• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conformally symmetric wormhole solutions supported by non-commutative geometryin f(Q,T)gravity

    2024-03-07 12:56:52ChaitraChoodaChalavadiVenkateshaKavyaandDivyaRashmi
    Communications in Theoretical Physics 2024年2期

    Chaitra Chooda Chalavadi ,V Venkatesha ,N S Kavya and S V Divya Rashmi

    1 Department of P.G.Studies and Research in Mathematics,Kuvempu University,Shankaraghatta,Shivamogga 577451,Karnataka,India

    2 Department of Mathematics,Vidyavardhaka College of Engineering,Mysuru—570002,India

    Abstract This paper investigates wormhole solutions within the framework of extended symmetric teleparallel gravity,incorporating non-commutative geometry,and conformal symmetries.To achieve this,we examine the linear wormhole model with anisotropic fluid under Gaussian and Lorentzian distributions.The primary objective is to derive wormhole solutions while considering the influence of the shape function on model parameters under Gaussian and Lorentzian distributions.The resulting shape function satisfies all the necessary conditions for a traversable wormhole.Furthermore,we analyze the characteristics of the energy conditions and provide a detailed graphical discussion of the matter contents via energy conditions.Additionally,we explore the effect of anisotropy under Gaussian and Lorentzian distributions.Finally,we present our conclusions based on the obtained results.

    Keywords: traversable wormhole,f(Q,T) gravity,energy conditions,non-commutative geometry,conformal motion

    1.Introduction

    Wormholes are dual-mouthed hypothetical structures connecting distinct sectors in the same universe or different universes.Initially,Flamm [1] introduced the notion of a wormhole by constructing the isometric embedding of the Schwarzschild solution.Einstein and Rosen [2] employed Flamm’s concept to create a bridge,commonly known as the Einstein–Rosen bridge.Later,Thorne and his student Morris[3] conducted pioneering research on the concept of traversable wormholes.They meticulously examined static and spherically symmetric wormholes,revealing that the exotic matter inside them possesses negative energy,thus violating the null energy condition.Furthermore,in order to establish a physically feasible model,it is necessary to repudiate the existence of the hypothetical matter.Although within the framework of general relativity [4,5],it was not possible to definitively rule out the presence of such a substance,an alternative approach was supported to reduce or eliminate the reliance on exotic matter [6–8].Numerous studies have been conducted to explore wormhole solutions within the background of modified theories [9–36].

    Figure 1.The graphical behavior of shape function Ψ* for Gaussian non-commutative geometry with M*=7.25,α=0.45,C2=2 and

    In the context of string theory,non-commutative geometry is one of the most intriguing concepts.The idea of noncommutativity arises from the notion that coordinates on a D-brane can be treated as non-commutative operators.This property holds great significance in mathematically explored fundamental concepts of quantum gravity [37–39].Noncommutative geometry aims to unify space-time gravitational forces with weak and strong forces on a single platform.Within this framework,it becomes possible to replace pointlike structures with smeared objects,leading to the discretization of space-time.This discretization arises from the commutator [xa,xb]=iθabwhere θabis an antisymmetric second-order matrix [40–42].To simulate this smearing effect,the Gaussian distribution and Lorentzian distribution with a minimum length ofare incorporated instead of the Dirac delta function.This non-commutative geometry is an intrinsic property of space-time and independent of the behavior of curvature.

    Non-commutative geometry plays a crucial role in examining the properties of space-time geometry under different conditions.Jamil et al,[43] explored some new exact solutions of static wormholes under non-commutative geometry.They utilized the power-law approach to analyze these solutions and discuss their properties.Rahaman et al[44–46]conducted an extensive investigation into various studies in non-commutative geometry.They studied fluids in different dimensions influenced by non-commutative geometry,which exhibited conformal symmetry.Additionally,they derived specific solutions of a wormhole within the context off(R)gravity.In the realm of non-commutative geometry,Zubair et al[47]examined wormhole solutions that permit conformal motion within the context off(R ,T)theory.The study employed conformal killing vectors to analyze the properties and characteristics of these wormhole solutions.Kuhfitting[48] investigated the stable wormhole solutions utilizing conformal killing vectors within the framework of a noncommutative geometry that incorporates a minimal length.The study focused on exploring the properties and characteristics of these stable wormholes within this specific theoretical framework.In [49],the authors studied the noncommutative wormhole solution inf(R) gravity.Moreover,the concept of non-commutative geometry has been gaining attention from researchers,and numerous intriguing aspects of this theory have been extensively explored and deliberated upon in the literature[50–64].Inspired by the aforementioned attempts in modified gravity and non-commutative geometry,we now delve into the study of wormhole solutions inf(Q ,T)gravity.We consider Gaussian and Lorentzian noncommutative geometries with conformal killing vectors to explore their implications.

    The paper is structured following the subsequent pattern:In section 2,we discuss the traversability condition for a wormhole.We shall construct the mathematical formalism off(Q ,T)gravity in 3.In the same section,we briefly explain the energy condition and the basic formalism of conformal killing vectors.In section 4,we conduct a detailed analysis of the wormhole model under Gaussian and Lorentzian distributions.Within this section,we derive the shape function and explore the impact of model parameters on these functions,as well as the energy conditions.In section 5,we investigate the effect of anisotropy on both distributions.Finally,in section 6,we finalize the conclusive remarks and summarize the key findings of the study.

    2.Traversability conditions for wormhole

    The Morris–Thorne metric for the traversable wormhole is described as

    In this scenario,we have two functions,namely Φ(r)and Ψ(r)which are referred to as the redshift and shape functions respectively.Both of these functions depend on the radial coordinate r.

    1.Redshift function: The redshift function Φ(r) needs to have a finite value across the entire space-time.Additionally,the redshift function must adhere to the constraint of having no event horizon,which allows for a two-way journey through the wormhole.

    2.Shape function:The shape function Ψ(r)characterizes the geometry of the traversable wormhole.Therefore,Ψ(r)must satisfy the following conditions:

    ? Throat condition:The value of the function Ψ(r)at the throat is r0and hence10for r>r0.

    ? Flaring-out condition: The radial differential of the shape function,Ψ′(r) at the throat should satisfy,Ψ′ (r0) <1.

    ? Asymptotic Flatness condition: As r →∞,

    3.Proper radial distance function: This function should be finite everywhere in the domain.In magnitude,it decreases from the upper universe to the throat and then increases from the throat to the lower universe.The proper radial distance function is expressed as,

    3.Mathematical formulations of f(Q,T )gravity

    In this article,we are particularly interested inf(Q ,T)gravity,where the Lagrangian is an arbitrary function of nonmetricity scalar and the trace of the energy-momentum tensor.Yixin et al,[15] introducedf(Q ,T)gravity,which is referred to as extended symmetric teleparallel gravity.This was developed within the metric-affine formalism framework.f(Q ,T)gravity theory has been employed to explain both matter-antimatter asymmetry and late-time acceleration.Furthermore,recent investigations suggest thatf(Q ,T)gravity may provide a feasible explanation of various cosmological and astrophysical phenomena [26,65–67].Nevertheless,no further studies on wormholes were conducted based on this theory,which is still in its early stages of development.These considerations motivate us to selectf(Q ,T)gravity to derive wormhole solutions.

    The Einstein–Hilbert action forf(Q ,T)gravity is given by

    wheref(Q ,T)is an arbitrary function that couples the nonmetricityQ and the traceT of the energy momentum tensor,mL is the Lagrangian density corresponding to matter and g denotes the determinant of the metric gμν.

    The non-metricity tensor is defined as

    and its traces are

    Further,we can define a super-potential associated with the non-metricity tensor as

    The non-metricity scalar is represented as

    Besides,the energy-momentum tensor for the fluid depiction of space-time can be expressed as

    The variation of the action (3) with respect to the fundamental metric,gives the metric field equation

    We presume that the matter distribution is an anisotropic stress-energy tensor,which can be written as

    where ρ,pr,ptare the energy density,radial and tangential pressures respectively.Here,ημrefers to a four-velocity vector with a magnitude of one,whileμrepresents a spacelike unit vector.Additionally,in this scenario,the tangential pressure will be orthogonal to the unit vector,and the radial pressure will be along the four-velocity vector.

    The expression for the trace of the energy-momentum tensor is determined as T=ρ-pr-2ptand equation (9)can be read as

    Using the wormhole metric (1),the trace of the nonmetricity scalarQ can be written as,

    Now,substituting the wormhole metric (1) and anisotropic matter distribution (11) into the motion equation (10),we found the following expressions:

    3.1.Energy condition

    Energy conditions provide interpretations for the physical phenomena associated with the motion of energy and matter,which are derived from the Raychaudhuri equation.To evaluate the geodesic behavior,we shall consider the criterion for different energy conditions.With the anisotropic matter distribution for ρ,prand ptbeing energy density,radial pressure and tangential pressure,we have the following:

    ? Null Energy Conditions: ρ+pt≥0 and ρ+pr≥0.

    ? Weak Energy Conditions: ρ ≥0 ?ρ+pt≥0 and ρ+pr≥0.

    ? Strong Energy Conditions:ρ+pj≥0 ?ρ+Σjpj≥0 ?j.

    ? Dominant Energy Conditions: ρ ≥0 ?ρ-|pr|≥0 and ρ-|pt|≥0.

    3.2.Conformal killing vectors

    Conformal killing vectors play a significant role in establishing the mathematical connection between the geometry of space-time and the matter it contains through Einstein’s field equations.These vectors are derived from the killing equations,utilizing the principles of Lie algebra [47,68].Conformal killing vectors are an essential tool for reducing the non-linearity order of field equations in various modified theories.In the context of general relativity,conformal killing vectors find numerous applications in geometric configurations,kinematics,and dynamics based on the structure theory.We employ an inheritance symmetry of space-time characterized by conformal killing vectors,which are defined as[44,69]

    where ζ,ηkand gijrepresent the conformal factor,conformal killing vectors and metric tensor respectively.It is supposed that the vector η generates the conformal symmetry and the metric g is conformally mapped onto itself along η.The conformal factor,which characterizes the scaling of the metric,influences the geometry of the wormhole.By inserting the equation Lηgij=ζ(r)gijfrom equation (17) into equation (1),we get the following equations:

    On solving the aforementioned expressions,we obtain the following two relationships for the metric components:

    where1C and C2are the integrating constants.For the simplification,we assume A(r)=ζ2(r).Consequently,the expression for the shape function can be obtained as

    4.Wormhole model in f(Q,T)gravity

    In this section,we shall consider a feasible model to study the properties of wormhole geometry.In particular,we suppose the linear form given by

    where α and β are the model parameters.For α=1,β=0,one can retain general relativity.By utilizing equations (21),(22) and adopting dimensionless parameters,the field equations (14)–(16) can be solved to obtain the following equations:

    Here,the subscript ‘*’ denotes corresponding adimensional quantities and the overhead dot is the derivative of the function with respect toFurther,non-dimensionalization is a powerful tool in theoretical physics.It enables researchers to simplify equations,comprehend the scaling behavior of physical systems,and gain insights into the essential features of complex phenomena such as wormholes.

    Now,we shall discuss the physical analysis of wormhole solutions with the help of equations (24–26) under noncommutative distributions.For this purpose,we consider the Gaussian and Lorentzian energy densities of the static and spherically symmetric particle-like gravitational source with a total mass of the form [58,70]

    4.1.Gaussian energy density

    In this subsection,our attention will be directed towards exploring non-commutative geometry under Gaussian distribution.When we substitute the Gaussian energy density(27) into equation (24),we obtain the resulting differential equation:

    We can easily verify the satisfaction of the throat condition by performing a simple calculation ofFurthermore,by evaluating the derivative of the shape function (31) at the throat,we derive the following relation:

    In our study,the behavior of energy density and energy conditions are illustrated in figure 2.Both dominant energy conditions,radial null energy condition and strong energy condition are violated.However,the tangential null energy condition is satisfied.

    4.2.Lorentzian energy density

    In this subsection,we focus on the scenario involving noncommutative geometry with the Lorentzian distribution.By substituting the Lorentzian energy density (28) into (24),we get

    Solving the aforementioned differential equation while imposing the throat condition on the shape function,we can derive the following expression:

    Figure 2.Gaussian Source: The profile of energy density and energy conditions with respect to for different values of β with fixed parameters M*=7.25,α=0.45,C2=2and =1.6.

    Figure 3.The graphical behavior of shape function Ψ* for Lorentzian non-commutative geometry with M*=7.25,α=0.45,C2=2 and 1.6.

    where2F1(a,b;c;z) is the hypergeometric function.Hence,the resulting shape function can be expressed as follows:

    From the above expression,the derivative of the shape function is given by

    Now,substituting function(36)into(25)and(26),we get the pressure elements as

    where Γ(a,z) is the gamma function.

    Figure 4 illustrates the characteristics of the energy conditions and the corresponding energy density profile for Lorentzian distribution.It shows that in this scenario,the radial null energy condition[figure 4(b)]and dominant energy conditions [figure 4(d)] are violated.But,the tangential null energy condition [figure 4(c)] and strong energy condition[figure 4(f)] are obeyed.

    Figure 4.Lorentzian Source: The profile of energy density and energy conditions with respect to for different values of β with fixed parameters M*=7.25,α=0.45,C2=2and =1.6.

    Moreover,by investigating the existence of wormhole solutions and analyzing energy conditions in the late-time universe,we explore exotic matter and energy distributions that could enable the formation and stability of wormholes.The presence or absence of these solutions has significant implications for our understanding of the late-time universe’s evolution and the nature of exotic matter needed to support such structures.

    5.Effect of anisotropy

    In this section,we explore the anisotropy of Gaussian and Lorentzian non-commutative geometry in order to understand the characteristics of the anisotropic pressure.The quantification of anisotropy plays a crucial role in revealing the internal geometry of a relativistic wormhole configuration.It is well known that the level of anisotropy within a wormhole can be measured using the following formula [20,49,62,71–73]:

    We can determine the geometry of the wormhole based on anisotropic factor.When the tangential pressure is greater than the radial pressure,it results in Δ>0.This signifies that the structure of the wormhole is repulsive and anisotropic force is acting in an outward direction.Conversely,if the radial pressure is greater than the tangential pressure,it yields Δ<0.This indicates an attractive geometry of the wormhole and force is directed inward.The anisotropy for both the Gaussian (ΔG) and Lorentzian (ΔL) distributions with the linear model is calculated as

    Figure 5 depicts the effect of anisotropy for a viable wormhole model under Gaussian and Lorentzian distributions.The investigation reveals that our anisotropy factor Δ is positiveand the structure of the wormhole is repulsive in Gaussian distribution [figure 5(a)],whereas Δ is negativewhich indicates an attractive geometry of the wormhole in Lorentzian distribution[figure 5(b)].

    Figure 5.The graphical representation of anisotropy for both distributions.

    6.Results and concluding remarks

    In this article,we have explored the conformal symmetric wormhole solutions under non-commutative geometry in the background off(Q ,T)gravity.To achieve this,we have considered the presence of an anisotropic fluid in a spherically symmetric space-time.The concept of conformal symmetry and non-commutative geometry have already been used in literature within various contexts of modified theories of gravity [50–60,62–64].Non-commutative geometry is used to replace the particle-like structure to smeared objects in string theory.Furthermore,conformal killing vectors are derived from the killing equation,which is based on the Lie algebra.These vectors are used to reduce the nonlinearity order of the field equation.Conformal symmetry has proved to be effective in describing relativistic stellar-type objects.Furthermore,it has led to new solutions and provided insights into geometry and kinematics[74].It influences the geometry and dynamics of the space-time,impacting key parameters such as throat size and stability.

    In the framework of extended symmetric teleparallel gravity,we have derived some new exact solutions for wormholes by using both Gaussian and Lorentzian energy densities of non-commutative geometry.For this object,we presumed the linear wormhole model asf(Q ,T)=αQ +βT,where α and β are model parameters.In both cases,we examined the wormhole scenario using Gaussian and Lorentzian distributions.By applying the throat condition in two distributions,we obtained different shape functions that obey all the criteria for a traversable wormhole.A similar result was presented in [63] where the authors explored wormhole solutions in curvature-matter coupling gravity supported by non-commutative geometry and conformal symmetry.Furthermore,we investigated the impact of model parameters on these two shape functions.Due to the conformal symmetry,the redshift function does not approach zero as r>r0[8,59,60,75].

    Figures 1 and 3 show the graphical nature of the obtained shape functions with β ?[0,0.5).Notably,a slight variation in the value of β can impact the nature of the shape function.Moreover,the graphical behavior of the energy conditions is shown in figures 2 and 4.The energy density is positive throughout the space-time.For all the wormhole solutions,the violation of the null energy conditions indicates the presence of hypothetical matter.Here,this nature of hypothetical fluid is presented in references [63,76,77].Next,we studied the effect of anisotropy for both distributions.The geometry of the wormhole is repulsive in the Gaussian distribution,whereas it is attractive in the Lorentzian distribution[figure 5].

    To conclude,this work validates the conformal symmetric wormhole solutions inf(Q ,T)gravity under noncommutative geometry.The authors [78] have identified the possibility of a generalized wormhole formation in the galactic halo due to dark matter using observational data within the matter coupling gravity formalism.In the near future,we plan to investigate various wormhole scenarios in alternative theories of gravity,as discussed in references[79–82].

    Acknowledgments

    CCC,VV and NSK acknowledge DST,New Delhi,India,for its financial support for research facilities under DSTFIST-2019.

    ORCID iDs

    尤物成人国产欧美一区二区三区| 搡老岳熟女国产| 中文字幕久久专区| 亚洲第一电影网av| 亚洲丝袜综合中文字幕| 久久久精品大字幕| 亚洲av中文字字幕乱码综合| 国产免费男女视频| 亚洲人成网站在线播放欧美日韩| 日韩,欧美,国产一区二区三区 | 成人av一区二区三区在线看| 变态另类成人亚洲欧美熟女| 亚洲av五月六月丁香网| 亚洲人成网站在线播放欧美日韩| 国产女主播在线喷水免费视频网站 | 69av精品久久久久久| av卡一久久| 美女cb高潮喷水在线观看| 少妇熟女欧美另类| 51国产日韩欧美| 久久午夜福利片| 日本一二三区视频观看| 免费在线观看成人毛片| 午夜激情欧美在线| 51国产日韩欧美| 熟女人妻精品中文字幕| 中文字幕精品亚洲无线码一区| 秋霞在线观看毛片| 亚洲美女搞黄在线观看 | 菩萨蛮人人尽说江南好唐韦庄 | 国产成人影院久久av| 欧美一区二区亚洲| 色综合站精品国产| 超碰av人人做人人爽久久| 嫩草影视91久久| 网址你懂的国产日韩在线| 国内精品一区二区在线观看| 亚洲欧美日韩东京热| 亚洲国产精品合色在线| 久久精品国产亚洲av涩爱 | 日韩国内少妇激情av| 高清毛片免费观看视频网站| 免费一级毛片在线播放高清视频| 久久久久精品国产欧美久久久| 久久久久久久久久久丰满| 床上黄色一级片| 99久久九九国产精品国产免费| 精品午夜福利视频在线观看一区| 性色avwww在线观看| 亚洲熟妇熟女久久| 日韩三级伦理在线观看| 三级经典国产精品| 久久鲁丝午夜福利片| 日本撒尿小便嘘嘘汇集6| 精品免费久久久久久久清纯| 国产精品女同一区二区软件| 久久精品综合一区二区三区| 日韩中字成人| 村上凉子中文字幕在线| 22中文网久久字幕| 日韩,欧美,国产一区二区三区 | 日韩在线高清观看一区二区三区| 久99久视频精品免费| 成年女人看的毛片在线观看| av黄色大香蕉| 听说在线观看完整版免费高清| 婷婷亚洲欧美| 麻豆精品久久久久久蜜桃| 国产精品日韩av在线免费观看| 在线天堂最新版资源| 特大巨黑吊av在线直播| 久久99热这里只有精品18| 少妇熟女aⅴ在线视频| 人妻少妇偷人精品九色| 亚洲av.av天堂| 亚洲国产精品合色在线| 亚洲国产精品成人久久小说 | 白带黄色成豆腐渣| 国产精品永久免费网站| 18禁在线播放成人免费| 精品人妻偷拍中文字幕| 老师上课跳d突然被开到最大视频| 久久天躁狠狠躁夜夜2o2o| 久久亚洲精品不卡| 国产一级毛片七仙女欲春2| 中出人妻视频一区二区| 日本欧美国产在线视频| 欧美激情在线99| 综合色av麻豆| 久久精品国产亚洲av香蕉五月| 麻豆久久精品国产亚洲av| 婷婷亚洲欧美| 亚洲,欧美,日韩| 精品久久久久久久久久免费视频| 日韩欧美国产在线观看| 中文字幕人妻熟人妻熟丝袜美| 成人精品一区二区免费| 亚洲三级黄色毛片| 国产久久久一区二区三区| 51国产日韩欧美| 性色avwww在线观看| 亚洲av第一区精品v没综合| 狂野欧美激情性xxxx在线观看| 久久久精品94久久精品| 久久精品综合一区二区三区| 午夜a级毛片| 日韩一本色道免费dvd| 搞女人的毛片| 亚洲不卡免费看| 最近视频中文字幕2019在线8| 国产伦精品一区二区三区视频9| 色综合亚洲欧美另类图片| 欧美日本亚洲视频在线播放| 国内少妇人妻偷人精品xxx网站| 午夜影院日韩av| 日本色播在线视频| 午夜a级毛片| 国产精品久久久久久精品电影| 国产午夜精品久久久久久一区二区三区 | 成年免费大片在线观看| 麻豆乱淫一区二区| 在线免费观看不下载黄p国产| 最近中文字幕高清免费大全6| 色综合亚洲欧美另类图片| 在线免费观看的www视频| 婷婷精品国产亚洲av在线| 久久精品91蜜桃| 成人亚洲欧美一区二区av| 国产av麻豆久久久久久久| 国内精品久久久久精免费| 九九爱精品视频在线观看| 欧美成人免费av一区二区三区| 免费在线观看成人毛片| 女人被狂操c到高潮| 成年av动漫网址| 国产综合懂色| 精品国内亚洲2022精品成人| 国产精品野战在线观看| 精品国内亚洲2022精品成人| 国产色爽女视频免费观看| 又爽又黄a免费视频| 女的被弄到高潮叫床怎么办| 熟女人妻精品中文字幕| 麻豆乱淫一区二区| 亚洲成a人片在线一区二区| 久99久视频精品免费| 久久午夜亚洲精品久久| 欧美xxxx黑人xx丫x性爽| 免费搜索国产男女视频| 国产精品久久久久久av不卡| 午夜福利视频1000在线观看| 久99久视频精品免费| 日本三级黄在线观看| 精品人妻一区二区三区麻豆 | 大又大粗又爽又黄少妇毛片口| 色尼玛亚洲综合影院| 国产乱人偷精品视频| 久久久久精品国产欧美久久久| 精品人妻一区二区三区麻豆 | 色5月婷婷丁香| 欧美人与善性xxx| 亚洲av二区三区四区| 国产精品国产高清国产av| av在线亚洲专区| 亚洲av中文字字幕乱码综合| 又黄又爽又免费观看的视频| 国产激情偷乱视频一区二区| 精品国内亚洲2022精品成人| 麻豆一二三区av精品| 天堂av国产一区二区熟女人妻| h日本视频在线播放| 在线观看66精品国产| 一个人看的www免费观看视频| 日韩在线高清观看一区二区三区| 亚洲人成网站在线观看播放| 免费人成在线观看视频色| 直男gayav资源| 久久草成人影院| 又爽又黄a免费视频| 国产精品人妻久久久久久| 中国美白少妇内射xxxbb| 白带黄色成豆腐渣| 成人特级黄色片久久久久久久| 婷婷亚洲欧美| 又黄又爽又免费观看的视频| 日韩国内少妇激情av| 午夜免费男女啪啪视频观看 | 男人舔奶头视频| 日本-黄色视频高清免费观看| 久久久欧美国产精品| 麻豆乱淫一区二区| 久久午夜福利片| 国产精华一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 97热精品久久久久久| 男插女下体视频免费在线播放| 激情 狠狠 欧美| 欧美性感艳星| 日本免费a在线| 校园人妻丝袜中文字幕| 91在线精品国自产拍蜜月| 国产成人a∨麻豆精品| 精品国产三级普通话版| 男人舔奶头视频| 变态另类丝袜制服| 一本久久中文字幕| 蜜桃亚洲精品一区二区三区| 亚洲人成网站在线观看播放| 精品熟女少妇av免费看| 波多野结衣高清作品| 春色校园在线视频观看| 一本精品99久久精品77| 少妇熟女aⅴ在线视频| 国产午夜精品久久久久久一区二区三区 | 精品不卡国产一区二区三区| 国产精品综合久久久久久久免费| 久久久成人免费电影| 最近中文字幕高清免费大全6| 非洲黑人性xxxx精品又粗又长| 少妇被粗大猛烈的视频| 久久久久久九九精品二区国产| 午夜a级毛片| a级毛片a级免费在线| 插阴视频在线观看视频| 三级毛片av免费| 欧美xxxx性猛交bbbb| 精品99又大又爽又粗少妇毛片| 国产av麻豆久久久久久久| 伦精品一区二区三区| 啦啦啦观看免费观看视频高清| av在线老鸭窝| 白带黄色成豆腐渣| 精品人妻视频免费看| 亚洲18禁久久av| 一区二区三区免费毛片| 狂野欧美白嫩少妇大欣赏| 免费av毛片视频| 国产一区二区亚洲精品在线观看| 一区二区三区免费毛片| 99久久精品国产国产毛片| 别揉我奶头 嗯啊视频| 黄色欧美视频在线观看| 色5月婷婷丁香| 成人亚洲欧美一区二区av| 亚洲成人久久性| 亚洲精品一卡2卡三卡4卡5卡| 一进一出抽搐gif免费好疼| 精品一区二区三区视频在线观看免费| 久久精品91蜜桃| 两个人的视频大全免费| 国产精品福利在线免费观看| 免费看a级黄色片| 久久精品国产自在天天线| 欧美精品国产亚洲| 综合色av麻豆| 欧美一区二区亚洲| 91久久精品国产一区二区成人| 美女xxoo啪啪120秒动态图| 激情 狠狠 欧美| 久久久久久大精品| 午夜精品在线福利| 晚上一个人看的免费电影| 久久久久久久久中文| 欧美最新免费一区二区三区| 欧美日本亚洲视频在线播放| 99久久精品热视频| 黄色视频,在线免费观看| 日韩高清综合在线| 成人午夜高清在线视频| 久久6这里有精品| 欧美xxxx性猛交bbbb| 国产精品不卡视频一区二区| av福利片在线观看| 又粗又爽又猛毛片免费看| 香蕉av资源在线| 国产黄a三级三级三级人| 最近视频中文字幕2019在线8| av在线播放精品| 久久国内精品自在自线图片| 久99久视频精品免费| 又爽又黄无遮挡网站| 国产91av在线免费观看| 亚洲美女搞黄在线观看 | 欧美日韩综合久久久久久| 身体一侧抽搐| 在线观看66精品国产| 不卡一级毛片| 热99在线观看视频| 嫩草影院新地址| 男人和女人高潮做爰伦理| 精品久久久久久久久久免费视频| 国产熟女欧美一区二区| 麻豆久久精品国产亚洲av| 天堂√8在线中文| 高清毛片免费观看视频网站| 欧美国产日韩亚洲一区| 变态另类成人亚洲欧美熟女| 五月伊人婷婷丁香| 成人特级av手机在线观看| 国产淫片久久久久久久久| 亚洲成人久久爱视频| 久久久久性生活片| 成人二区视频| 少妇熟女欧美另类| 欧美中文日本在线观看视频| 亚洲国产精品久久男人天堂| 成人美女网站在线观看视频| 国产精品野战在线观看| 国产熟女欧美一区二区| 国产成人91sexporn| 国产精品久久久久久av不卡| 性色avwww在线观看| 久久午夜福利片| 色av中文字幕| 久久久久久久久久成人| 亚洲专区国产一区二区| 五月伊人婷婷丁香| 亚洲av中文av极速乱| 12—13女人毛片做爰片一| www日本黄色视频网| a级毛片免费高清观看在线播放| 亚洲国产欧美人成| 夜夜爽天天搞| 午夜福利视频1000在线观看| 久久精品国产亚洲网站| 亚洲四区av| 午夜免费激情av| 桃色一区二区三区在线观看| 国产久久久一区二区三区| 午夜免费男女啪啪视频观看 | 一区二区三区高清视频在线| 亚洲精品日韩av片在线观看| 热99在线观看视频| 亚洲av免费在线观看| 有码 亚洲区| 久久久精品欧美日韩精品| 综合色av麻豆| 夜夜爽天天搞| 国产真实乱freesex| 国产v大片淫在线免费观看| 亚洲在线观看片| 久久精品国产亚洲av涩爱 | 乱码一卡2卡4卡精品| 99热这里只有精品一区| 18+在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲电影在线观看av| eeuss影院久久| 哪里可以看免费的av片| 一个人观看的视频www高清免费观看| 麻豆成人午夜福利视频| 久久草成人影院| 国内精品久久久久精免费| 搡老熟女国产l中国老女人| 一个人看的www免费观看视频| 两个人的视频大全免费| 草草在线视频免费看| 国产成年人精品一区二区| 岛国在线免费视频观看| 精品欧美国产一区二区三| 亚洲四区av| 特大巨黑吊av在线直播| 欧美最黄视频在线播放免费| 欧美绝顶高潮抽搐喷水| 寂寞人妻少妇视频99o| 男女下面进入的视频免费午夜| 日日干狠狠操夜夜爽| 男人狂女人下面高潮的视频| 国产精品野战在线观看| 国产精品国产高清国产av| 天天躁夜夜躁狠狠久久av| 精品一区二区免费观看| 狠狠狠狠99中文字幕| 给我免费播放毛片高清在线观看| 国产视频内射| 国产aⅴ精品一区二区三区波| 午夜视频国产福利| 欧美绝顶高潮抽搐喷水| 欧美+日韩+精品| 日本黄色视频三级网站网址| 免费看a级黄色片| 婷婷六月久久综合丁香| 国产私拍福利视频在线观看| 国产国拍精品亚洲av在线观看| 校园人妻丝袜中文字幕| 成人无遮挡网站| 免费看日本二区| 精品久久久噜噜| 小说图片视频综合网站| 身体一侧抽搐| 黄片wwwwww| 久久国内精品自在自线图片| 久久久久久久亚洲中文字幕| 国产探花极品一区二区| av在线蜜桃| 看非洲黑人一级黄片| 亚洲自偷自拍三级| 99国产精品一区二区蜜桃av| 久久午夜亚洲精品久久| 人妻久久中文字幕网| 午夜日韩欧美国产| 国产av在哪里看| 国产一区二区在线av高清观看| 国产高清有码在线观看视频| 国产精品美女特级片免费视频播放器| 国内精品久久久久精免费| 亚洲人成网站在线播放欧美日韩| 村上凉子中文字幕在线| 久久久久久久久久黄片| 高清毛片免费观看视频网站| 国产大屁股一区二区在线视频| 久久久久久久久中文| 黄色一级大片看看| 一进一出抽搐gif免费好疼| 亚洲欧美成人综合另类久久久 | 给我免费播放毛片高清在线观看| 99热全是精品| 又爽又黄a免费视频| 国内精品一区二区在线观看| 国产爱豆传媒在线观看| 精品国产三级普通话版| 久久久久久大精品| 热99re8久久精品国产| 日韩一区二区视频免费看| 国产精品亚洲一级av第二区| 最好的美女福利视频网| 国产一区二区激情短视频| 男人和女人高潮做爰伦理| 亚洲av成人精品一区久久| 精品不卡国产一区二区三区| 精品一区二区免费观看| 久久综合国产亚洲精品| 亚洲国产色片| 可以在线观看毛片的网站| 精品福利观看| 亚洲精品日韩av片在线观看| 激情 狠狠 欧美| 亚洲欧美成人综合另类久久久 | 我要搜黄色片| 免费搜索国产男女视频| 欧美3d第一页| 欧美潮喷喷水| 男女啪啪激烈高潮av片| 久久综合国产亚洲精品| 女的被弄到高潮叫床怎么办| 亚洲无线观看免费| 午夜福利高清视频| 免费av毛片视频| 亚洲四区av| 亚洲图色成人| 在线观看免费视频日本深夜| 日本 av在线| 国产精品久久视频播放| 日本一本二区三区精品| 两个人的视频大全免费| 嫩草影院新地址| 欧美另类亚洲清纯唯美| 亚洲高清免费不卡视频| 欧美一区二区国产精品久久精品| 日韩 亚洲 欧美在线| 亚洲精华国产精华液的使用体验 | 免费无遮挡裸体视频| 亚洲av美国av| 亚洲一区高清亚洲精品| 黄色一级大片看看| 草草在线视频免费看| 久久久国产成人免费| 天天一区二区日本电影三级| 亚洲av.av天堂| 少妇熟女欧美另类| 白带黄色成豆腐渣| 色综合站精品国产| 亚洲人成网站在线播| 色在线成人网| 在线免费十八禁| 看免费成人av毛片| 精品久久国产蜜桃| 国产色爽女视频免费观看| 久久欧美精品欧美久久欧美| 免费搜索国产男女视频| 国产激情偷乱视频一区二区| 久久这里只有精品中国| 在线免费十八禁| 久久久久国产网址| 国产精品爽爽va在线观看网站| 最近最新中文字幕大全电影3| 人人妻人人澡欧美一区二区| 夜夜爽天天搞| 成人欧美大片| 婷婷色综合大香蕉| 美女cb高潮喷水在线观看| 国产伦一二天堂av在线观看| 久久中文看片网| 最近最新中文字幕大全电影3| 色综合亚洲欧美另类图片| 亚洲国产精品国产精品| 亚洲精品日韩av片在线观看| 热99re8久久精品国产| 日本黄色视频三级网站网址| 欧美成人a在线观看| 日韩,欧美,国产一区二区三区 | 少妇的逼水好多| 国产蜜桃级精品一区二区三区| 老司机福利观看| 成人三级黄色视频| 99热这里只有是精品在线观看| 大型黄色视频在线免费观看| 99在线视频只有这里精品首页| 在线天堂最新版资源| 一级毛片我不卡| 黄色配什么色好看| 激情 狠狠 欧美| 国产精品野战在线观看| 国产精品,欧美在线| 成人鲁丝片一二三区免费| 久久热精品热| 亚洲成人久久爱视频| 国产精品亚洲一级av第二区| 女人十人毛片免费观看3o分钟| 欧美日本视频| 精品久久久久久久久av| 国产色爽女视频免费观看| 少妇被粗大猛烈的视频| 秋霞在线观看毛片| 国内精品美女久久久久久| 美女内射精品一级片tv| 黄色日韩在线| 性插视频无遮挡在线免费观看| 国语自产精品视频在线第100页| 国产成人a∨麻豆精品| 精品不卡国产一区二区三区| 一级毛片我不卡| 成年女人看的毛片在线观看| 一本一本综合久久| 12—13女人毛片做爰片一| 熟女人妻精品中文字幕| 欧美+亚洲+日韩+国产| 亚洲人与动物交配视频| 此物有八面人人有两片| 亚洲人与动物交配视频| 22中文网久久字幕| 久99久视频精品免费| av在线蜜桃| 在现免费观看毛片| 国产熟女欧美一区二区| 午夜福利在线观看吧| 久久鲁丝午夜福利片| 午夜亚洲福利在线播放| 18+在线观看网站| a级毛片免费高清观看在线播放| 午夜精品一区二区三区免费看| 99热网站在线观看| 免费黄网站久久成人精品| 91av网一区二区| 久久久国产成人精品二区| 日韩精品青青久久久久久| 亚洲欧美中文字幕日韩二区| 亚洲欧美精品自产自拍| 国产成人影院久久av| 小说图片视频综合网站| 99riav亚洲国产免费| 欧美最新免费一区二区三区| 欧美成人a在线观看| 国产白丝娇喘喷水9色精品| 两个人视频免费观看高清| 欧美绝顶高潮抽搐喷水| 深爱激情五月婷婷| 尾随美女入室| 99九九线精品视频在线观看视频| 18+在线观看网站| 嫩草影院精品99| 亚洲国产日韩欧美精品在线观看| 淫秽高清视频在线观看| 国产伦精品一区二区三区四那| 国产精品人妻久久久影院| 精品久久久久久久久久久久久| 少妇熟女欧美另类| 男女啪啪激烈高潮av片| 国产成人aa在线观看| 日韩欧美 国产精品| 国产片特级美女逼逼视频| 成人av一区二区三区在线看| 国内精品宾馆在线| 身体一侧抽搐| 国产人妻一区二区三区在| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区精品| 成人av一区二区三区在线看| 成人性生交大片免费视频hd| 午夜福利高清视频| 最近的中文字幕免费完整| 久久精品人妻少妇| 三级毛片av免费| 人人妻人人澡欧美一区二区| 在线看三级毛片| 最好的美女福利视频网| 三级毛片av免费| av天堂在线播放| 成人鲁丝片一二三区免费| 精品人妻视频免费看| 亚洲av不卡在线观看| 午夜a级毛片| 亚洲图色成人| 高清日韩中文字幕在线| 国产高清三级在线| 亚洲自偷自拍三级| 啦啦啦韩国在线观看视频| 嫩草影院精品99| 亚洲色图av天堂| 97热精品久久久久久| 人人妻人人澡人人爽人人夜夜 | 嫩草影院入口| 寂寞人妻少妇视频99o| 夜夜夜夜夜久久久久| 婷婷色综合大香蕉|