• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ir nanoclusters on ZIF-8-derived nitrogen-doped carbon frameworks to give a highly efficient hydrogen evolution reaction

    2024-03-07 07:49:08WANGXiaoGONGYanshangLIUZhikunWUPeishanZHANGLixueSUNJiankun
    新型炭材料 2024年1期

    WANG Xi-ao ,GONG Yan-shang ,LIU Zhi-kun ,WU Pei-shan ,ZHANG Li-xue ,SUN Jian-kun,

    (1.College of Chemistry and Chemical Engineering,Collaborative Innovation Center for Hydrogen Energy Key Materials and Technologies of Shandong Province,Qingdao University,Qingdao 266071, China;2.Wanhua Chemical Group Co.,Ltd.,Yantai 264000, China;3.Institute of Analysis,Guangdong Academy of Sciences,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals,Guangzhou 510070, China)

    Abstract:The precise change of the electronic structure of active metals using low-active supports is an effective way of developing high-performance electrocatalysts.The electronic interaction of the metal and support provides a flexible way of optimizing the catalytic performance.We have fabricated an efficient hydrogen evolution reaction (HER) electrocatalyst,in which Ir nanoclusters are uniformly loaded on a nitrogen-doped carbon framework (Ir@NC).The synthesis process entails immersing an annealed zeolitic imidazolate framework-8 (ZIF-8),prepared at 900 °C as a carbon source,into an IrCl3 solution,followed by a calcination-reduction treatment at 400 °C under a H2/Ar atmosphere.The three-dimensional porous structure of the nitrogen-doped carbon framework exposes more active metal sites,and the combined effect of the Ir clusters and the N-doped carbon support efficiently changes the electronic structure of Ir,optimizing the HER process.In acidic media,Ir@NC has a remarkable HER electrocatalytic activity,with an overpotential of only 23 mV at 10 mA cm?2,an ultra-low Tafel slope (25.8 mV dec?1) and good stability for over 24 h at 10 mA cm?2.The high activity of the electrocatalyst with a simple and scalable synthesis method makes it a highly promising candidate for the industrial production of hydrogen by splitting acidic water.

    Key words: Ir nanoclusters;Nitrogen-doped carbon support;Electronic interaction;Electrocatalysis;Hydrogen evolution reaction

    1 Introduction

    Hydrogen energy with high energy density is a clean and sustainable energy resource which can be easily transported and stored,allowing for flexibility in energy distribution[1–3].Additionally,hydrogen fuel cells have high energy conversion efficiency and produce only water as a byproduct,minimizing environmental impact[4–5].However,obtaining green hydrogen via water electrolysis is largely hindered by its low energy efficiency.Recently,acidic electrolyzers,generally operate at lower voltages and have higher energy efficiency than alkaline counterparts,have become interesting alternatives[6–8].Furthermore,acidic electrolyzers also exhibit faster reaction kinetics,enabling higher current densities and overall improved performance[9].However,one major challenge in acidic catalytic systems is the stability of the catalysts.Most of the catalysts that can be utilized in alkaline conditions,especially the non-noble metal catalysts,are severely degraded in acidic electrolytes[10–12].This instability can lead to decreased catalytic activity and shortened catalyst lifespan[13–14].Addressing catalyst stability is crucial for the development and commercialization of efficient and durable electrocatalytic hydrogen production in acidic conditions[15].

    Despite the low abundance and high cost,precious metals like Pt,Ir and Ru are still the main electrocatalysts that are extensively utilized in acidic electrolytes[16–17].For instance,You et al.reported Ir nanoparticles anchored cucurbit [6] uril,which exhibited slightly worse HER performance (η10=54 mV) than Pt/C in 0.5 mol L?1H2SO4[18].Song et al.reported that a material with Ru dispersed on CoP nanoparticles exhibits superior HER catalytic activity,with a low overpotential of 49 mV to achieve 10 mA cm?2in 0.5 mol L?1H2SO4solution,by lowering the energy barrier of proton-coupled electron transfer[19].Drouet et al.reported a porous Ru nanomaterial,which needed an overpotential of 83 mV to deliver 10 mA cm?2in 0.5 mol L?1H2SO4solution,owing to the porous structure of the material[20].Although great progress has been made in this direction,methods for regulating the electronic structure while simultaenously increasing the utilization efficiency of precious metal atoms is still challenging[21].

    Nanoscaling of material dimensions plays a critical role in enhancing the specific surface area of catalysts to provide more active sites[22].The nano-catalysts often exhibit distinct and impressive properties compared to bulk materials.In particular,the metal nanoclusters with extremely high specific surface area and a lower surface metal-metal coordination number,improve the surface-to-volume ratio as well as the atomic efficiency of catalyst[23].However,as the size decreases,the catalysts with much higher surface energy become fragile and unstable,inducing degradation and collapse of the active components.The metal-support interaction has been considered as a promising approach to regulate the electronic structure of the active sites and simultaneously prevent side reactions that destroy their structures[24–26].For instance,Xiao and co-workers reported an IrMo nanoclusterembedded N-rich electrocatalyst under alkaline conditions,which possesses ultrasmall bimetal nanoclusters and distinctive porous structures,enhancing the activity and stability of metal nanoclusters[27].In addition,Zhang et al.reported a catalyst with Ir clusters loaded on Pd nanosheets,in which the charge redistribution results in an optimum hydrogen adsorption at the interface[28].Apparently,loading precious metal nanocluster catalysts on stable supports will enable the combination of optimized electronic structure and enhanced stability in acidic electrolytes,but challenging.

    Herein,we utilized annealed ZIF-8 as a carbon source to achieve uniform loading of Ir nanoclusters with an average diameter of 1.78 nm onto a three-dimensional porous N-doped carbon scaffold.This was accomplished by a simple impregnation and calcination-reduction method.The formation of strong covalent Ir-N bonds effectively suppressed the corrosion and agglomeration of Ir clusters in acidic environments.Moreover,the iridium element in Ir@NC exhibited a lower valence state compared to the Ir@C sample,which is conducive to the HER process.This is attributed to the abundant N doped in the carbon support,which regulates the electronic structure of Ir through a strong electronic effect[29].As a result,the electrocatalyst exhibits superior HER performance than Pt/C under acidic conditions.This work demonstrates the importance of selecting appropriate catalyst supports to improve the intrinsic activity of metals and highlights the potential of N-doped carbon materials in enhancing the HER performance of Ir-based catalysts under acidic conditions.

    2 Experimental section

    2.1 Synthesis of NC

    To prepare the ZIF-8 precursor,2-methylimidazole (5.677 g) and hexadecyl trimethyl ammonium bromide (CTAB) (0.018 g) were dissolved in 87 mL of deionized water.Then the 13 mL of deionized water containing 0.367 g of Zn(NO3)2·6H2O was mixed with the above solution.The solution was stirred and aged for 6 h.Then the product was collected and dried at 60 °C.The dried ZIF-8 was subsequently annealed in a 10% H2/Ar atmosphere at 900 °C for 2 h.This process resulted in the formation of a black nitrogendoped carbon (NC) powder.

    2.2 Synthesis of Ir@NC

    To prepare Ir@NC,NC (0.025 g) and IrCl3·nH2O(0.005 g) were dispersed in 1 mL of deionized water.Then the solution was kept at 60 °C for 6 h.The resulting product was collected,washed and dried at 60 °C under vacuum conditions.Next,the dried product was annealed at 400 °C for 4 h in a H2/Ar atmosphere.After cooling down,the black colored Ir@NC powder was obtained.

    For comparison,Ir@C was prepared using a similar process,but instead of NC,Ketjenblack ECP-600JD was used as the carbon support.

    3 Results and discussion

    The synthesis of Ir@NC sample involves a simple three-step method (Fig.1).First,ZIF-8 was obtained by solvothermal treatment and the structure was confirmed by X-ray diffraction (XRD) patterns with the observed diffraction peaks consistent with the simulated ones (Fig.S1).Then,a porous NC skeleton was fabricated by pyrolyzing ZIF-8 at 900 °C.The diffraction peaks of ZIF-8 disappeared and 2 broad peaks at approximately 26° and 44° that belong to the graphitic carbon structure (Fig.2a) were observed,confirming the formation of the NC skeleton[30].Subsequently,the NC sample was immersed in an Ir3+solution to obtain Ir precursor@NC.Finally,the reduction of Ir3+to Ir0clusters was carried out under H2/Ar conditions,resulting in the formation of Ir@NC.Notably,no diffraction peak of Ir was observed probably due to the small size.

    Fig.1 Schematic illustration of the formation of Ir@NC electrocatalyst

    Fig.2 (a) XRD patterns of NC and Ir@NC sample.SEM images of (b) ZIF-8,(c) NC and (d) Ir@NC.(e-f) HRTEM images of Ir@NC.(g) Size distribution of Ir nanoclusters.(h) HAADF-STEM and (i) the corresponding EDS elemental mapping images of Ir@NC

    Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the morphology and structure of the prepared samples.SEM image of ZIF-8 in Fig.2b exhibits a uniform cubic shape with a size of 140 nm.After the pyrolysis treatment,the NC sample maintains its initial cubic morphology,but a reduced particle size of 75 nm due to the evaporation of In[31–32](Fig.2c).Upon the incorporation of Ir clusters,the size of Ir@NC is further reduced,presenting a shrunken cubic shape with a smaller size of 60 nm (Fig.2d).TEM images of Ir@NC (Fig.2e,f) reveal that ultra-small Ir clusters are uniformly distributed on the cubic Ndoped carbon framework.This uniform dispersion can be attributed to the abundance of N atoms on the NC substrate,which act as coordinating atoms and provide nucleation sites for the formation of Ir clusters[33].The average size of the Ir clusters is approximately 1.78 nm (Fig.2g and Fig.S2),explaining the absence of the Ir diffraction peaks in the XRD pattern.As shown in Fig.S3,a weak diffuse ring pattern for the Ir@NC sample is found from selectedarea electron diffraction (SAED) images,consistent with the results of TEM and XRD.Moreover,highangle annular dark-field scanning TEM (HAADFSTEM) images further demonstrate the uniform distribution of Ir clusters supported on the NC substrate(Fig.2h),and X-ray energy dispersive spectroscopy(EDS) elemental mapping images confirm the coexistence of C,N and Ir elements in the Ir@NC sample(Fig.2i).The Ir content in Ir@NC,determined by inductively coupled plasma optical emission spectrometry (ICP-OES),was found to be 8.02%,which is in good agreement with the EDS result (Table S1).For comparison,Ir@C sample was prepared using a similar process,but with carbon black instead of ZIF-8 as the carbon source.From the XRD pattern shown in Fig.S4,no diffraction peaks corresponding to Ir were detected in the Ir@C sample.Instead,only two broad peaks attributed to the graphitic carbon structure were observed,which is similar to the Ir@NC sample.

    The specific surface area and pore structure of NC and Ir@NC were determined by nitrogen adsorption/desorption analysis.The Brunauer-Emmett-Teller (BET) surface area of NC and Ir@NC was calculated to be 1 060 and 1 163 m2g?1,respectively(Fig.3a and Table S2).The higher surface area of Ir@NC can be due to the incorporation of Ir clusters.Both the NC and Ir@NC samples exhibit a hierarchical pore structure with micropores and mesopores,as indicated by the hysteresis curves and hysteresis loop,which is verified by the pore size distribution curves(Fig.3b).This presence of micropores facilitates the ion diffusion in the electrolyte,while the mesoporous structure enhances the mass transport of active species and enables the exposure of more active sites.Therefore,the synergistic effect of pore structure promotes electrochemical reaction kinetics[34].

    Fig.3 (a) N2 adsorption-desorption isotherms and corresponding (b) pore diameter distribution curves of NC and Ir@NC

    The chemical composition and valence states of Ir@NC,NC and Ir@C samples were examined using X-ray photoelectron spectroscopy (XPS).The existence of the corresponding elements is confirmed by the XPS survey spectra of each sample (Fig.4a and Fig.S5).The weak peak of Zn 2p appears in both Ir@NC and NC samples due to the incomplete removal of Zn from ZIF-8.The residual Zn does not significantly contribute to the catalytic activity[26],as will be further verified by the following electrochemical characterization.The O element detected in the spectra originates from inevitable surface oxidation when exposed to air.In the C 1s spectra (Fig.4b),the fitted peaks located at 284.8 and 286.3 eV belong to C―C and C―N coordination,respectively.

    Fig.4 XPS spectra of NC and Ir@NC.(a) Survey scan spectra of NC and Ir@NC.High-resolution spectra of (b) C 1s and (c) N 1s for Ir@NC and NC.(d) High-resolution spectra of Ir 4f for Ir@NC and Ir@C

    In the N 1s spectra of NC and Ir@NC samples(Fig.4c),the signal can be well fitted with 5 peaks corresponding to pyridinic nitrogen (398.4 eV),metal―nitrogen bond (399.7 eV),pyrrolic nitrogen(400.8 eV),graphitic nitrogen (401.9 eV),and oxidic nitrogen (404.1 eV) species,respectively.The presence of metal―nitrogen bond in the NC sample mainly originates from residual Zn,while Ir@NC possesses both Zn―N and Ir―N bonds.Apart from pyridinic N and metal―N,the other nitrogen species in both samples have nearly the same content.The pyridinic N and metal―N account for 35% and 9% of the total N atoms in the NC sample,while in Ir@NC,these 2 species account for 30% and 14%,respectively.This difference indicates that a portion of pyridinic N was converted into metal-nitrogen bonds owing to the formation of Ir―N bonds with the incorporation of Ir clusters.The electron-donating properties of pyridinic N enable it to serve as metal-coordination sites to immobilize the Ir atoms[33–34].Additionally,the peak of metal―N in Ir@NC was shifted to a higher binding energy,suggesting the significant electronic interaction between pyridinic N and Ir atoms.In the Ir 4f spectra (Fig.4d),doublet peaks of Ir 4f7/2and Ir 4f5/2with 2 satellite peaks at 62.9 and 66.2 eV were observed.Compared to Ir@C,the binding energies of Ir 4f7/2and Ir 4f5/2in Ir@NC sample are negatively shifted from 62.1 and 65.1 eV to 61.7 and 64.7 eV,manifesting the significant interaction between Ir and N,consistent with the results of the N 1s.The corresponding data and valence states of C 1s,N 1s and Ir 4f in XPS spectra have been listed in Table S3-5.The synergistic effect between Ir clusters and NC support allows to effectively regulate electronic structure of Ir and optimize electrocatalytic HER process[35–39].

    The catalytic properties of different samples were evaluated in 0.5 mol L?1H2SO4and all linear sweep voltammetry (LSV) curves were corrected with 85%IR to eliminate the effect of internal resistance.Notably,the immersion concentration of Ir salt solution plays a crucial role in determining the HER activity due to the different loading amounts at different concentrations,and the optimized performance was obtained at 5 mmol L?1(Fig.S6).Promisingly,Ir@NC exhibited remarkable HER catalytic activity with an ultra-low overpotential of 23 mV to deliver 10 mA cm?2(η10=23 mV) in acidic solution,better than the original NC with negligible activity,Ir@C(η10=37 mV),and even the commercial Pt/C (η10=28 mV) (Fig.5b).Notably,Ir@NC outperforms the control sample,especially the sample of Ir@C,even more at higher current densities,highlighting the pivotal role of the electronic interaction between Ir and N in promoting the HER activity.Additionally,Ir@NC possesses a higher electrochemically active surface area (ECSA) of 141 m2g?1than commercial Pt/C (30.7 m2g?1) (Fig.S7),attributed to the well dispersed Ir nanoclusters enabled by the pyridinic N.Promisingly,the HER activity of Ir@NC outperforms most of the recently reported typical Ir-based electrocatalysts[6,9–10,18,29,33–34,40–44](Fig.5d).The data comparing various performance metrics,including overpotential and Tafel slope,have been list in Table S6.Furthermore,the Tafel slope,reflecting the kinetics of the HER,is only 25.8 mV dec?1for Ir@NC (Fig.5c),indicating the Volmer-Tafel mechanism and substantially lower than Ir@C (44.2 mV dec?1),even Pt/C(29.4 mV dec?1).To further investigate the charge transfer and reaction kinetics of the HER process,electrochemical impedance spectroscopy (EIS) was performed.In Fig.5e,all the Nyquist curves of different samples display a near-semicircle shape and the sample of Ir@NC exhibited the smallest diameter of the semicircle,indicating the lowest charge transfer impedance.These findings indicate that the loading of Ir on the NC support,particularly the electronic structure modification of Ir through metal-support interaction (as verified by XPS results),can expedite the charge and electron transfer process,thereby contributing to the significantly enhanced HER performance[37–38].

    Fig.5 HER catalytic performance of different electrocatalysts in 0.5 mol L?1 H2SO4.(a) LSV polarization curves of HER.(b) Overpotentials of different catalyst to achieve 10 and 50 mA cm?2.(c) Corresponding Tafel slope.(d) Comparison of the overpotential at 10 mA cm?2 and Tafel slope of Ir@NC with the recently reported Ir-based HER catalysts in 0.5 mol L?1 H2SO4.(e) Nyquist plots.(f) Chronopotentiometric curves of Ir@NC,Ir@C and Pt/C at 10 mA cm?2 without IR correction

    Ir@NC exhibits good stability at 10 mA cm?2under acidic conditions for more than 24 h (Fig.5f),apparently better than the commercial Pt/C sample and Ir@C.Additionally,the structure of the NC and the cubic morphology of the Ir@NC sample were well preserved after the stability test (Fig.S8a and S8b).More importantly,Ir nanoclusters were still well-distributed on the NC framework without any significant agglomeration and dissolution (Fig.S8c).The average size of Ir clusters after the stability test is about 1.72 nm,which is close to the original size of 1.78 nm(Fig.S8d).These results indicate that the metal-support electron interactions between the Ir clusters and the NC support inhibit the aggregation and dissolution of the Ir clusters,unambiguously contributing to the good stability of Ir@NC during HER under acidic conditions.

    4 Conclusion

    In conclusion,our study demonstrates the successful synthesis of uniformly dispersed ultra-small Ir nanoclusters on the porous nitrogen-doped carbon derived from ZIF-8.These Ir@NC catalysts exhibit remarkable electrocatalytic activity for HER in acidic electrolytes.With a low overpotential of only 23 mV,Ir@NC achieves 10 mA cm?2,showcasing its high efficiency.The Ir nanoclusters are uniformly dispersed thanks to the rich porous structure of the N-doped carbon support.Furthermore,the existence of pyridinic N on the surface of the NC support plays a crucial role in immobilizing the Ir nanoclusters and establishing strong electron interactions between the support and the Ir clusters.This synergistic effect enhances the overall catalytic performance of Ir@NC.Additionally,the Ir@NC catalyst exhibits excellent electrochemical and structural stability,thanks to the coupling effect between the Ir and pyridinic N atoms.The facile synthesis method of Ir@NC further enhances its potential for widespread use in commercial proton exchange membrane electrolysis.These findings highlight the significance of precisely modulating the electronic structure using low-active supports in the design of high-performance electrocatalysts for efficient hydrogen production.

    Acknowledgements

    This research was funded by the China Postdoctoral Science Foundation (2020M671990) and the Qingdao Applied Fundamental Research Project.

    热99re8久久精品国产| 免费高清视频大片| 久久人妻av系列| 美女福利国产在线| 成年版毛片免费区| 亚洲 国产 在线| 成人av一区二区三区在线看| 国产成人欧美| 久热爱精品视频在线9| 老熟妇乱子伦视频在线观看| 美女国产高潮福利片在线看| 亚洲五月色婷婷综合| www.自偷自拍.com| 成人免费观看视频高清| 日本一区二区免费在线视频| 人人澡人人妻人| 99国产精品一区二区三区| 中文字幕精品免费在线观看视频| 90打野战视频偷拍视频| 亚洲精品粉嫩美女一区| 久久性视频一级片| 最新美女视频免费是黄的| 欧美日韩av久久| 国产不卡一卡二| 国产精品av久久久久免费| 国产极品粉嫩免费观看在线| 真人做人爱边吃奶动态| 少妇粗大呻吟视频| 啦啦啦 在线观看视频| 成年人黄色毛片网站| 国产精品一区二区在线不卡| 亚洲 欧美 日韩 在线 免费| 日本 av在线| 国产成人精品久久二区二区91| 久久精品国产99精品国产亚洲性色 | 国产又爽黄色视频| 天堂中文最新版在线下载| 99久久精品国产亚洲精品| 中文字幕高清在线视频| 久久久久亚洲av毛片大全| 国产免费现黄频在线看| av片东京热男人的天堂| 高清欧美精品videossex| 免费看a级黄色片| 久久久精品欧美日韩精品| 免费在线观看亚洲国产| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 嫩草影院精品99| 欧美日韩一级在线毛片| 丝袜美足系列| 国产亚洲精品第一综合不卡| 亚洲av第一区精品v没综合| 狂野欧美激情性xxxx| 欧美人与性动交α欧美软件| 一a级毛片在线观看| 高清黄色对白视频在线免费看| 91麻豆av在线| 国产精品1区2区在线观看.| 在线观看免费视频网站a站| 免费人成视频x8x8入口观看| svipshipincom国产片| 精品福利观看| a级片在线免费高清观看视频| av网站免费在线观看视频| 99香蕉大伊视频| 成人手机av| 999精品在线视频| 国产精品综合久久久久久久免费 | 在线十欧美十亚洲十日本专区| 热re99久久精品国产66热6| 久久国产乱子伦精品免费另类| 久久人人精品亚洲av| 黑人巨大精品欧美一区二区蜜桃| 777久久人妻少妇嫩草av网站| 12—13女人毛片做爰片一| 丁香欧美五月| 亚洲第一青青草原| 99香蕉大伊视频| 真人做人爱边吃奶动态| 日韩成人在线观看一区二区三区| 男女下面插进去视频免费观看| 亚洲avbb在线观看| 亚洲五月色婷婷综合| 亚洲第一青青草原| 18禁黄网站禁片午夜丰满| 9191精品国产免费久久| 国产在线观看jvid| 最近最新免费中文字幕在线| 黄片播放在线免费| 伊人久久大香线蕉亚洲五| videosex国产| 中出人妻视频一区二区| 亚洲色图av天堂| 日韩欧美一区二区三区在线观看| 亚洲色图 男人天堂 中文字幕| 看免费av毛片| 男女午夜视频在线观看| av网站免费在线观看视频| 正在播放国产对白刺激| 女人被躁到高潮嗷嗷叫费观| 国产一区二区激情短视频| 日本撒尿小便嘘嘘汇集6| 国产成+人综合+亚洲专区| 精品一区二区三卡| 亚洲人成电影观看| 99国产精品99久久久久| 涩涩av久久男人的天堂| 久久久久久久精品吃奶| 久久人妻av系列| 久久久精品国产亚洲av高清涩受| 久久 成人 亚洲| av中文乱码字幕在线| 日本免费a在线| 成人亚洲精品av一区二区 | 后天国语完整版免费观看| 日日摸夜夜添夜夜添小说| 神马国产精品三级电影在线观看 | 午夜两性在线视频| 国产一区二区激情短视频| av片东京热男人的天堂| 国产精品免费视频内射| 啦啦啦 在线观看视频| 色婷婷av一区二区三区视频| 亚洲色图av天堂| 午夜福利,免费看| 在线观看免费午夜福利视频| 不卡av一区二区三区| av在线播放免费不卡| 日韩高清综合在线| 一区二区三区国产精品乱码| 亚洲自拍偷在线| 男女下面插进去视频免费观看| 成人影院久久| 少妇粗大呻吟视频| а√天堂www在线а√下载| 男女高潮啪啪啪动态图| 欧美日韩亚洲高清精品| 欧美日韩乱码在线| 多毛熟女@视频| 日本黄色视频三级网站网址| 视频区欧美日本亚洲| www国产在线视频色| 国产精品99久久99久久久不卡| 精品国产美女av久久久久小说| 亚洲精品中文字幕一二三四区| 黑人巨大精品欧美一区二区蜜桃| 岛国在线观看网站| 欧美在线黄色| 欧美乱妇无乱码| 午夜日韩欧美国产| 国产av一区二区精品久久| 两性夫妻黄色片| 精品卡一卡二卡四卡免费| 一级a爱片免费观看的视频| 一级,二级,三级黄色视频| 免费在线观看日本一区| 欧美日本亚洲视频在线播放| 日韩高清综合在线| 国产熟女xx| 国产高清激情床上av| 成人黄色视频免费在线看| 亚洲午夜理论影院| 男女做爰动态图高潮gif福利片 | 成人黄色视频免费在线看| 欧美日韩国产mv在线观看视频| 久久狼人影院| 一级作爱视频免费观看| 搡老熟女国产l中国老女人| 久热这里只有精品99| 久久九九热精品免费| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 日韩高清综合在线| 久久精品亚洲精品国产色婷小说| 岛国视频午夜一区免费看| 国产极品粉嫩免费观看在线| 99精品在免费线老司机午夜| 成人永久免费在线观看视频| 欧美成人性av电影在线观看| 日韩欧美免费精品| 高清毛片免费观看视频网站 | 女人精品久久久久毛片| 免费观看精品视频网站| 亚洲精品国产区一区二| 欧美av亚洲av综合av国产av| 亚洲成人国产一区在线观看| 国产黄色免费在线视频| 久久久久精品国产欧美久久久| 国产精品国产高清国产av| 天天影视国产精品| 日韩av在线大香蕉| 日韩欧美在线二视频| 久久国产精品影院| 午夜免费观看网址| 国产精华一区二区三区| 中文字幕av电影在线播放| av中文乱码字幕在线| 久久人妻福利社区极品人妻图片| 在线av久久热| 老司机在亚洲福利影院| a级片在线免费高清观看视频| 久久午夜亚洲精品久久| 99香蕉大伊视频| 91麻豆av在线| 91九色精品人成在线观看| 丝袜美足系列| 老熟妇仑乱视频hdxx| 国产91精品成人一区二区三区| 亚洲国产欧美一区二区综合| 亚洲男人的天堂狠狠| 欧美日韩国产mv在线观看视频| 动漫黄色视频在线观看| 99热只有精品国产| 99国产精品一区二区蜜桃av| www国产在线视频色| 亚洲一区二区三区不卡视频| 波多野结衣高清无吗| 国产精品 国内视频| 黄色毛片三级朝国网站| 久久天堂一区二区三区四区| 精品欧美一区二区三区在线| 日韩欧美国产一区二区入口| 中文欧美无线码| 亚洲一区二区三区不卡视频| 19禁男女啪啪无遮挡网站| 国产成人啪精品午夜网站| 欧美一区二区精品小视频在线| 免费人成视频x8x8入口观看| 亚洲午夜理论影院| 长腿黑丝高跟| 国产高清国产精品国产三级| 午夜福利欧美成人| e午夜精品久久久久久久| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 99国产精品99久久久久| 99精品欧美一区二区三区四区| 少妇的丰满在线观看| 色哟哟哟哟哟哟| 在线看a的网站| 日日摸夜夜添夜夜添小说| 80岁老熟妇乱子伦牲交| 女人被狂操c到高潮| 身体一侧抽搐| 亚洲一区二区三区欧美精品| 欧美激情久久久久久爽电影 | 国产色视频综合| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 国产成人av激情在线播放| 亚洲国产精品999在线| 中文字幕人妻熟女乱码| 黄网站色视频无遮挡免费观看| 国内毛片毛片毛片毛片毛片| 久久 成人 亚洲| 91麻豆精品激情在线观看国产 | 另类亚洲欧美激情| 一级片'在线观看视频| 999久久久国产精品视频| www.www免费av| 超碰成人久久| 亚洲九九香蕉| 一区二区三区国产精品乱码| 欧美日本中文国产一区发布| 精品第一国产精品| 精品人妻在线不人妻| 夜夜夜夜夜久久久久| 老汉色∧v一级毛片| 老鸭窝网址在线观看| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 婷婷六月久久综合丁香| 国产单亲对白刺激| 午夜影院日韩av| 欧美日韩福利视频一区二区| 国产99白浆流出| 精品福利永久在线观看| 中文字幕精品免费在线观看视频| 亚洲性夜色夜夜综合| 精品一区二区三区av网在线观看| 丰满的人妻完整版| 国产成人欧美在线观看| 免费看a级黄色片| 精品熟女少妇八av免费久了| 麻豆久久精品国产亚洲av | 欧美日韩黄片免| 久久中文字幕人妻熟女| 一进一出抽搐动态| 久久中文字幕一级| 久久久久久亚洲精品国产蜜桃av| 一级,二级,三级黄色视频| 50天的宝宝边吃奶边哭怎么回事| 丰满的人妻完整版| 成人18禁在线播放| 国产主播在线观看一区二区| 精品午夜福利视频在线观看一区| 亚洲国产毛片av蜜桃av| 女人被狂操c到高潮| www.自偷自拍.com| 99热国产这里只有精品6| 天堂俺去俺来也www色官网| 亚洲av熟女| netflix在线观看网站| 久久精品影院6| 高清在线国产一区| 精品人妻在线不人妻| 婷婷丁香在线五月| 久久国产精品男人的天堂亚洲| 无人区码免费观看不卡| 97碰自拍视频| bbb黄色大片| 黄色 视频免费看| 日韩高清综合在线| 亚洲成人免费电影在线观看| 日韩大码丰满熟妇| 成人特级黄色片久久久久久久| 交换朋友夫妻互换小说| 欧美日韩精品网址| 一级片免费观看大全| 热99国产精品久久久久久7| 亚洲人成77777在线视频| 日日夜夜操网爽| 88av欧美| 高潮久久久久久久久久久不卡| 91麻豆精品激情在线观看国产 | 在线观看一区二区三区激情| 两人在一起打扑克的视频| 大型黄色视频在线免费观看| 三级毛片av免费| 国产高清视频在线播放一区| 一进一出抽搐动态| 久久欧美精品欧美久久欧美| 精品久久久久久电影网| 99国产极品粉嫩在线观看| 女警被强在线播放| 三上悠亚av全集在线观看| 欧美成狂野欧美在线观看| 夜夜看夜夜爽夜夜摸 | 中文字幕精品免费在线观看视频| 久久人妻熟女aⅴ| 日韩免费高清中文字幕av| 久久久精品欧美日韩精品| 精品高清国产在线一区| 亚洲人成77777在线视频| 精品高清国产在线一区| 成在线人永久免费视频| 亚洲午夜理论影院| 中文字幕另类日韩欧美亚洲嫩草| 欧美性长视频在线观看| 在线看a的网站| 久久精品亚洲熟妇少妇任你| 久久精品国产亚洲av高清一级| 国产精品久久久久成人av| 免费观看人在逋| 搡老熟女国产l中国老女人| 国产精品自产拍在线观看55亚洲| 丝袜美足系列| 91av网站免费观看| 757午夜福利合集在线观看| 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 99国产综合亚洲精品| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 成人永久免费在线观看视频| 高清黄色对白视频在线免费看| 色婷婷久久久亚洲欧美| 日韩人妻精品一区2区三区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精华国产精华精| 国产精品1区2区在线观看.| 久久天躁狠狠躁夜夜2o2o| 一级黄色大片毛片| 成年人黄色毛片网站| 欧美亚洲日本最大视频资源| 国产欧美日韩综合在线一区二区| 乱人伦中国视频| 日本vs欧美在线观看视频| 男女午夜视频在线观看| 欧美成人免费av一区二区三区| 国产在线观看jvid| 多毛熟女@视频| 国产蜜桃级精品一区二区三区| 多毛熟女@视频| 一进一出好大好爽视频| 精品久久久久久久久久免费视频 | 日韩欧美在线二视频| 少妇被粗大的猛进出69影院| 亚洲情色 制服丝袜| 免费高清视频大片| 色播在线永久视频| 亚洲精品中文字幕一二三四区| 又黄又爽又免费观看的视频| 亚洲精华国产精华精| 亚洲精品成人av观看孕妇| 日韩高清综合在线| 国产亚洲精品久久久久久毛片| 久久性视频一级片| 男人舔女人的私密视频| 国产亚洲欧美98| 国产又爽黄色视频| 级片在线观看| 免费高清视频大片| 久久精品国产综合久久久| 欧美日韩乱码在线| 国产精品1区2区在线观看.| www.www免费av| 妹子高潮喷水视频| 人人妻人人澡人人看| 乱人伦中国视频| 欧美中文日本在线观看视频| 亚洲片人在线观看| 最新美女视频免费是黄的| 99国产精品免费福利视频| 国产伦一二天堂av在线观看| 18禁美女被吸乳视频| 精品福利观看| 欧美成狂野欧美在线观看| 纯流量卡能插随身wifi吗| 午夜老司机福利片| 亚洲国产精品999在线| 午夜久久久在线观看| 他把我摸到了高潮在线观看| 99精品在免费线老司机午夜| 国内毛片毛片毛片毛片毛片| 国产精品一区二区精品视频观看| 桃红色精品国产亚洲av| 自线自在国产av| 日本撒尿小便嘘嘘汇集6| 天天影视国产精品| 国产精品一区二区在线不卡| 长腿黑丝高跟| 国产伦一二天堂av在线观看| 一级片免费观看大全| 精品国产亚洲在线| 视频区图区小说| 亚洲欧美日韩无卡精品| 色尼玛亚洲综合影院| 日本精品一区二区三区蜜桃| netflix在线观看网站| 亚洲国产精品一区二区三区在线| 亚洲欧美激情在线| 国产熟女午夜一区二区三区| 91成人精品电影| 亚洲国产中文字幕在线视频| 欧美黄色片欧美黄色片| 色综合婷婷激情| 中文字幕人妻丝袜制服| 亚洲欧美精品综合一区二区三区| 欧美色视频一区免费| 人人妻,人人澡人人爽秒播| 91麻豆av在线| 88av欧美| 91九色精品人成在线观看| 免费人成视频x8x8入口观看| 色哟哟哟哟哟哟| aaaaa片日本免费| av在线播放免费不卡| 亚洲欧美日韩另类电影网站| 99精品欧美一区二区三区四区| 伦理电影免费视频| av欧美777| 精品日产1卡2卡| 婷婷精品国产亚洲av在线| 成人黄色视频免费在线看| 动漫黄色视频在线观看| 国产黄色免费在线视频| 777久久人妻少妇嫩草av网站| 天堂中文最新版在线下载| 91在线观看av| 国产精品爽爽va在线观看网站 | 男女床上黄色一级片免费看| 制服人妻中文乱码| 国产精品国产av在线观看| 人妻久久中文字幕网| 男女做爰动态图高潮gif福利片 | 久久久久国产精品人妻aⅴ院| 午夜免费激情av| 91字幕亚洲| 婷婷丁香在线五月| 亚洲久久久国产精品| 亚洲欧美一区二区三区久久| 1024视频免费在线观看| 国产欧美日韩一区二区三区在线| 婷婷丁香在线五月| 99国产精品免费福利视频| 91在线观看av| 免费看十八禁软件| 波多野结衣高清无吗| 午夜久久久在线观看| 天堂√8在线中文| 高清欧美精品videossex| 99riav亚洲国产免费| 韩国精品一区二区三区| 欧美另类亚洲清纯唯美| 在线天堂中文资源库| 久久精品亚洲精品国产色婷小说| 久久久久九九精品影院| 午夜免费成人在线视频| 男女高潮啪啪啪动态图| 淫秽高清视频在线观看| 变态另类成人亚洲欧美熟女 | 丝袜美足系列| 一级,二级,三级黄色视频| 日本免费一区二区三区高清不卡 | 欧美日韩av久久| 国产熟女午夜一区二区三区| 久久国产精品男人的天堂亚洲| 人人澡人人妻人| 香蕉丝袜av| 黄网站色视频无遮挡免费观看| 性少妇av在线| 国产91精品成人一区二区三区| 亚洲av成人一区二区三| 中国美女看黄片| 国产深夜福利视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久午夜电影 | 69精品国产乱码久久久| 美女午夜性视频免费| 看免费av毛片| 欧美在线一区亚洲| 午夜精品国产一区二区电影| 大码成人一级视频| 男女床上黄色一级片免费看| 亚洲va日本ⅴa欧美va伊人久久| 欧美乱妇无乱码| 国产在线观看jvid| 久久青草综合色| 国产成人精品久久二区二区91| 在线观看www视频免费| 色婷婷av一区二区三区视频| 欧美老熟妇乱子伦牲交| 在线国产一区二区在线| 日韩av在线大香蕉| 男人舔女人的私密视频| 丰满人妻熟妇乱又伦精品不卡| 91成年电影在线观看| 一级a爱视频在线免费观看| 国产成人一区二区三区免费视频网站| av视频免费观看在线观看| 午夜日韩欧美国产| 久久久久九九精品影院| 欧美av亚洲av综合av国产av| 看免费av毛片| av网站免费在线观看视频| 91字幕亚洲| www.熟女人妻精品国产| 淫秽高清视频在线观看| 午夜两性在线视频| 国产单亲对白刺激| 亚洲精品美女久久av网站| 日韩精品中文字幕看吧| av福利片在线| 午夜福利一区二区在线看| netflix在线观看网站| 丝袜人妻中文字幕| 久久久国产欧美日韩av| 久久影院123| 日韩视频一区二区在线观看| 丰满饥渴人妻一区二区三| 中文字幕色久视频| 国产午夜精品久久久久久| 美女国产高潮福利片在线看| 视频区图区小说| 欧美午夜高清在线| 中文字幕精品免费在线观看视频| 99在线视频只有这里精品首页| avwww免费| 真人做人爱边吃奶动态| 国产成人影院久久av| 人人妻,人人澡人人爽秒播| 国产高清国产精品国产三级| 大陆偷拍与自拍| 成人特级黄色片久久久久久久| 欧美丝袜亚洲另类 | 久久人妻熟女aⅴ| 久久婷婷成人综合色麻豆| 欧美另类亚洲清纯唯美| 亚洲av电影在线进入| 激情视频va一区二区三区| 女人精品久久久久毛片| 国产成年人精品一区二区 | cao死你这个sao货| 波多野结衣高清无吗| 搡老乐熟女国产| 51午夜福利影视在线观看| 纯流量卡能插随身wifi吗| 国产人伦9x9x在线观看| 51午夜福利影视在线观看| 大型黄色视频在线免费观看| 久久影院123| 天堂中文最新版在线下载| 18禁观看日本| 最新美女视频免费是黄的| 免费女性裸体啪啪无遮挡网站| 老熟妇仑乱视频hdxx| 久久伊人香网站| 国产精品爽爽va在线观看网站 | 国产亚洲欧美精品永久| 成人免费观看视频高清| 在线观看免费视频日本深夜| 欧美中文日本在线观看视频| 国产亚洲欧美在线一区二区| 黄网站色视频无遮挡免费观看| 成人三级做爰电影| 视频区欧美日本亚洲| 亚洲 欧美 日韩 在线 免费| 91麻豆av在线| 国产精品九九99| 天堂俺去俺来也www色官网| 亚洲avbb在线观看| 视频区欧美日本亚洲|