• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conformally symmetric wormhole solutions supported by non-commutative geometryin f(Q,T)gravity

    2024-03-07 12:56:52ChaitraChoodaChalavadiVenkateshaKavyaandDivyaRashmi
    Communications in Theoretical Physics 2024年2期

    Chaitra Chooda Chalavadi ,V Venkatesha ,N S Kavya and S V Divya Rashmi

    1 Department of P.G.Studies and Research in Mathematics,Kuvempu University,Shankaraghatta,Shivamogga 577451,Karnataka,India

    2 Department of Mathematics,Vidyavardhaka College of Engineering,Mysuru—570002,India

    Abstract This paper investigates wormhole solutions within the framework of extended symmetric teleparallel gravity,incorporating non-commutative geometry,and conformal symmetries.To achieve this,we examine the linear wormhole model with anisotropic fluid under Gaussian and Lorentzian distributions.The primary objective is to derive wormhole solutions while considering the influence of the shape function on model parameters under Gaussian and Lorentzian distributions.The resulting shape function satisfies all the necessary conditions for a traversable wormhole.Furthermore,we analyze the characteristics of the energy conditions and provide a detailed graphical discussion of the matter contents via energy conditions.Additionally,we explore the effect of anisotropy under Gaussian and Lorentzian distributions.Finally,we present our conclusions based on the obtained results.

    Keywords: traversable wormhole,f(Q,T) gravity,energy conditions,non-commutative geometry,conformal motion

    1.Introduction

    Wormholes are dual-mouthed hypothetical structures connecting distinct sectors in the same universe or different universes.Initially,Flamm [1] introduced the notion of a wormhole by constructing the isometric embedding of the Schwarzschild solution.Einstein and Rosen [2] employed Flamm’s concept to create a bridge,commonly known as the Einstein–Rosen bridge.Later,Thorne and his student Morris[3] conducted pioneering research on the concept of traversable wormholes.They meticulously examined static and spherically symmetric wormholes,revealing that the exotic matter inside them possesses negative energy,thus violating the null energy condition.Furthermore,in order to establish a physically feasible model,it is necessary to repudiate the existence of the hypothetical matter.Although within the framework of general relativity [4,5],it was not possible to definitively rule out the presence of such a substance,an alternative approach was supported to reduce or eliminate the reliance on exotic matter [6–8].Numerous studies have been conducted to explore wormhole solutions within the background of modified theories [9–36].

    Figure 1.The graphical behavior of shape function Ψ* for Gaussian non-commutative geometry with M*=7.25,α=0.45,C2=2 and

    In the context of string theory,non-commutative geometry is one of the most intriguing concepts.The idea of noncommutativity arises from the notion that coordinates on a D-brane can be treated as non-commutative operators.This property holds great significance in mathematically explored fundamental concepts of quantum gravity [37–39].Noncommutative geometry aims to unify space-time gravitational forces with weak and strong forces on a single platform.Within this framework,it becomes possible to replace pointlike structures with smeared objects,leading to the discretization of space-time.This discretization arises from the commutator [xa,xb]=iθabwhere θabis an antisymmetric second-order matrix [40–42].To simulate this smearing effect,the Gaussian distribution and Lorentzian distribution with a minimum length ofare incorporated instead of the Dirac delta function.This non-commutative geometry is an intrinsic property of space-time and independent of the behavior of curvature.

    Non-commutative geometry plays a crucial role in examining the properties of space-time geometry under different conditions.Jamil et al,[43] explored some new exact solutions of static wormholes under non-commutative geometry.They utilized the power-law approach to analyze these solutions and discuss their properties.Rahaman et al[44–46]conducted an extensive investigation into various studies in non-commutative geometry.They studied fluids in different dimensions influenced by non-commutative geometry,which exhibited conformal symmetry.Additionally,they derived specific solutions of a wormhole within the context off(R)gravity.In the realm of non-commutative geometry,Zubair et al[47]examined wormhole solutions that permit conformal motion within the context off(R ,T)theory.The study employed conformal killing vectors to analyze the properties and characteristics of these wormhole solutions.Kuhfitting[48] investigated the stable wormhole solutions utilizing conformal killing vectors within the framework of a noncommutative geometry that incorporates a minimal length.The study focused on exploring the properties and characteristics of these stable wormholes within this specific theoretical framework.In [49],the authors studied the noncommutative wormhole solution inf(R) gravity.Moreover,the concept of non-commutative geometry has been gaining attention from researchers,and numerous intriguing aspects of this theory have been extensively explored and deliberated upon in the literature[50–64].Inspired by the aforementioned attempts in modified gravity and non-commutative geometry,we now delve into the study of wormhole solutions inf(Q ,T)gravity.We consider Gaussian and Lorentzian noncommutative geometries with conformal killing vectors to explore their implications.

    The paper is structured following the subsequent pattern:In section 2,we discuss the traversability condition for a wormhole.We shall construct the mathematical formalism off(Q ,T)gravity in 3.In the same section,we briefly explain the energy condition and the basic formalism of conformal killing vectors.In section 4,we conduct a detailed analysis of the wormhole model under Gaussian and Lorentzian distributions.Within this section,we derive the shape function and explore the impact of model parameters on these functions,as well as the energy conditions.In section 5,we investigate the effect of anisotropy on both distributions.Finally,in section 6,we finalize the conclusive remarks and summarize the key findings of the study.

    2.Traversability conditions for wormhole

    The Morris–Thorne metric for the traversable wormhole is described as

    In this scenario,we have two functions,namely Φ(r)and Ψ(r)which are referred to as the redshift and shape functions respectively.Both of these functions depend on the radial coordinate r.

    1.Redshift function: The redshift function Φ(r) needs to have a finite value across the entire space-time.Additionally,the redshift function must adhere to the constraint of having no event horizon,which allows for a two-way journey through the wormhole.

    2.Shape function:The shape function Ψ(r)characterizes the geometry of the traversable wormhole.Therefore,Ψ(r)must satisfy the following conditions:

    ? Throat condition:The value of the function Ψ(r)at the throat is r0and hence10for r>r0.

    ? Flaring-out condition: The radial differential of the shape function,Ψ′(r) at the throat should satisfy,Ψ′ (r0) <1.

    ? Asymptotic Flatness condition: As r →∞,

    3.Proper radial distance function: This function should be finite everywhere in the domain.In magnitude,it decreases from the upper universe to the throat and then increases from the throat to the lower universe.The proper radial distance function is expressed as,

    3.Mathematical formulations of f(Q,T )gravity

    In this article,we are particularly interested inf(Q ,T)gravity,where the Lagrangian is an arbitrary function of nonmetricity scalar and the trace of the energy-momentum tensor.Yixin et al,[15] introducedf(Q ,T)gravity,which is referred to as extended symmetric teleparallel gravity.This was developed within the metric-affine formalism framework.f(Q ,T)gravity theory has been employed to explain both matter-antimatter asymmetry and late-time acceleration.Furthermore,recent investigations suggest thatf(Q ,T)gravity may provide a feasible explanation of various cosmological and astrophysical phenomena [26,65–67].Nevertheless,no further studies on wormholes were conducted based on this theory,which is still in its early stages of development.These considerations motivate us to selectf(Q ,T)gravity to derive wormhole solutions.

    The Einstein–Hilbert action forf(Q ,T)gravity is given by

    wheref(Q ,T)is an arbitrary function that couples the nonmetricityQ and the traceT of the energy momentum tensor,mL is the Lagrangian density corresponding to matter and g denotes the determinant of the metric gμν.

    The non-metricity tensor is defined as

    and its traces are

    Further,we can define a super-potential associated with the non-metricity tensor as

    The non-metricity scalar is represented as

    Besides,the energy-momentum tensor for the fluid depiction of space-time can be expressed as

    The variation of the action (3) with respect to the fundamental metric,gives the metric field equation

    We presume that the matter distribution is an anisotropic stress-energy tensor,which can be written as

    where ρ,pr,ptare the energy density,radial and tangential pressures respectively.Here,ημrefers to a four-velocity vector with a magnitude of one,whileμrepresents a spacelike unit vector.Additionally,in this scenario,the tangential pressure will be orthogonal to the unit vector,and the radial pressure will be along the four-velocity vector.

    The expression for the trace of the energy-momentum tensor is determined as T=ρ-pr-2ptand equation (9)can be read as

    Using the wormhole metric (1),the trace of the nonmetricity scalarQ can be written as,

    Now,substituting the wormhole metric (1) and anisotropic matter distribution (11) into the motion equation (10),we found the following expressions:

    3.1.Energy condition

    Energy conditions provide interpretations for the physical phenomena associated with the motion of energy and matter,which are derived from the Raychaudhuri equation.To evaluate the geodesic behavior,we shall consider the criterion for different energy conditions.With the anisotropic matter distribution for ρ,prand ptbeing energy density,radial pressure and tangential pressure,we have the following:

    ? Null Energy Conditions: ρ+pt≥0 and ρ+pr≥0.

    ? Weak Energy Conditions: ρ ≥0 ?ρ+pt≥0 and ρ+pr≥0.

    ? Strong Energy Conditions:ρ+pj≥0 ?ρ+Σjpj≥0 ?j.

    ? Dominant Energy Conditions: ρ ≥0 ?ρ-|pr|≥0 and ρ-|pt|≥0.

    3.2.Conformal killing vectors

    Conformal killing vectors play a significant role in establishing the mathematical connection between the geometry of space-time and the matter it contains through Einstein’s field equations.These vectors are derived from the killing equations,utilizing the principles of Lie algebra [47,68].Conformal killing vectors are an essential tool for reducing the non-linearity order of field equations in various modified theories.In the context of general relativity,conformal killing vectors find numerous applications in geometric configurations,kinematics,and dynamics based on the structure theory.We employ an inheritance symmetry of space-time characterized by conformal killing vectors,which are defined as[44,69]

    where ζ,ηkand gijrepresent the conformal factor,conformal killing vectors and metric tensor respectively.It is supposed that the vector η generates the conformal symmetry and the metric g is conformally mapped onto itself along η.The conformal factor,which characterizes the scaling of the metric,influences the geometry of the wormhole.By inserting the equation Lηgij=ζ(r)gijfrom equation (17) into equation (1),we get the following equations:

    On solving the aforementioned expressions,we obtain the following two relationships for the metric components:

    where1C and C2are the integrating constants.For the simplification,we assume A(r)=ζ2(r).Consequently,the expression for the shape function can be obtained as

    4.Wormhole model in f(Q,T)gravity

    In this section,we shall consider a feasible model to study the properties of wormhole geometry.In particular,we suppose the linear form given by

    where α and β are the model parameters.For α=1,β=0,one can retain general relativity.By utilizing equations (21),(22) and adopting dimensionless parameters,the field equations (14)–(16) can be solved to obtain the following equations:

    Here,the subscript ‘*’ denotes corresponding adimensional quantities and the overhead dot is the derivative of the function with respect toFurther,non-dimensionalization is a powerful tool in theoretical physics.It enables researchers to simplify equations,comprehend the scaling behavior of physical systems,and gain insights into the essential features of complex phenomena such as wormholes.

    Now,we shall discuss the physical analysis of wormhole solutions with the help of equations (24–26) under noncommutative distributions.For this purpose,we consider the Gaussian and Lorentzian energy densities of the static and spherically symmetric particle-like gravitational source with a total mass of the form [58,70]

    4.1.Gaussian energy density

    In this subsection,our attention will be directed towards exploring non-commutative geometry under Gaussian distribution.When we substitute the Gaussian energy density(27) into equation (24),we obtain the resulting differential equation:

    We can easily verify the satisfaction of the throat condition by performing a simple calculation ofFurthermore,by evaluating the derivative of the shape function (31) at the throat,we derive the following relation:

    In our study,the behavior of energy density and energy conditions are illustrated in figure 2.Both dominant energy conditions,radial null energy condition and strong energy condition are violated.However,the tangential null energy condition is satisfied.

    4.2.Lorentzian energy density

    In this subsection,we focus on the scenario involving noncommutative geometry with the Lorentzian distribution.By substituting the Lorentzian energy density (28) into (24),we get

    Solving the aforementioned differential equation while imposing the throat condition on the shape function,we can derive the following expression:

    Figure 2.Gaussian Source: The profile of energy density and energy conditions with respect to for different values of β with fixed parameters M*=7.25,α=0.45,C2=2and =1.6.

    Figure 3.The graphical behavior of shape function Ψ* for Lorentzian non-commutative geometry with M*=7.25,α=0.45,C2=2 and 1.6.

    where2F1(a,b;c;z) is the hypergeometric function.Hence,the resulting shape function can be expressed as follows:

    From the above expression,the derivative of the shape function is given by

    Now,substituting function(36)into(25)and(26),we get the pressure elements as

    where Γ(a,z) is the gamma function.

    Figure 4 illustrates the characteristics of the energy conditions and the corresponding energy density profile for Lorentzian distribution.It shows that in this scenario,the radial null energy condition[figure 4(b)]and dominant energy conditions [figure 4(d)] are violated.But,the tangential null energy condition [figure 4(c)] and strong energy condition[figure 4(f)] are obeyed.

    Figure 4.Lorentzian Source: The profile of energy density and energy conditions with respect to for different values of β with fixed parameters M*=7.25,α=0.45,C2=2and =1.6.

    Moreover,by investigating the existence of wormhole solutions and analyzing energy conditions in the late-time universe,we explore exotic matter and energy distributions that could enable the formation and stability of wormholes.The presence or absence of these solutions has significant implications for our understanding of the late-time universe’s evolution and the nature of exotic matter needed to support such structures.

    5.Effect of anisotropy

    In this section,we explore the anisotropy of Gaussian and Lorentzian non-commutative geometry in order to understand the characteristics of the anisotropic pressure.The quantification of anisotropy plays a crucial role in revealing the internal geometry of a relativistic wormhole configuration.It is well known that the level of anisotropy within a wormhole can be measured using the following formula [20,49,62,71–73]:

    We can determine the geometry of the wormhole based on anisotropic factor.When the tangential pressure is greater than the radial pressure,it results in Δ>0.This signifies that the structure of the wormhole is repulsive and anisotropic force is acting in an outward direction.Conversely,if the radial pressure is greater than the tangential pressure,it yields Δ<0.This indicates an attractive geometry of the wormhole and force is directed inward.The anisotropy for both the Gaussian (ΔG) and Lorentzian (ΔL) distributions with the linear model is calculated as

    Figure 5 depicts the effect of anisotropy for a viable wormhole model under Gaussian and Lorentzian distributions.The investigation reveals that our anisotropy factor Δ is positiveand the structure of the wormhole is repulsive in Gaussian distribution [figure 5(a)],whereas Δ is negativewhich indicates an attractive geometry of the wormhole in Lorentzian distribution[figure 5(b)].

    Figure 5.The graphical representation of anisotropy for both distributions.

    6.Results and concluding remarks

    In this article,we have explored the conformal symmetric wormhole solutions under non-commutative geometry in the background off(Q ,T)gravity.To achieve this,we have considered the presence of an anisotropic fluid in a spherically symmetric space-time.The concept of conformal symmetry and non-commutative geometry have already been used in literature within various contexts of modified theories of gravity [50–60,62–64].Non-commutative geometry is used to replace the particle-like structure to smeared objects in string theory.Furthermore,conformal killing vectors are derived from the killing equation,which is based on the Lie algebra.These vectors are used to reduce the nonlinearity order of the field equation.Conformal symmetry has proved to be effective in describing relativistic stellar-type objects.Furthermore,it has led to new solutions and provided insights into geometry and kinematics[74].It influences the geometry and dynamics of the space-time,impacting key parameters such as throat size and stability.

    In the framework of extended symmetric teleparallel gravity,we have derived some new exact solutions for wormholes by using both Gaussian and Lorentzian energy densities of non-commutative geometry.For this object,we presumed the linear wormhole model asf(Q ,T)=αQ +βT,where α and β are model parameters.In both cases,we examined the wormhole scenario using Gaussian and Lorentzian distributions.By applying the throat condition in two distributions,we obtained different shape functions that obey all the criteria for a traversable wormhole.A similar result was presented in [63] where the authors explored wormhole solutions in curvature-matter coupling gravity supported by non-commutative geometry and conformal symmetry.Furthermore,we investigated the impact of model parameters on these two shape functions.Due to the conformal symmetry,the redshift function does not approach zero as r>r0[8,59,60,75].

    Figures 1 and 3 show the graphical nature of the obtained shape functions with β ?[0,0.5).Notably,a slight variation in the value of β can impact the nature of the shape function.Moreover,the graphical behavior of the energy conditions is shown in figures 2 and 4.The energy density is positive throughout the space-time.For all the wormhole solutions,the violation of the null energy conditions indicates the presence of hypothetical matter.Here,this nature of hypothetical fluid is presented in references [63,76,77].Next,we studied the effect of anisotropy for both distributions.The geometry of the wormhole is repulsive in the Gaussian distribution,whereas it is attractive in the Lorentzian distribution[figure 5].

    To conclude,this work validates the conformal symmetric wormhole solutions inf(Q ,T)gravity under noncommutative geometry.The authors [78] have identified the possibility of a generalized wormhole formation in the galactic halo due to dark matter using observational data within the matter coupling gravity formalism.In the near future,we plan to investigate various wormhole scenarios in alternative theories of gravity,as discussed in references[79–82].

    Acknowledgments

    CCC,VV and NSK acknowledge DST,New Delhi,India,for its financial support for research facilities under DSTFIST-2019.

    ORCID iDs

    久久国内精品自在自线图片| 三上悠亚av全集在线观看| 国产乱来视频区| 大又大粗又爽又黄少妇毛片口| 亚洲第一av免费看| 久久精品熟女亚洲av麻豆精品| 成年人午夜在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 丝袜喷水一区| 精品人妻在线不人妻| 亚洲无线观看免费| 亚洲国产精品999| 久久久精品免费免费高清| 日韩电影二区| 午夜视频国产福利| 18+在线观看网站| 亚洲精品一区蜜桃| 国产免费又黄又爽又色| 久热这里只有精品99| 熟女av电影| 涩涩av久久男人的天堂| 简卡轻食公司| 日本黄色片子视频| 老熟女久久久| 成人午夜精彩视频在线观看| 久久人妻熟女aⅴ| 亚洲国产av新网站| 一本久久精品| 国产日韩欧美亚洲二区| 国产在线视频一区二区| 少妇人妻 视频| 高清不卡的av网站| 亚洲精品一区蜜桃| 国产成人精品久久久久久| 各种免费的搞黄视频| 王馨瑶露胸无遮挡在线观看| 91成人精品电影| 亚洲成人av在线免费| 国产一区二区在线观看av| 国国产精品蜜臀av免费| 美女国产视频在线观看| 天天影视国产精品| 男人添女人高潮全过程视频| 岛国毛片在线播放| 亚洲欧美精品自产自拍| 免费人妻精品一区二区三区视频| 国产欧美日韩综合在线一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 色视频在线一区二区三区| 国产在视频线精品| 日本黄色片子视频| 一级爰片在线观看| 亚洲国产日韩一区二区| 午夜福利网站1000一区二区三区| 日本午夜av视频| 欧美精品国产亚洲| 中文字幕av电影在线播放| 男人爽女人下面视频在线观看| 亚洲精品国产av蜜桃| 秋霞伦理黄片| 免费高清在线观看日韩| 亚洲精品久久久久久婷婷小说| www.色视频.com| 久久综合国产亚洲精品| 国语对白做爰xxxⅹ性视频网站| 亚洲精品成人av观看孕妇| 亚洲精品一区蜜桃| 欧美老熟妇乱子伦牲交| 国产成人精品在线电影| 视频在线观看一区二区三区| 亚洲国产av新网站| 美女xxoo啪啪120秒动态图| 欧美 亚洲 国产 日韩一| 亚洲精品中文字幕在线视频| 欧美精品高潮呻吟av久久| 不卡视频在线观看欧美| 亚洲精品aⅴ在线观看| 国产精品秋霞免费鲁丝片| 国产精品女同一区二区软件| 99久国产av精品国产电影| 韩国高清视频一区二区三区| 午夜影院在线不卡| 五月开心婷婷网| 91久久精品电影网| 日韩制服骚丝袜av| 在线观看国产h片| 2021少妇久久久久久久久久久| 国产精品蜜桃在线观看| 欧美变态另类bdsm刘玥| 久久久久久久久久人人人人人人| 最新的欧美精品一区二区| 日韩大片免费观看网站| 免费观看性生交大片5| 黄色视频在线播放观看不卡| 日日啪夜夜爽| 蜜桃在线观看..| 全区人妻精品视频| av福利片在线| 国产视频首页在线观看| 免费观看的影片在线观看| 在线亚洲精品国产二区图片欧美 | 如日韩欧美国产精品一区二区三区 | av播播在线观看一区| 日韩av免费高清视频| 好男人视频免费观看在线| 热re99久久精品国产66热6| 精品久久久噜噜| 国产精品.久久久| 欧美精品一区二区免费开放| 亚洲精品乱久久久久久| 综合色丁香网| 午夜激情福利司机影院| 又黄又爽又刺激的免费视频.| 亚洲国产日韩一区二区| 婷婷色麻豆天堂久久| 97超视频在线观看视频| 国产成人a∨麻豆精品| 三级国产精品片| 91久久精品国产一区二区三区| 男男h啪啪无遮挡| 韩国高清视频一区二区三区| 日韩精品免费视频一区二区三区 | 成年女人在线观看亚洲视频| 欧美日韩综合久久久久久| 亚洲熟女精品中文字幕| 男女国产视频网站| 日本欧美国产在线视频| 熟妇人妻不卡中文字幕| 80岁老熟妇乱子伦牲交| 亚洲欧美一区二区三区黑人 | 国产探花极品一区二区| a级毛片在线看网站| 亚洲精品色激情综合| 男男h啪啪无遮挡| 99热这里只有精品一区| 国产探花极品一区二区| 男的添女的下面高潮视频| 国产极品粉嫩免费观看在线 | 中文字幕制服av| 一区二区日韩欧美中文字幕 | 欧美激情国产日韩精品一区| 午夜日本视频在线| 欧美精品国产亚洲| 亚洲精品国产av成人精品| 久久久久久人妻| 99国产精品免费福利视频| 亚洲一区二区三区欧美精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲成人手机| 三上悠亚av全集在线观看| 亚洲,欧美,日韩| 视频在线观看一区二区三区| 黑人高潮一二区| 日日摸夜夜添夜夜爱| 另类精品久久| 精品久久久噜噜| 欧美日韩综合久久久久久| 亚洲国产精品专区欧美| 美女内射精品一级片tv| 国产欧美日韩一区二区三区在线 | 亚洲精品av麻豆狂野| 曰老女人黄片| 国产爽快片一区二区三区| 免费看光身美女| 大香蕉久久成人网| 最近中文字幕高清免费大全6| 韩国高清视频一区二区三区| 欧美激情国产日韩精品一区| 日本av免费视频播放| 有码 亚洲区| 男人爽女人下面视频在线观看| 久久这里有精品视频免费| 2022亚洲国产成人精品| 中国国产av一级| 丰满饥渴人妻一区二区三| 91精品三级在线观看| 国产黄频视频在线观看| 国产精品欧美亚洲77777| 少妇人妻精品综合一区二区| 国产不卡av网站在线观看| 亚洲精品视频女| 亚洲欧洲日产国产| 最近2019中文字幕mv第一页| 国产午夜精品一二区理论片| 欧美精品一区二区大全| 日本wwww免费看| 婷婷色综合www| 夜夜爽夜夜爽视频| 男的添女的下面高潮视频| 亚州av有码| 精品国产国语对白av| 亚洲av在线观看美女高潮| 亚洲久久久国产精品| 免费人妻精品一区二区三区视频| 大片电影免费在线观看免费| 亚洲欧美日韩卡通动漫| 亚洲五月色婷婷综合| 美女中出高潮动态图| 天天躁夜夜躁狠狠久久av| 午夜久久久在线观看| 男人爽女人下面视频在线观看| 韩国高清视频一区二区三区| 中国美白少妇内射xxxbb| 亚洲av日韩在线播放| 有码 亚洲区| 国产视频内射| 国产精品不卡视频一区二区| 久久久午夜欧美精品| 中文字幕最新亚洲高清| 国产无遮挡羞羞视频在线观看| 国产又色又爽无遮挡免| 男的添女的下面高潮视频| 2018国产大陆天天弄谢| 热99国产精品久久久久久7| 国内精品宾馆在线| 日韩一区二区视频免费看| 我的老师免费观看完整版| 欧美精品国产亚洲| 少妇人妻精品综合一区二区| 亚洲精品美女久久av网站| 一区在线观看完整版| 国产免费视频播放在线视频| 九色亚洲精品在线播放| 国产av一区二区精品久久| 黑丝袜美女国产一区| 99久久中文字幕三级久久日本| 成人无遮挡网站| 亚洲欧美色中文字幕在线| 国产精品 国内视频| 在线观看美女被高潮喷水网站| 蜜桃国产av成人99| 国产免费现黄频在线看| 精品国产一区二区久久| 亚洲国产色片| 日韩电影二区| 肉色欧美久久久久久久蜜桃| 亚洲av男天堂| videossex国产| 国产日韩欧美亚洲二区| 插逼视频在线观看| 一本—道久久a久久精品蜜桃钙片| 免费高清在线观看日韩| 各种免费的搞黄视频| 另类精品久久| 最新的欧美精品一区二区| 亚洲欧美清纯卡通| 黄色一级大片看看| 黑人欧美特级aaaaaa片| 日韩视频在线欧美| 亚洲av男天堂| av线在线观看网站| 黄片无遮挡物在线观看| 日韩 亚洲 欧美在线| 国产av精品麻豆| 一级二级三级毛片免费看| 又黄又爽又刺激的免费视频.| 最黄视频免费看| 水蜜桃什么品种好| 熟女电影av网| videossex国产| 欧美+日韩+精品| 国产精品免费大片| 国产日韩欧美在线精品| 亚洲av男天堂| 久久精品国产a三级三级三级| 国产精品偷伦视频观看了| 老司机亚洲免费影院| 性高湖久久久久久久久免费观看| 91在线精品国自产拍蜜月| 久久久欧美国产精品| 97超视频在线观看视频| 久久久久久久久久久丰满| 国产精品无大码| 国产成人aa在线观看| 中文字幕人妻丝袜制服| 一级毛片我不卡| 久久久久国产网址| 天美传媒精品一区二区| 日韩成人伦理影院| av一本久久久久| av在线老鸭窝| 99热网站在线观看| 蜜桃久久精品国产亚洲av| 街头女战士在线观看网站| 午夜激情av网站| 欧美日韩综合久久久久久| 免费观看性生交大片5| 久久久欧美国产精品| 一级片'在线观看视频| 18禁动态无遮挡网站| 欧美日韩成人在线一区二区| 在线免费观看不下载黄p国产| 日本-黄色视频高清免费观看| 一二三四中文在线观看免费高清| 国产成人freesex在线| av天堂久久9| 男人添女人高潮全过程视频| 自拍欧美九色日韩亚洲蝌蚪91| 97在线人人人人妻| 色婷婷av一区二区三区视频| av线在线观看网站| 亚洲怡红院男人天堂| 91精品国产九色| 只有这里有精品99| 久久人人爽人人片av| 天天操日日干夜夜撸| 一本大道久久a久久精品| 国产精品.久久久| 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| 制服人妻中文乱码| 日韩成人伦理影院| 9色porny在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 考比视频在线观看| 午夜久久久在线观看| tube8黄色片| 日韩制服骚丝袜av| av黄色大香蕉| 七月丁香在线播放| 丝袜喷水一区| 五月玫瑰六月丁香| 丁香六月天网| 免费不卡的大黄色大毛片视频在线观看| 99久久人妻综合| 99热国产这里只有精品6| 久久精品久久久久久久性| 亚洲av中文av极速乱| a 毛片基地| 欧美xxⅹ黑人| 一本一本综合久久| 边亲边吃奶的免费视频| 精品人妻熟女av久视频| 欧美精品人与动牲交sv欧美| 曰老女人黄片| 一级,二级,三级黄色视频| 国产精品久久久久久精品电影小说| 久久人妻熟女aⅴ| 插阴视频在线观看视频| 人体艺术视频欧美日本| av电影中文网址| 波野结衣二区三区在线| 成人无遮挡网站| 久久女婷五月综合色啪小说| 能在线免费看毛片的网站| .国产精品久久| 嫩草影院入口| 国产有黄有色有爽视频| 亚洲综合精品二区| 久久人妻熟女aⅴ| 日韩免费高清中文字幕av| 久久女婷五月综合色啪小说| 性色avwww在线观看| 欧美日韩综合久久久久久| videossex国产| .国产精品久久| 好男人视频免费观看在线| 国产伦理片在线播放av一区| 国产精品国产三级国产av玫瑰| 婷婷色av中文字幕| 老司机影院毛片| 精品国产一区二区久久| 国产精品久久久久久av不卡| 人妻 亚洲 视频| 亚洲av.av天堂| 欧美日韩av久久| 成年人免费黄色播放视频| 高清av免费在线| 黑人巨大精品欧美一区二区蜜桃 | 一区在线观看完整版| 国产精品一区www在线观看| 亚洲经典国产精华液单| 久久久精品94久久精品| av在线app专区| 中文欧美无线码| 久久久久网色| 黄色一级大片看看| 国产亚洲午夜精品一区二区久久| 亚洲美女搞黄在线观看| 日韩av在线免费看完整版不卡| 好男人视频免费观看在线| 久久亚洲国产成人精品v| 久久久久久伊人网av| 亚洲av综合色区一区| a级毛片在线看网站| 日韩免费高清中文字幕av| 日本黄色日本黄色录像| 免费av中文字幕在线| 久久久a久久爽久久v久久| 18禁裸乳无遮挡动漫免费视频| 久久久久久久亚洲中文字幕| 一级毛片 在线播放| 精品亚洲成a人片在线观看| 十分钟在线观看高清视频www| 久久久国产欧美日韩av| 国产国拍精品亚洲av在线观看| 日韩精品免费视频一区二区三区 | 久久 成人 亚洲| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 日本黄大片高清| 黄色视频在线播放观看不卡| 在线观看免费日韩欧美大片 | 亚洲精品乱久久久久久| 亚洲精品久久成人aⅴ小说 | 日韩电影二区| 欧美少妇被猛烈插入视频| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图 | 欧美另类一区| 99re6热这里在线精品视频| av在线播放精品| 亚洲成色77777| 日韩免费高清中文字幕av| 亚洲av日韩在线播放| 午夜激情av网站| 最新的欧美精品一区二区| 秋霞在线观看毛片| 美女主播在线视频| 国产在线一区二区三区精| 一本—道久久a久久精品蜜桃钙片| 精品久久久噜噜| 国产欧美另类精品又又久久亚洲欧美| 成人午夜精彩视频在线观看| 色视频在线一区二区三区| 精品酒店卫生间| 18禁在线无遮挡免费观看视频| 国产av码专区亚洲av| 日本欧美国产在线视频| 久久久午夜欧美精品| 999精品在线视频| 国产一区二区在线观看日韩| 精品亚洲乱码少妇综合久久| av又黄又爽大尺度在线免费看| 在线观看免费视频网站a站| 国产精品一区二区在线不卡| 伊人久久精品亚洲午夜| 日韩欧美精品免费久久| 22中文网久久字幕| 香蕉精品网在线| 少妇人妻久久综合中文| 久久狼人影院| 中国国产av一级| 欧美激情极品国产一区二区三区 | 涩涩av久久男人的天堂| 夫妻午夜视频| 在线精品无人区一区二区三| 好男人视频免费观看在线| 亚洲欧美一区二区三区黑人 | 色婷婷久久久亚洲欧美| av在线观看视频网站免费| 中文字幕亚洲精品专区| 亚洲av.av天堂| 亚洲精品久久成人aⅴ小说 | 国产又色又爽无遮挡免| 黄色毛片三级朝国网站| 午夜福利在线观看免费完整高清在| 国产黄色视频一区二区在线观看| 男人操女人黄网站| 在线观看人妻少妇| 国产视频首页在线观看| 女人久久www免费人成看片| 一区二区三区乱码不卡18| 国产成人精品无人区| 韩国av在线不卡| 国产熟女午夜一区二区三区 | 国产亚洲最大av| 国产在线视频一区二区| 美女cb高潮喷水在线观看| 亚洲激情五月婷婷啪啪| 久久久久久久国产电影| 国产男人的电影天堂91| 欧美+日韩+精品| 一区二区三区免费毛片| 天天操日日干夜夜撸| 在线观看www视频免费| 日本wwww免费看| 男女无遮挡免费网站观看| 亚洲情色 制服丝袜| 亚洲怡红院男人天堂| 涩涩av久久男人的天堂| 国产片内射在线| 人妻制服诱惑在线中文字幕| 亚洲四区av| 汤姆久久久久久久影院中文字幕| 亚洲精品乱码久久久v下载方式| 又粗又硬又长又爽又黄的视频| kizo精华| 99九九在线精品视频| 亚洲精品aⅴ在线观看| 超碰97精品在线观看| 国产成人免费观看mmmm| 赤兔流量卡办理| 黄色毛片三级朝国网站| 边亲边吃奶的免费视频| 晚上一个人看的免费电影| 成人国产av品久久久| 热99国产精品久久久久久7| 最新的欧美精品一区二区| 久久久久久人妻| 少妇的逼好多水| 99re6热这里在线精品视频| 插阴视频在线观看视频| 免费高清在线观看视频在线观看| 亚洲少妇的诱惑av| 久久久久人妻精品一区果冻| 老司机影院毛片| 狂野欧美白嫩少妇大欣赏| 3wmmmm亚洲av在线观看| 中文字幕久久专区| 视频中文字幕在线观看| 亚洲第一区二区三区不卡| 少妇熟女欧美另类| 久久久久久伊人网av| 久久毛片免费看一区二区三区| 久久韩国三级中文字幕| 日韩人妻高清精品专区| 免费黄网站久久成人精品| 精品久久久久久久久av| 国产在线免费精品| a 毛片基地| 精品国产乱码久久久久久小说| 中文字幕久久专区| 中文字幕av电影在线播放| 成人毛片60女人毛片免费| 嘟嘟电影网在线观看| 各种免费的搞黄视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av成人精品一二三区| 精品视频人人做人人爽| 91久久精品国产一区二区成人| av网站免费在线观看视频| 中文字幕免费在线视频6| 一级片'在线观看视频| 日韩,欧美,国产一区二区三区| 一本一本综合久久| 婷婷色综合大香蕉| 精品一区二区三卡| 高清不卡的av网站| a级毛片在线看网站| 亚洲精品乱码久久久v下载方式| 欧美另类一区| 久久久久久久久久人人人人人人| 国产乱来视频区| 十分钟在线观看高清视频www| 一级爰片在线观看| 2018国产大陆天天弄谢| 少妇被粗大的猛进出69影院 | 欧美精品一区二区大全| 黄色视频在线播放观看不卡| 一级,二级,三级黄色视频| 秋霞在线观看毛片| 成人手机av| 国产精品蜜桃在线观看| 国产国语露脸激情在线看| 久久久久久人妻| 精品久久久久久电影网| av在线老鸭窝| 一级a做视频免费观看| 午夜福利,免费看| 久久青草综合色| .国产精品久久| av不卡在线播放| 国产精品 国内视频| 国产69精品久久久久777片| 精品国产乱码久久久久久小说| 日日啪夜夜爽| 欧美精品国产亚洲| kizo精华| 久久精品久久精品一区二区三区| 成人亚洲精品一区在线观看| 夜夜骑夜夜射夜夜干| 伊人亚洲综合成人网| 欧美丝袜亚洲另类| 国产精品秋霞免费鲁丝片| 在线观看一区二区三区激情| 多毛熟女@视频| 久久久久久久久久成人| 久久精品久久精品一区二区三区| 老司机影院毛片| 在线 av 中文字幕| 免费观看a级毛片全部| 久久这里有精品视频免费| 精品卡一卡二卡四卡免费| 91国产中文字幕| 欧美97在线视频| 久久 成人 亚洲| 亚洲精品久久久久久婷婷小说| 久久久久久久亚洲中文字幕| 91久久精品国产一区二区成人| 2022亚洲国产成人精品| 一级爰片在线观看| 91精品伊人久久大香线蕉| 只有这里有精品99| 大又大粗又爽又黄少妇毛片口| 嫩草影院入口| 91aial.com中文字幕在线观看| 亚洲丝袜综合中文字幕| videossex国产| 亚洲熟女精品中文字幕| 久久久精品免费免费高清| 国产在视频线精品| 国产一区二区在线观看日韩| 亚洲精华国产精华液的使用体验| 热99国产精品久久久久久7| 日韩不卡一区二区三区视频在线| 日韩成人伦理影院| av女优亚洲男人天堂| 九九久久精品国产亚洲av麻豆| 国产精品99久久久久久久久| 黄色视频在线播放观看不卡| 十分钟在线观看高清视频www| 岛国毛片在线播放| 国产视频内射| 精品久久久久久久久av|