• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic geometry of the RN-AdS black hole and non-local observables

    2024-03-07 12:57:00ChaoWangBinWuZhenMingXuandWenLiYang
    Communications in Theoretical Physics 2024年2期

    Chao Wang ,Bin Wu ,Zhen-Ming Xu and Wen-Li Yang

    1 Institute of Physics,Shaanxi University of Technology,Hanzhong 723000,China

    2 School of Physics,Northwest University,Xi’an 710127,China

    3 Institute of Modern Physics,Northwest University,Xi’an 710127,China

    4 Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710127,China

    5 Peng Huanwu Center for Fundamental Theory,Xi’an 710127,China

    Abstract This paper studies the thermodynamic geometry of the Reissner–Nordstr?m-anti-de Sitter (RNAdS)black hole via detection of the non-local observables in the dual field theory,including the entanglement entropy and equal-time two-point correlation function.With the dimensional analysis,we construct the principle of corresponding states of black hole thermodynamics.As a result,our findings can be applied to black holes with different AdS backgrounds.In this sense,the probe of the thermodynamic geometry of the RN-AdS black hole though the non-local observables in dual field theory has been confirmed numerically.

    Keywords: black hole thermodynamic,thermodynamic geometry,phase transition,non-local observables

    1.Introduction

    The pioneering work by Hawking and Bekenstein on black hole temperature and entropy [1,2] made people realize that black holes are thermodynamic systems that exhibit phase transition behavior.The first black hole phase transition is the Hawking–Page phase transition [3],which is related to the confinement/deconfinement phase transition [4] in the dual field theory,and makes the anti-de Sitter (AdS) spacetime more charming.Next,the discovery of the van der Waals-like phase transition in charged AdS black holes [5] implied that the black hole will undergo second-order and first-order phase transition successively before it reaches the stable phase,which revealed the connection between black holes and ordinary thermodynamic systems.

    By treating the negative cosmological constant Λ=?(d ?1)(d ?2)/l2as the thermodynamic pressure P=?Λ/8πG [6–8],the extended phase space of the AdS black hole is established,in which the van der Waals-like phase transition was reconstructed [9].Within this framework,the phase transition and critical behavior of black holes have been extensively studied in [10–18].However,due to the importance of the AdS black hole in the AdS/conformal field theory (AdS/CFT) duality,which describes the fact that the correspondence between quantum gravity and gauge field theory resides on the boundary [19,20],the holographic interpretations of the variation of Λ have received significant attention.

    Several works in [21–23] have proposed that the variation of Λ corresponds to varying the number of color N:alternatively,the number of degrees of freedom N2of the dual field theory.In CFT,the number of degrees of freedom is denoted by the central charge with C=ld?2/Gd[24–26],where Gdis the Newtonian constant in d-dimensional spacetime.Therefore,the change in Λ corresponds to varying the central charge in CFT.In a fixed CFT,it is suggested that the central charge C should be constant[27].Recently,Visser derived the holographic thermodynamics in the dual field theory by applying the central charge as a thermal variable,which plays a similar role to the particle number in the thermodynamic system[28].Inspired by this,considerable work has been carried out to reveal the properties of the dual field theory in this context [27,29,30].Going a step further,in [31–35],by fixing the AdS radius l,the extensive black hole thermodynamics have been developed.

    While the development of black hole thermodynamics is in full swing,considerable interest has been paid to probing their thermodynamic behavior.To address this,holographic entanglement entropy (HEE) [36,37] in the dual field theory was employed to investigate the detection of the thermodynamic behavior of the Reissner–Nordstr?m-anti-de Sitter(RN-AdS) black hole in [38].The results demonstrated the existence of oscillating behavior in the temperature–HEE plane,resembling the van der Waals phase transition.Furthermore,the critical behavior and the Maxwell equal area law[39,40]were examined and found to be fulfilled.Further study suggested that the oscillating behavior was also observed in the coordinate space organized by the Hawking temperature and geodesic length on the AdS boundary,which is related to the equal-time two-point correlation function and Wilson loop [41,42].

    The phase transition in classical thermodynamics originates from intermolecular interaction,but the microstructure of black holes is still a mystery.The introduction of the Ruppeiner geometry [43–45]provides some insight into that.By considering the fluctuation theory,line elements are proposed to measure the distance between fluctuation states,which take the form of

    Here,S is the entropy of the system,and Xμare the thermodynamic coordinates depending on the choice of the thermodynamic potential.The curvature scalar calculated from equation(1)describes the interaction within the system.Specifically,a positive(negative)value of the curvature scalar indicates a repulsive (attractive) interaction within the black hole domain,and the noninteracting system corresponding to the flat Ruppeiner metric [46–58].In this sense,the application of the Ruppeiner geometry is the reverse process of statistical physics,i.e.detecting the microstructure of a system with its thermodynamic behavior.It has also been observed that the divergent point of the curvature scalar corresponds to the phase transition point [59],which implied the phase structure will be exposed by the curvature scalar.In[60],the author constructed a new formalism of thermodynamic geometry(NTG)by changing the coordinates of the Ruppeiner metric equation (1) using Jacobian matrices.Therefore,the line element turns to

    Considering that the non-local variables have the same oscillating behavior as the black hole phase transition,it is natural to ask whether the information of the underlying microstructure depicted by the thermodynamic geometry can be read in a given CFT.Inspired by this,we explore the connection between the black hole entropy and the non-local observables in dual field theory,including the HEE and the equal-time two-point correlation function;the results specified that the observation of the quantities in CFT will expose the information of the black hole phase structure and thermodynamic geometry.

    The outline of this paper is as follows.In section 2,we review the phase structure and the thermodynamic geometry of the RN-AdS black hole.The numerical results to describe the thermodynamic geometry of the RN-AdS black hole with the HEE and two-point correlation function will be investigated in section 3.We end this paper with a conclusion in section 4.Throughout this paper,we adopt the units ?=c=kB=G=1 for convenience.

    2.RN-AdS black hole

    The RN-AdS black hole in four-dimensional spacetime is characterized by the action in the form of

    where l is the AdS radius,and the equation of motion is

    The metric function f(r) can be obtained easily

    The parameters M and Q in the metric function are the mass and charge of the black hole,respectively.The temperature and entropy are given by

    where rhis the position of the outer event horizon.The mass of the black hole can be deduced with the condition f(rh)=0

    where Φ=Q/rhis the electric potential difference between the horizon and infinity.

    Figure 1.The iso-q curves in {t,s} coordinate space.Here,we set q=0.6qc,qc and 2qc from top to bottom.The Maxwell equal area law is constructed by the black dashed line.

    In classical thermodynamics,the critical point of a van der Waals fluid is denoted by the model parameters,and the equation of state with reduced parameters is applicable for the system with different components,which is called the principle of corresponding states.In an AdS background,the cosmological constant plays the role of model parameter as that of van der Waals fluids.Consequently,by considering the dimensional analysis of the thermodynamic variables,the dimensionless thermal parameters are introduced as

    In this way,the equation of state with the dimensionless parameters will hold for charged black holes in different AdS backgrounds,which is the law of corresponding states.The equation of state can be redefined as follows

    in which the AdS radius l can be set as an arbitrary constant.The critical point decided byis marked as

    It is clear that the critical point is universal for the black hole in different AdS spacetime.After obtaining the principle of corresponding states,we would like to depict the van der Waals-like phase transition of the RN-AdS black hole.Based on equation (9),the iso-q process is shown in figure 1.

    In the figure,the charge was set as q=0.6qc,qcand 2qcfrom top to bottom.The box formed by the black dashed line corresponds to the Maxwell equal area law of the van der Waals-like phase transition,which implies that the area under the curve between the black dots is equal to the area under the dashed black line.The coexistence temperature t*and s1,2are the coordinates of the box vertices dividing the stable state from the metastable state,which can be obtained as

    While the charge is less than qc,the iso-q curve exhibits similar oscillatory behavior to that of the van der Waals phase transition.According to thermodynamic theory,a small stable state will directly transform into a large stable one when the temperature of the black hole exceeds t*.Together with the local extremal point painted in purple,the iso-q curve was divided into five segments.The red solid lines correspond to the small (SBH) and large black holes (LBH),which are thermodynamically stable.The black hole on the purple dashed line is unstable (SBH+LBH).The green solid lines are the metastable curves of the black hole,and they separate the stable and unstable states of the black hole,with the left part being the superheated SBH (SHSBH),while the right part corresponds to the supercooled LBH (SCLBH).As the charge reaches the critical value,these two local extremal points merge into one at the inflection point on the orange curve in figure 1.Upon further increasing the value of q,the curve is monotonic,and the black hole is in the supercritical phase (SCBH).

    To reveal the information of the underlying microstructure of the black hole,we adopt the Ruppeiner geometry of the RN-AdS black hole.In the {S,Q} space,from equation(2)with Ξ=M,the thermodynamic metric comes to

    Therefore,the thermodynamic curvature scalar arises

    and with the dimension [ R] =1[l]2we combine the equations in equations(5)and(6)to demonstrate the variation of the dimensionless curvature scalarin terms of entropy s with qqcin figure 2,respectively.

    From equation (5),we know that the scalar curvature starts from negative infinity caused by t=0,marked by the red dotted line,which describes the extremal black holes.When q

    Figure 3.The characteristic curve of scalar curvature in coordinate space{t,s}.The orange and red solid lines are the divergence curve and the variable sign curve of the curvature scalar,respectively.The blue solid line is the coexistence curve in equation (10).The blue dashed curve in the figure corresponds to the critical point temperature.

    As discussed above,the vanishing point and divergent point ofare helpful for us to learn about the underlying microstructure and the phase structure of the black hole;checking the characteristic curve,which includes the signchanging curve tscand the divergent curvetdiv,of scalar curvature is important.With equations (5),(6) and (12),the characteristic curves can be deduced as

    which are plotted in figure 3.

    The blue solid curve in the figure is the coexistence curve based on equations (10) and (11),which is divided into the saturated small phase and saturated large phase using the extreme point.The orange and red curves are the divergence curve and the sign-changing curve of,respectively.The area above the tsccurve that is painted in pink corresponds to the positive value of the curvature scalar,and the interaction is a repulsive domain.Meanwhile,other areas with<0 implied the interaction between the parts of the black hole is an attractive domain.The figure tells us that only the large black hole in low temperatures would show the repulsive interaction.The phase structure was also exhibited in the figure.Above the blue dashed line,the black hole is in the supercritical phase.

    3.Thermodynamic geometry and non-local variables

    As we have reviewed the thermodynamic geometry of the RN-AdS black hole,we will further investigate its relation to the non-local observables in a given CFT,including the(HEE) and the two-point correlation function.We would like to start this topic with HEE,which has been proven to show similar oscillation behavior as that of the van der Waals phase transition.In this sense,we will explore whether HEE can reflect the thermodynamic geometry of a black hole.

    The entanglement entropy (EE) denotes the relationship between two subsystems of a quantum system,which is denoted by A and Ac.When the quantum system lives in a CFT,the EE can be computed by the Ryu-Takayanagi (RT)recipe [36,37]

    Here,the ΓAis a codimension-2 minimal surface in bulk AdS space that has the same boundary conditions as A on the boundary CFT.According to the metric function equations(4)and(13),the area of the minimal surface ΓAcan be calculated as

    wherer′=drdθwith θ0as the boundary condition of HEE in the θ direction.Here,L is now introduced as the Lagrangian with θ.The only analytical solution of r(θ) is pure AdS spacetime in the bulk.In the study of HEE,we will solve the equation of motion in ordinary spacetime numerically with the conditions that

    Figure 4.The dimensionless curvature scalar for the RN-AdS black hole in terms of δS/l2.Here,we set(a)qqc from left to right.The entropy at the red line corresponds to the vanishing value of the reduced temperature t.

    Notice that for the UV-divergent of the EE,we should regulate it by subtracting the area of the minimal surface in pure AdS,which we denote as δS.When calculating the EE with the RT formula,we ask θ0to be a small value to make sure the minimal surface can return to the subsystem continuously.Therefore,we set θ0=0.1 and the UV-cutoff in CFT with r(0.099).To check whether the HEE can be exploited to reflect the curvature scalar of the black hole,we study the relationship between the Ruppeiner geometry and HEE.The equation for HEE in equation (14) indicated the relation in rhand SA,with which we can establish a one-toone correspondence between the black hole phase transition and the oscillating behavior of non-local observables in the given CFT.The numerical results of the curvature scalar in terms of HEE with different charges is shown in figure 4.The behavior of the curvature scalar with respect to the dimensionless parameter δS/l2with qqcis shown from left to right.With the numerical method,there is a point-to-point correspondence to that in figure 2.As with the black hole entropy,the EE also reveals the phase structure of the RN-AdS black hole with a fixed charge,which is identical to that of the van der Waals fluid.Furthermore,with a glimpse of the value of the HEE,we can assert the interaction within the corresponding black hole.

    To show the relation between the thermodynamic properties of the RN-AdS black hole and the HEE,we plot the characteristic curves for the Hawking temperature and EE of CFT in figure 5.The blue dashed line denotes the critical value of t,beyond which the corresponding black hole is undergoing a first-order phase transition.When the temperature is at the critical value,the black hole will show a second-order phase transition.Furthermore,the black hole is in the superficial phase and 1/t exceeds the blue dashed line.The blue solid curve is the coexistence curve,which separates the saturated small and large black hole phases through the critical point.The EE δS with a small or large value indicates that the black hole is thermodynamically stable.The orange curve is the divergent curve of the scalar curvature,which distinguishes the unstable phase from the metastable phase.The red solid curve is the sign-changing curve,and the top area painted in red represents~R >0.Moreover,the correspondence of these characteristic curves between the black hole entropy and HEE announces that the thermodynamic information of the former can be read from the dual field theory.

    Figure 5.The characteristic curve of the curvature scalar in coordinate space{δS/l2,1/t}.The orange and red solid lines are the divergence curve and sign-changing curve of the curvature scalar,respectively.The blue solid curve is the coexistence curve.The blue dashed curve in the figure corresponds to the critical point temperature.

    Now,let us focus on the two-point correlation function in CFT.The AdS/CFT correspondence implies that the equaltime two-point correlation function with a large conformal dimension Δ of the scalar operatorO in the dual field theory is holographically approximated as [63]

    where L is the length between the points(t0,xi)and(t0,xj)on the AdS boundary measured by the metric of the bulk geodesic.Due to the spacetime symmetry,we can let xi=θ,and the boundary is marked as θ0.Therefore,the proper length can be parameterized as

    Figure 6.The dimensionless curvature scalar for the RN-AdS black hole in terms of δL/l.Here,we set(a)qqc from left to right.The entropy on the red line corresponds to the vanishing value of the reduced temperature t.

    Figure 7.The characteristic curve of the curvature scalar in coordinate space {δL/l,1/t}.The orange and red solid lines are the divergence curve and the variable sign curve of the curvature scalar,respectively.The blue solid line is the coexistence curve.The blue dashed curve in the figure corresponds to the critical point temperature.

    where the dot denotest.=drdθ.The equation of motion is obtained from the Euler–Lagrange equation with the LagrangianL with respect to θ.By applying the boundary condition equation (15),r(θ) can be deduced by solving equation (16).We apply the numerical method to calculate the geodesic length,which is difficult to obtain in analytical similarly as long as they are in the same state described by the same dimensionless parameters.By considering the black hole mass,we obtain the thermodynamic scalar curvature equation (12) and show the thermodynamic behavior of the black hole,which implies thatcan be exploited to display the phase transition of the black hole,and the underlying microstructure.We then investigate the thermodynamic geometry of the black hole with the non-local observables in the given CFT.Interestingly,the HEE and equal-time two-point correlation function also show similar behavior in the form.Due to the divergence of the geodesic length at the boundary θ0,it should be regularized by subtracting the geodesic length in pure AdS with the same boundary conditions,denoted as δL.For that purpose,we choose θ0=0.1 and the UV-cutoff in the dual field theory as r(0.099).The relationship betweenand δL/l is shown in figure 6.

    4.Conclusion

    In this paper,we investigate the probe of the thermodynamic geometry of the RN-AdS black hole by the non-local observables in a given CFT.Through dimensional analysis,we introduce dimensionless thermodynamic variables and establish the corresponding state laws.This principle suggests that charged black holes in different AdS backgrounds behaveplanes,respectively,to the black hole.These results suggest that the HEE and equal-time twopoint correlation function in the given CFT can serve as good probes of the black hole’s thermodynamic geometry.

    In view of the invisibility of the black hole microstructure,if the holographic form of the thermodynamic geometry is established by the AdS/CFT dual theory,it may disclose the microscopic mechanism of the black hole thermodynamic behavior.We will focus on this issue in our future work.

    Acknowledgments

    This work is supported by financial support from the National Natural Science Foundation of China (Grant Nos.12275216,12105222,12247103).

    ORCID iDs

    亚洲av成人一区二区三| 午夜免费成人在线视频| 久久久久久九九精品二区国产| 最新中文字幕久久久久 | 好男人在线观看高清免费视频| 婷婷丁香在线五月| 99国产精品一区二区三区| 亚洲精品在线观看二区| 欧美一区二区国产精品久久精品| 1024手机看黄色片| 成人一区二区视频在线观看| 日韩欧美 国产精品| 午夜免费观看网址| 欧美成狂野欧美在线观看| svipshipincom国产片| 超碰成人久久| 亚洲国产精品999在线| 亚洲熟妇中文字幕五十中出| av女优亚洲男人天堂 | 亚洲国产欧美人成| 黄色片一级片一级黄色片| 最新美女视频免费是黄的| 黄色日韩在线| 国内揄拍国产精品人妻在线| 欧美激情在线99| 欧美3d第一页| 岛国在线观看网站| 亚洲片人在线观看| 18禁裸乳无遮挡免费网站照片| 欧美另类亚洲清纯唯美| 国产精品国产高清国产av| 午夜福利18| 一个人免费在线观看的高清视频| 欧美色欧美亚洲另类二区| 麻豆一二三区av精品| 日本黄大片高清| 国产精品,欧美在线| 母亲3免费完整高清在线观看| 久久久久国产一级毛片高清牌| 韩国av一区二区三区四区| 亚洲专区中文字幕在线| 成在线人永久免费视频| 免费看日本二区| 香蕉久久夜色| 午夜影院日韩av| 90打野战视频偷拍视频| 亚洲成a人片在线一区二区| 看黄色毛片网站| 国产高清视频在线播放一区| a级毛片a级免费在线| 99精品久久久久人妻精品| 国产成人av激情在线播放| 日韩中文字幕欧美一区二区| 亚洲熟妇熟女久久| 操出白浆在线播放| 亚洲无线观看免费| 中文字幕人成人乱码亚洲影| 国模一区二区三区四区视频 | АⅤ资源中文在线天堂| 三级毛片av免费| 日日摸夜夜添夜夜添小说| 三级国产精品欧美在线观看 | 国产熟女xx| 久久欧美精品欧美久久欧美| 欧美一区二区国产精品久久精品| 少妇的丰满在线观看| 国产伦一二天堂av在线观看| 日韩欧美国产一区二区入口| 国产欧美日韩一区二区三| 美女午夜性视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品精品国产色婷婷| av片东京热男人的天堂| 国产精品一区二区三区四区免费观看 | 亚洲乱码一区二区免费版| 九九热线精品视视频播放| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区四那| 成人av一区二区三区在线看| 亚洲性夜色夜夜综合| 国产亚洲欧美98| 成人永久免费在线观看视频| 日本 av在线| 夜夜爽天天搞| 在线播放国产精品三级| 亚洲中文字幕日韩| 99在线人妻在线中文字幕| 久久久国产成人免费| 国产精品野战在线观看| 精品久久久久久,| 亚洲七黄色美女视频| 欧美成人免费av一区二区三区| 天天一区二区日本电影三级| 岛国视频午夜一区免费看| 精品一区二区三区视频在线 | 999久久久国产精品视频| 国产精品九九99| 国产成人av教育| 日韩欧美在线乱码| 少妇丰满av| 欧美黑人巨大hd| 熟女少妇亚洲综合色aaa.| 在线a可以看的网站| 国产精品一及| 热99re8久久精品国产| 在线国产一区二区在线| 国产主播在线观看一区二区| 亚洲精华国产精华精| 中文在线观看免费www的网站| 亚洲成人免费电影在线观看| 日韩欧美国产在线观看| 91字幕亚洲| 极品教师在线免费播放| 亚洲第一电影网av| 国产精品久久久久久亚洲av鲁大| 啪啪无遮挡十八禁网站| 国产成人av激情在线播放| 中文亚洲av片在线观看爽| 天堂动漫精品| 热99re8久久精品国产| 国产伦一二天堂av在线观看| 久久中文看片网| 一本一本综合久久| 一区二区三区国产精品乱码| 日韩 欧美 亚洲 中文字幕| 中亚洲国语对白在线视频| 一本精品99久久精品77| 亚洲av成人不卡在线观看播放网| 99国产精品一区二区蜜桃av| 国内久久婷婷六月综合欲色啪| 国产亚洲av高清不卡| 中文字幕人妻丝袜一区二区| 国产69精品久久久久777片 | 真人一进一出gif抽搐免费| 成人欧美大片| 2021天堂中文幕一二区在线观| 国产成人精品久久二区二区91| 中文在线观看免费www的网站| 亚洲成人久久性| 最近视频中文字幕2019在线8| 国产单亲对白刺激| 夜夜看夜夜爽夜夜摸| 琪琪午夜伦伦电影理论片6080| 首页视频小说图片口味搜索| 一个人看的www免费观看视频| 五月玫瑰六月丁香| 热99re8久久精品国产| 免费看光身美女| 国产精品久久久久久精品电影| 一本一本综合久久| 欧美精品啪啪一区二区三区| 国产黄a三级三级三级人| 亚洲成a人片在线一区二区| 手机成人av网站| 久久中文看片网| 一进一出抽搐动态| 小说图片视频综合网站| 亚洲狠狠婷婷综合久久图片| www.精华液| 夜夜看夜夜爽夜夜摸| 久久久国产精品麻豆| 久久精品国产99精品国产亚洲性色| 国产精品一区二区三区四区免费观看 | 99精品欧美一区二区三区四区| 欧美日韩福利视频一区二区| 亚洲最大成人中文| 国产黄a三级三级三级人| 老司机午夜福利在线观看视频| 国产精品1区2区在线观看.| 男女床上黄色一级片免费看| 欧美3d第一页| 精品一区二区三区视频在线观看免费| 国产精品日韩av在线免费观看| 成人鲁丝片一二三区免费| 国产乱人伦免费视频| 十八禁网站免费在线| 夜夜夜夜夜久久久久| 亚洲色图av天堂| 亚洲av成人av| 精品99又大又爽又粗少妇毛片 | 久久精品国产99精品国产亚洲性色| 久久国产精品影院| 叶爱在线成人免费视频播放| 久久久久精品国产欧美久久久| 欧美日韩黄片免| 久久久国产精品麻豆| 国产精品久久电影中文字幕| 人妻夜夜爽99麻豆av| 观看美女的网站| www.熟女人妻精品国产| 婷婷精品国产亚洲av在线| 欧美激情在线99| 脱女人内裤的视频| av国产免费在线观看| 一边摸一边抽搐一进一小说| 香蕉久久夜色| АⅤ资源中文在线天堂| svipshipincom国产片| 91字幕亚洲| 夜夜爽天天搞| 亚洲成av人片在线播放无| 国产主播在线观看一区二区| 好男人在线观看高清免费视频| 中文资源天堂在线| 国产高清激情床上av| 天天躁日日操中文字幕| 免费在线观看亚洲国产| 成人欧美大片| 丁香欧美五月| 无人区码免费观看不卡| 国产乱人伦免费视频| 久久久久久久午夜电影| 久久伊人香网站| 男人舔奶头视频| 中国美女看黄片| 一级毛片高清免费大全| 热99在线观看视频| 国产单亲对白刺激| www.自偷自拍.com| 免费观看的影片在线观看| 在线观看舔阴道视频| 国产欧美日韩一区二区三| 97超级碰碰碰精品色视频在线观看| 99视频精品全部免费 在线 | 成年女人看的毛片在线观看| 免费看美女性在线毛片视频| 一级毛片高清免费大全| 国产高清视频在线观看网站| 亚洲男人的天堂狠狠| 欧美日韩黄片免| 搡老妇女老女人老熟妇| 91在线观看av| 一二三四社区在线视频社区8| 欧美成人免费av一区二区三区| 日韩欧美 国产精品| 夜夜爽天天搞| 亚洲最大成人中文| 国产精品精品国产色婷婷| 黑人欧美特级aaaaaa片| 国产不卡一卡二| 久99久视频精品免费| 一二三四在线观看免费中文在| 视频区欧美日本亚洲| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自拍偷在线| 久久久国产成人免费| 成人国产综合亚洲| av在线天堂中文字幕| 真实男女啪啪啪动态图| 天天躁狠狠躁夜夜躁狠狠躁| 午夜激情欧美在线| 国产视频一区二区在线看| 日韩欧美免费精品| 国产欧美日韩精品一区二区| 丰满的人妻完整版| 中出人妻视频一区二区| 久久人人精品亚洲av| 毛片女人毛片| 老司机在亚洲福利影院| 制服丝袜大香蕉在线| 成人一区二区视频在线观看| 欧美黑人欧美精品刺激| 午夜久久久久精精品| 91av网一区二区| 最近在线观看免费完整版| 成人永久免费在线观看视频| 国产午夜精品久久久久久| 老司机福利观看| 国产精品影院久久| 男人的好看免费观看在线视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久久久99蜜臀| 精品日产1卡2卡| 老熟妇仑乱视频hdxx| 国模一区二区三区四区视频 | 精品久久久久久久末码| 亚洲专区字幕在线| 99精品欧美一区二区三区四区| 精品久久久久久成人av| 美女大奶头视频| 可以在线观看的亚洲视频| 欧美日韩精品网址| 狠狠狠狠99中文字幕| 天堂av国产一区二区熟女人妻| 国产91精品成人一区二区三区| www国产在线视频色| 欧美一区二区精品小视频在线| 天天躁日日操中文字幕| 熟妇人妻久久中文字幕3abv| 久久久精品欧美日韩精品| 日韩大尺度精品在线看网址| 在线免费观看的www视频| 欧美成人免费av一区二区三区| 国产精品影院久久| 精品一区二区三区四区五区乱码| 国产精品综合久久久久久久免费| 高清毛片免费观看视频网站| 一二三四在线观看免费中文在| 搡老妇女老女人老熟妇| 国产亚洲精品一区二区www| 99在线人妻在线中文字幕| 国产又黄又爽又无遮挡在线| 国产91精品成人一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 少妇人妻一区二区三区视频| 性欧美人与动物交配| 国内少妇人妻偷人精品xxx网站 | 欧美av亚洲av综合av国产av| 久久久久性生活片| 97碰自拍视频| 国产美女午夜福利| 又粗又爽又猛毛片免费看| 日本 欧美在线| 欧美绝顶高潮抽搐喷水| 国产黄色小视频在线观看| 波多野结衣巨乳人妻| 五月玫瑰六月丁香| 日韩大尺度精品在线看网址| 天堂√8在线中文| 黄色丝袜av网址大全| 国产不卡一卡二| 久久精品国产99精品国产亚洲性色| 99国产极品粉嫩在线观看| 熟女人妻精品中文字幕| 午夜视频精品福利| 别揉我奶头~嗯~啊~动态视频| 国产亚洲av高清不卡| 天天躁日日操中文字幕| 老司机在亚洲福利影院| 色精品久久人妻99蜜桃| 成人国产综合亚洲| 亚洲国产欧美一区二区综合| 久久国产精品影院| 午夜免费激情av| 又黄又爽又免费观看的视频| 色播亚洲综合网| 成人高潮视频无遮挡免费网站| 天天添夜夜摸| 国产成+人综合+亚洲专区| 天天添夜夜摸| 国产精品99久久久久久久久| 我要搜黄色片| 国产免费男女视频| 黄频高清免费视频| 免费看光身美女| 男女之事视频高清在线观看| 不卡av一区二区三区| 最近视频中文字幕2019在线8| 中文字幕高清在线视频| 九九热线精品视视频播放| 国产1区2区3区精品| 亚洲精品美女久久av网站| 高潮久久久久久久久久久不卡| 91麻豆精品激情在线观看国产| 亚洲国产中文字幕在线视频| 色综合亚洲欧美另类图片| 日韩欧美在线二视频| 亚洲片人在线观看| 天堂影院成人在线观看| 男女床上黄色一级片免费看| 成人一区二区视频在线观看| 欧美性猛交黑人性爽| 国产激情欧美一区二区| 男女床上黄色一级片免费看| 亚洲 欧美一区二区三区| 深夜精品福利| 中文字幕久久专区| 亚洲国产欧美人成| 中文资源天堂在线| 亚洲欧美一区二区三区黑人| 岛国在线观看网站| 麻豆av在线久日| 婷婷精品国产亚洲av| 亚洲国产精品成人综合色| 亚洲av五月六月丁香网| 午夜福利在线观看吧| 国产黄片美女视频| 十八禁人妻一区二区| 国产乱人伦免费视频| 极品教师在线免费播放| 怎么达到女性高潮| 老司机午夜十八禁免费视频| 亚洲成av人片在线播放无| 99re在线观看精品视频| 一本一本综合久久| 在线观看舔阴道视频| 丰满人妻一区二区三区视频av | 亚洲av免费在线观看| 免费在线观看成人毛片| 老司机在亚洲福利影院| 久久精品影院6| 狂野欧美激情性xxxx| 夜夜看夜夜爽夜夜摸| 91av网站免费观看| 91老司机精品| 亚洲自拍偷在线| 久久久色成人| 757午夜福利合集在线观看| 久久久久久国产a免费观看| 精品日产1卡2卡| 国产乱人视频| 这个男人来自地球电影免费观看| 久久精品国产综合久久久| 国产精品免费一区二区三区在线| 欧美极品一区二区三区四区| 三级国产精品欧美在线观看 | 成人永久免费在线观看视频| 九色成人免费人妻av| 在线观看日韩欧美| 亚洲精品一区av在线观看| 久久精品国产99精品国产亚洲性色| 啦啦啦免费观看视频1| 老司机福利观看| 久久精品国产亚洲av香蕉五月| 成人18禁在线播放| 99精品欧美一区二区三区四区| 亚洲 欧美一区二区三区| 成人特级av手机在线观看| 欧美日本视频| 一夜夜www| 精品福利观看| 国产成人影院久久av| 999精品在线视频| 国产麻豆成人av免费视频| 男人舔奶头视频| 国产精品亚洲av一区麻豆| 国产精品久久久av美女十八| 黄色丝袜av网址大全| 日本精品一区二区三区蜜桃| 亚洲av片天天在线观看| 亚洲av熟女| 婷婷精品国产亚洲av| 国产精华一区二区三区| www.自偷自拍.com| 色综合欧美亚洲国产小说| 色综合亚洲欧美另类图片| 天堂网av新在线| 九九热线精品视视频播放| 国产免费男女视频| 一边摸一边抽搐一进一小说| 老熟妇仑乱视频hdxx| 国产亚洲欧美98| 国产精品香港三级国产av潘金莲| 日本一本二区三区精品| 亚洲aⅴ乱码一区二区在线播放| 欧美最黄视频在线播放免费| 偷拍熟女少妇极品色| 老熟妇乱子伦视频在线观看| 青草久久国产| 国产乱人视频| 精品午夜福利视频在线观看一区| 日韩欧美一区二区三区在线观看| 亚洲在线观看片| a级毛片a级免费在线| 亚洲最大成人中文| 亚洲五月婷婷丁香| 大型黄色视频在线免费观看| 精品日产1卡2卡| 国产私拍福利视频在线观看| 亚洲在线观看片| 国产一区二区三区在线臀色熟女| 成年版毛片免费区| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 亚洲无线观看免费| 精品久久久久久久毛片微露脸| 国产欧美日韩精品一区二区| 听说在线观看完整版免费高清| 岛国在线观看网站| 午夜精品在线福利| 亚洲真实伦在线观看| www.精华液| 波多野结衣高清作品| 中文资源天堂在线| 欧美xxxx黑人xx丫x性爽| 午夜视频精品福利| 成年女人毛片免费观看观看9| 国内揄拍国产精品人妻在线| 国产探花在线观看一区二区| 一个人免费在线观看电影 | 久久午夜亚洲精品久久| 久久欧美精品欧美久久欧美| 国产成人啪精品午夜网站| 黄片小视频在线播放| 色综合婷婷激情| 亚洲av熟女| 欧美日韩黄片免| 夜夜夜夜夜久久久久| 国产伦精品一区二区三区视频9 | 久久久久免费精品人妻一区二区| 一个人观看的视频www高清免费观看 | 国产精品av视频在线免费观看| 国产高清三级在线| 亚洲九九香蕉| 日本成人三级电影网站| 无人区码免费观看不卡| 久久精品aⅴ一区二区三区四区| 脱女人内裤的视频| 欧美成人性av电影在线观看| 中文亚洲av片在线观看爽| 99热6这里只有精品| 亚洲成人精品中文字幕电影| 级片在线观看| 最近视频中文字幕2019在线8| 亚洲精品一卡2卡三卡4卡5卡| 亚洲色图 男人天堂 中文字幕| 村上凉子中文字幕在线| 九色国产91popny在线| 天天添夜夜摸| 99视频精品全部免费 在线 | 一进一出好大好爽视频| 亚洲国产欧美网| cao死你这个sao货| ponron亚洲| 欧美日韩亚洲国产一区二区在线观看| АⅤ资源中文在线天堂| 亚洲最大成人中文| 久久久国产成人免费| 亚洲成人中文字幕在线播放| 精品国产乱子伦一区二区三区| 噜噜噜噜噜久久久久久91| 手机成人av网站| 成人av在线播放网站| 亚洲成人中文字幕在线播放| 怎么达到女性高潮| 成人午夜高清在线视频| 欧美日韩黄片免| 老司机午夜福利在线观看视频| 99精品欧美一区二区三区四区| 久久精品亚洲精品国产色婷小说| 毛片女人毛片| 18禁黄网站禁片免费观看直播| 九色国产91popny在线| 偷拍熟女少妇极品色| 亚洲中文字幕日韩| 欧美中文日本在线观看视频| 精品乱码久久久久久99久播| 在线观看舔阴道视频| 久久久久九九精品影院| 久久国产乱子伦精品免费另类| 日本一本二区三区精品| 搡老妇女老女人老熟妇| 免费在线观看影片大全网站| 欧美极品一区二区三区四区| 亚洲国产欧美人成| av天堂中文字幕网| 美女 人体艺术 gogo| 国产高清激情床上av| 小蜜桃在线观看免费完整版高清| 老鸭窝网址在线观看| 男人舔女人的私密视频| 日本在线视频免费播放| 听说在线观看完整版免费高清| 亚洲中文字幕日韩| 亚洲第一欧美日韩一区二区三区| 久久久水蜜桃国产精品网| 白带黄色成豆腐渣| 精品一区二区三区四区五区乱码| 91麻豆精品激情在线观看国产| 好看av亚洲va欧美ⅴa在| 丝袜人妻中文字幕| 日韩欧美精品v在线| 熟女少妇亚洲综合色aaa.| 久久中文看片网| 天堂av国产一区二区熟女人妻| 一夜夜www| 国产视频一区二区在线看| 99久久国产精品久久久| 国产不卡一卡二| 亚洲av成人精品一区久久| 久久久久久国产a免费观看| 99国产精品一区二区三区| 这个男人来自地球电影免费观看| 999精品在线视频| 精品无人区乱码1区二区| 亚洲欧美日韩无卡精品| 欧美中文综合在线视频| 亚洲激情在线av| 天堂网av新在线| 成人特级av手机在线观看| 国产精品99久久久久久久久| a级毛片在线看网站| 国产极品精品免费视频能看的| 99久久国产精品久久久| 91av网一区二区| 亚洲欧洲精品一区二区精品久久久| 精品乱码久久久久久99久播| 99久久精品一区二区三区| 在线观看美女被高潮喷水网站 | 国产精品日韩av在线免费观看| 一本综合久久免费| 色精品久久人妻99蜜桃| 每晚都被弄得嗷嗷叫到高潮| 精品一区二区三区四区五区乱码| 亚洲成人中文字幕在线播放| 国产高清videossex| 亚洲熟妇熟女久久| 国产伦在线观看视频一区| 啪啪无遮挡十八禁网站| 999久久久精品免费观看国产| 久99久视频精品免费| 在线视频色国产色| 99热这里只有精品一区 | 国产欧美日韩一区二区精品| 午夜福利在线在线| 成年免费大片在线观看| 亚洲国产精品999在线| 日韩欧美在线二视频| 91麻豆精品激情在线观看国产| 日日夜夜操网爽| 91av网站免费观看| 在线a可以看的网站| 精品熟女少妇八av免费久了| 亚洲自拍偷在线|