免费| 男女免费视频国产| 久久久久久人妻| 国产高清国产精品国产三级| 一级毛片黄色毛片免费观看视频| 亚洲精品456在线播放app| 国产男女内射视频| 黄色日韩在线| 久久精品久久久久久久性| 777米奇影视久久| 伦理电影大哥的女人| 亚洲欧美日韩另类电影网站| 免费不卡的大黄色大毛片视频在线观看| 久久精品国产亚洲av涩爱| 欧美日韩av久久| 日本vs欧美在线观看视频 | 亚洲欧美清纯卡通| 观看av在线不卡| 久久这里有精品视频免费| 国模一区二区三区四区视频| 一区二区三区精品91| 免费少妇av软件| 午夜福利视频精品| 自拍偷自拍亚洲精品老妇| 欧美97在线视频| 18禁在线无遮挡免费观看视频| 街头女战士在线观看网站| 久久精品熟女亚洲av麻豆精品| 亚洲婷婷狠狠爱综合网| 91aial.com中文字幕在线观看| 精品视频人人做人人爽| 99九九在线精品视频 | 久久久国产欧美日韩av| 国产高清有码在线观看视频| 亚洲精品亚洲一区二区| 精品亚洲成国产av| 日日爽夜夜爽网站| 国产亚洲5aaaaa淫片| 大又大粗又爽又黄少妇毛片口| 毛片一级片免费看久久久久| 自拍偷自拍亚洲精品老妇| 精品视频人人做人人爽| 午夜老司机福利剧场| 美女主播在线视频| 午夜免费男女啪啪视频观看| 亚洲av免费高清在线观看|