• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploring the shadow of a rotating charged ModMax black hole

    2024-03-07 12:56:48KhurshidKarshiboevFarruhAtamurotovAhmadjonAbdujabbarovAlivgandAnvarReyimberganov
    Communications in Theoretical Physics 2024年2期

    Khurshid Karshiboev ,Farruh Atamurotov ,Ahmadjon Abdujabbarov,6,7 ,Ali ?vgün and Anvar Reyimberganov

    1 Institute of Theoretical Physics,National University of Uzbekistan,Tashkent 100174,Uzbekistan

    2 New Uzbekistan University,Movarounnahr Street 1,Tashkent 100000,Uzbekistan

    3 Central Asian University,Milliy Bog’ Street 264,Tashkent 111221,Uzbekistan

    4 University of Tashkent for Applied Sciences,Str.Gavhar 1,Tashkent 100149,Uzbekistan

    5 Tashkent State Technical University,Tashkent 100095,Uzbekistan

    6 Ulugh Beg Astronomical Institute,Astronomy Street 33,Tashkent 100052,Uzbekistan

    7 Institute of Fundamental and Applied Research,National Research University TIIAME,Kori Niyoziy 39,Tashkent 100000,Uzbekistan

    8 Physics Department,Eastern Mediterranean University,Famagusta,99628 North Cyprus,via Mersin 10,Turkey

    9 Urgench State University,Urgench 220100,Uzbekistan

    Abstract The research presented in this paper discusses the impact that the parameters of charge (Q) and screening factor (γ) have on properties of the horizon and silhouette of rotating charged ModMax black holes which were reviewed in[Eur.Phys.J.C(2022)82:1155]recently,building upon previous findings in the field.Furthermore,the study explores the behavior of null geodesics,which can help us better understand the apparent shape of the black hole’s silhouette,as well as the distortion parameter and approximate radii of the silhouette that are influenced by the aforementioned parameters,and there are some values of parameter Q which corresponds to data from the Event Horizon Telescope(EHT).Notably,we explore the distortion parameter and approximate radii of the silhouette,revealing that while an increase in γ leads to a growth in silhouette radius(Rs),it simultaneously reduces the distortion rate(δs).Conversely,heightened Q charge results in a reduction of Rs accompanied by an increase in δs.Lastly,the paper analyzes the effects of the black hole’s parameters on the effective potential and energy emission:the peak value of the energy emission rate experiences a decrease as the screening factor (γ) increases,while it increases with higher values of the charge parameter (Q).

    Keywords: black hole,ModMax gravity,rotating black hole,black hole shadow

    1.Introduction

    Despite the vast amount of experimental and observational data that supports the standard theory of gravity,known as general relativity,it still faces some fundamental challenges.One such challenge is its incompatibility with the quantum field theory,as well as the presence of singularities at the source’s origin.To overcome these difficulties,scientists may employ alternative theories or modified theories of gravity.The problem of singularity also exists in classical electrodynamics,which Born and Infield attempted to resolve through the inclusion of nonlinear terms while preserving the theory’s relativistic and gauge invariant properties [1].One may obtain regularization of the electrodynamics using the polarization of the vacuum (see,for example,Euler-Heisenberg nonlinear electrodynamics [2]).Other nonlinear effects have been developed which remove the singularity from the solution of field equations for the electromagnetic field.These nonlinear effects coupled with general relativity may exclude the singularity from the spacetime.The first regular solution of the Einstein equation without singularity was obtained by Bardeen[3].Later,other methods of regularization were used in order to obtain regular black hole (BH) solutions [4,5].

    One of the attempts to obtain a regular BH solution is proposed in [6–10].In particular,the authors of [11]found new regular BH solutions within the so-called Mod-Max electrodynamics background.The dyonic solution has been obtained taking into account SO(2) invariance for electric and magnetic fields.The authors of[12]introduced a Galilean cousin of the ModMax theory,written in a covariant formalism and showed that it is invariant under Galilean conformal symmetries.The nonlinear effects of ModMax on the Lorentz force,the Coulomb law,the Lienard–Wiechert fields,Dirac’s and Schwinger’s quantization of electric and magnetic charges,and the Compton effect have been explored in [13].The generalized ModMax model of nonlinear electrodynamics coupled to general relativity has been studied in[14].The question regarding triviality or being a stealth field of stationary nonlinear electromagnetic field within the ModMax model has been discussed in [15].BH thermodynamics in the presence of nonlinear electromagnetic fields described by the ModMax model have been explored in[16].The deformation of the ModMax theory,as a unique Lagrangian of nonlinear electrodynamics preserving both conformal and electromagnetic-duality invariance has been considered in[17].Here,we plan to explore optical properties of the spacetime around a rotating BH in the presence of ModMax electrodynamics.

    Recent revolutionary discoveries of gravitational waves[18]and observation of the shadows of M87[19,20]and Sgr A*[21]opened new doors to probe the modified or alternative theories of gravity.The accuracy of the observations and detection of gravitational radiation may be used to rule out the modifications and get proper constraints on metric parameters.The photon motion in curved spacetime may be used as a useful tool to test and probe the gravity.Gravitational lensing,as well as the shadow cast by the BH,is the consequence of the photon motion around a gravitating object[22].The idea of the formation shadow of the BH was first proposed by Bardeen [23] and later developped by Luminet[24].A review of the photon motion and shadow formation can be found in [22,25].The physical mechanism of accretion onto BHs is investigated in various modified gravities in [26,27].

    Due to the capture of some of the photons by the BH located between the source of the electromagnetic waves and the observer,the latter can detect a black spot on the celestial plane.This spot is referred to as the BH shadow and its shape and size are defined by the parameters of the spacetime [22].The main observables of the BH shadow may provide information about the nature of gravity and parameters of the BH.Theoretical studies of BH shadows for different gravity models and BH solutions can be found in [28–90].After the first ever observation of the BH shadows of M87 and Sgr A*in 2019 [19] and in 2022 [21],the observations have been developed by various authors [91–98].

    In this paper we plan to study the shadow of a regular BH described within the ModMax model.The paper is organized as follows: in section 2 we have briefly reviewed the Mod-Max BHs and studied the horizon structure and the equation of motion of photons around a ModMax BH.Observable quantities of the BH shadow have been considered in section 3.The emission energy from a ModMax BH has been investigated in section 4.Finally,detailed discussion of the results obtained is presented in section 5.We have used the geometric units system that fixes the speed of light and the gravitational constant via G=c=1.

    2.Rotating ModMax black hole

    The motivation behind the development and exploration of ModMax electrodynamics theory arises from the inherent challenges posed by singularities in both Einstein’s general relativity theory and Maxwell’s electrodynamics.Singularities at the beginning of the Universe and in BH solutions have been persistent issues.To address these challenges,modifications such as Born–Infeld (BI) non-linear electrodynamics (NED) and Euler–Heisenberg (EH) NED were introduced,offering solutions with finite self-energy and SO(2) invariance.

    More recently,a generalized form of Maxwell electrodynamics called ModMax electrodynamics was introduced,exhibiting a low-energy limit as a one-dimensional parameter generalization of BI.The condition where γ=0 yields Maxwell’s equations.Flores-Alfonso et al discovered new BH solutions within ModMax electrodynamics [11,99].The SO(2) invariance concerning electric and magnetic fields leads to dyonic solutions.The impact of ModMax electrodynamics on BH spacetimes,mediated by the screening factor γ,acts to shield the actual charges.

    2.1.Brief review of ModMax electrodynamics

    The Lagrangian of ModMax electrodynamics is given by[11,99,100]

    with its dual

    then one can calculate electromagnetic invariants as

    ModMax electrodynamics can be considered as a low-energy approximation of the generalized BI structure that was proposed in the aforementioned paper [99].Then it is found that

    The dual of ModMax is given as

    When expressed in terms of the variables x and y,the ModMax Lagrangian,denoted by,is equal to the LagrangianLModMax.However,in terms of the variables Π and Λ,the Lagrangian exhibits a different form as

    It is important to note that both Maxwell and BI electrodynamics possess an electric–magnetic duality symmetry under the SO(2) group.In other words,if an electric solution of the theory is provided,it is possible to generate a magnetic solution to the equations of motion by performing a Hodge dualization operation.

    The field equations of the ModMax field are

    The Einstein equations take a specific form when combined with the expression for P given by equation (2).

    The expression for the energy momentum tensor T is provided by [101]

    2.2.Rotating ModMax black hole spacetime

    We consider a spherically symmetric BH solution described by the line element written in Boyer–Linquist coordinates[11,102]

    There is an extremal case of the ModMax BH at r+=r?:

    where γ>0.

    Using the Newman–Janis algorithm (see,for example,[103,104]) one may get the rotating ModMax BH solution using the static solution,equation (11) with equation (12).The spacetime around the rotating ModMax BH with the spin parameter a can be represented using the line element

    where the metric functions are defined as

    Figure 1 shows separatrix lines which are the borders corresponding to extreme BH (r+=r?) and separate the BH region from the no BH region for selected values of γ.According to figure 1,the BH region expands and the no BH region narrows with the increase in the γ parameter.

    Figure 1.The separatrix lines indicate the border corresponding to extreme BHs which separates the BH from no BH for selected values of the γ parameter.

    Figure 2.Dependence of horizon radius rh on BH spin parameter a for fixed values of parameters Q and γ where M=1.

    Now we will discuss the properties of the horizon structure of the charged ModMax BH.We also plan to explore the effect of spacetime parameters on the horizon structure of the BH.Using equation (17) and solving Δ=0,one may obtain the values of the BH horizon.The graphical representation of the numerical solutions for the BH horizon is shown in figure 2.Left and right panels show the dependence of inner and outer horizons of the BH on the spin parameter for different values of either γ or Q for a fixed value of the other parameter,Q=0.5 or γ=0.2.From figure 2,one may obtain information about the inner(Cauchy)and the outer radius of the horizon: how the radius is modified by varying charge Q and screening factor γ.According to figure 2,the horizon radius increases with increasing γ for fixed Q=0.5,and for fixed γ=0.2,the radius decreases with increading Q.Figure 3 indicates extreme values of the horizon for different values of γ?,a?and Q?for fixed a and Q,γ and Q,and a and γ,respectively.For a charged rotating ModMax BH,the horizon exists at γ>γ?,aa?and Q>Q?.γ?and a?grow with increasing Q and γ,respectively,and Q?decreases with decreasing γ parameter.The inner (Cauchy) horizon radius decreases and the outer horizon radius increases with the increase of γ for fixed Q and a,and the inner horizon radius increases and outer horizon radius decreases with increasing a and Q,for fixed γ and Q,and a and γ,respectively.

    Figure 3.Dependence of delta function on the radial coordinate r for fixed values of the BH parameters a,Q and parameter γ with M=1.

    Figure 4.Radial dependence of the effective potential Veff for different values of a,Q and γ,where M=1.

    2.3.Null geodesics

    Now we will discuss the geodesic structure of a massless particle in the vicinity of a charged rotating ModMax BH.Using the Hamilton–Jacobi formulation,one may obtain the equations of motion of a photon around a BH in ModMax gravity [105] as

    here,τ is an affine parameter and gμνis the metric tensor of the spacetime.The action S for the photon can be written using the separation of variables method as

    where the conserved quantities corresponding to energy of the massless particle? and angular momentum of the massless particleL can be defined as

    From equation(19),Sr(r)and Sθ(θ)are the functions of radial r and angular θ,respectively.Substituting equation (19)into equation (18),one can obtain the geodesic equations of the massless particle as

    whereK is the Carter constant [105].

    Now we can rewrite the radial equation of motion of the photon around a BH in ModMax theory using the expression dr/dτ as

    where the effective potential of radial motion in the equatorial plane (θ=π/2) reads as

    Using equation (29),we have plotted the dependence of the effective potential on the radius coordinate for different values of parameters a,Q and γ in ModMax gravity.The general behaviour of the effective potential Veffwith reference to photon orbits for different values of BH parameters is illustrated in figure 4.It can be seen that the peak value of the effective potential,which refers to photon orbit,increases and shifts to the left with increasing charge Q for fixed γ and a.As result fixed γ contracts region between two potential lines expands.As the values of the screening factor γ and the spin parameter a increase,the effective potential peak value decreases and there is also a shift to the right for fixed a and Q,and Q and γ,respectively.

    3.Black hole shadow

    Introducing the following conserved parametersξ=L? andη=K?2,one may investigate the apparent shape of the shadow of the BH.First,one needs to rewrite the expression forR(r) in terms of ξ and η

    Unstable circular orbits of photons satisfy the following conditions [44]:

    The shape and borders of the BH shadow is determined via conserved parameters ξ and η.From equations (30) and(31),one may obtain the expressions for ξ and η as described by Hioki and Maeda [44,69]

    together with the condition

    Now we investigate the shadow of a charged rotating ModMax BH introducing the celestial coordinates α and β in the following way [44,47]:

    where θ is inclination angle.We determine the apparent shape of the BH shadow in an equatorial plane(θ0=π/2)and,from equations (35) and (36),we obtain the following expression for the celestial coordinates

    The line defined by the parametric equations(37)–(38)in terms of ξ and η in celestial coordinates gives the silhouette of the charged rotating BH shadow.Figure 5 displays the shadows of the charged BH for fixed values of the ModMax BH parameters:spin a,charge Q and screening factor γ.From the results obtained(see figure 5),one can see that the size of the BH shadow is enlarged with an increase in the value of parameter γ (upper panel) for fixed a and Q.On the other hand,with increasing Q,the size of the BH shadow is reduced,for fixed a and γ (middle panel).The lower panel illustrates the decrease in size of the BH shadow with increasing spin parameter a(for fixed Q and γ).Moreover,the shape of the BH shadow deforms towards the right under the influence of increasing values of BH spin parameter a.

    Figure 5.BH shadow for different values of ModMax parameters,where M=1.

    Figure 6.Schematic view of the observables: radius Rs for the BH and the distortion parameter δs=Dcs/Rs as described in [43].

    Figure 7.Dependence of average radius Rs of the charged rotating ModMax BH shadow on its parameters,where M=1.The upper panel is the dependence on the screening factor γ for fixed a and selected Q.The lower panel is the dependence on the Q parameter for fixed a and selected γ.

    Figure 8.Dependence of the distortion (deviation) δs parameter of the charged rotating ModMax BH shadow on its parameters,where M=1.The upper panel is the dependence on the screening factor γ for fixed a and selected Q.The lower panel is the dependence on charge Q for fixed a and selected γ.

    Figure 9.Energy emission from the BH varying with the frequency for different values of the charge Q (left panel) and parameter γ (right panel),where M=1.

    As we mentioned before,as a result of the effects of BH parameters,the apparent shape of the BH shadow is distorted.Factually,any symmetric BH has a shadow in a perfectly circular form.To fully analyze the deformation of a BH's shadow,two parameters,distortion δsand the radius Rs,have been introduced by Hioki and Maedia [44].

    So,considering the shape of the rotating shadow is not a pure circle as shown in figure 6 (see,for example,[43]),the radius of the shadow,Rs,of the BH is defined as follows in terms of a reference circle [43]:the shape of the silhouette as a circle passes through the topmost point(A),the bottommost point(B),and the furthest point left(C)of the boundary of the circle as shown in figure 6.The coordinates of these points are (αt,βt),(αb,βb) and (αr,0),respectively.The most left point C on the circle corresponds to the orbit seen by an observer in the equatorial plane.The average radius Rsof the shadow of the object is approximated in the following form [44]

    The second observable parameter δswhich defines rate of distortion has been introduced as [44]

    where Dcsis the distance of the deviation of the shape of the silhouette of the BH from a pure circle (note that the distortion parameter is δs=0 for the non-rotating BH shadow).

    In figure 7,the observable parameter Rsis represented as a function of BH parameters γ and charge Q.One may see that the average radius Rsof the BH shadow increases with increasing screening factor γ (upper) and decreases with the increase of charge Q (lower).We also observe in figure 8 (upper) that there is less distortion with increasing γ(δsreduces with increase of γ)and the shape of the shadow is more distorted with increasing Q (δsincreases with Q,lower panel).

    By using the data for M87*and SgrA*,which was provided by the EHT Collaboration,we aim to find the upper limit for Q charge with different fixed values of γ,according to our metric.We can determine the diameter of the shadow using [106]:

    here,θ,D and M are the angular diameter of the BH shadow,the distance of the BH from Earth and mass of the BH,respectively.For M87*,these quantities are θM87*=42±3μas,DM87*=16.8Mpc and MM87*=6.5±0.90x109M⊙,and for Sgr A*,θSgrA*=48,7±7μ,DSgrA*=8277±33pc and MSgrA*=4.3±0.013x106M⊙.The diameters of the BH shadows are calculated from data=(11 ± 1.5)Mand=(9.5 ± 1.4)Mand we know that the radius of the BH shadow can be found from the expression ds=2Rs.From this,the calculated minimum radii for M87*and Sgr A*are=4.75Mand=4.05M,respectively.In table 1,we have calculated,for fixed screening factor γ and spin a=0.5,estimated maximum values of charge parameter Q which conformed to the radii from the provided data.It can be seen that the value of Q increases with increasing γ,corresponding with figure 7.

    4.Emission energy

    There is a black-body radiation theory,well known as Hawking radiation theory,which describes how the mass and rotational energy of a BH slowly reduce until it completely annihilates because of relativistic quantum effects.Here,we evaluate the energy emission rate of the charged ModMax rotating BH by using the relation [69,70]

    whereσlimis the limiting constant value;in our case,the area of the shadow of the BH is about equal to the high-energy absorption cross section and for a BH the absorption cross section oscillates aroundσlim.We know that T=κ/2π is the Hawking temperature and κ is the surface gravity.Using the average radius Rsof the BH shadow,the limited constant valueσlimcalculated as [69,70]

    Hence,

    The variation of energy emission (using ?ωt=d2?(ωdωdt)with screening factor γ and charge Q is shown in figure 9,where it can be seen that the peak of the energy emission rate drops with the increase in the value of the γ parameter(left,Q is fixed)and increases with the increase in the value of the charge Q of the BH (right,γ is fixed).

    5.Conclusion

    This work presents a detailed analysis of the shadow of a charged rotating ModMax BH described by the line element,equation(11).The horizon structure and equations of motion of photons in the vicinity of the BH are studied,and their effects on the effective potential and the shape of the shadow of the BH are examined.Additionally,the influence of the ModMax BH parameters,such as spin a,charge Q and screening factor γ,on the energy emission process is investigated.The results are summarized in the following statements:

    ? From figure 1,separatrix lines which are the borders corresponding to extreme BHs separate the BH region from the no BH region.Additionally,we have demonstrated that increasing the γ parameter causes the BH region to expand while the non-BH region narrows.

    ? The event horizon structure of the charged rotating ModMax BH is modified,according to figure 2,by varying the charge Q and screening factor γ parameter with the following results: the horizon radius increases with increase in the value of γ for fixed Q,and,for fixed γ,the radius decreases with increasing Q.From figure 3 the BH horizon exists at γ>γ?,aa?and Q>Q?.γ?and a?increase with increase of Q and γ,respectively,and Q?decreases with decreasing γ parameter.The inner(Cauchy) horizon radius decreases and the outer horizon radius increases with increasing γ,and inner horizon radius increases and outer horizon radius decreases with increase of a and Q.

    ? We have also studied the general behaviour of effective potential with respect to photon orbits for different values of BH parameters a,Q and γ,by plotting in figure 4 the dependence of the effective potential and radius on the parameters.According to figure 4,a peak of the effective potential which correspond to photon orbit rises and shifts towards the left direction with the increasing charge Q and fixed γ sees decline region between two potential lines expands.In addition,with increasing screening factor γ and spin parameter a,the peak value of effective potential falls away and there is also a shift to the right.

    ? Using the Hamilton–Jacobi formulation and the separation of variables method,we have analytically derived the equation of motion of the photon around a BH.Using the geodesic equations,we have investigated the apparent shape of the BH shadow in celestial coordinates,figure 5.The size of the BH shadow is enlarged with an increase in parameter γ and decreased with increasing Q and decreasing a.As a result of increasing values of BH spin parameter a,the shape of the BH shadow is distorted towards the right.

    ? We have analyzed the rate of distortion δsand average radius Rs,which are BH shadow parameters,in figures 7 and 8.With the increase in parameter γ,radius Rsincreases but distortion rate δsreduces.An increase in Q charge causes radius Rsto decrease but distortion δsincreases.In table 1,we have calculated maximum values of Q which correspond to the radii of BH shadows from EHT data.

    ? Finally,in figure 9,we evaluate the effects of γ and Q parameters on the energy emission rate of the charged rotating ModMax BH.According to the figure,the peak of the energy emission rate falls away with increasing γ and increases with increasing charge Q.

    Acknowledgments

    This research is partly supported by Research Grant F-FA-2021-510 of the Uzbekistan Ministry for Innovative Development.A.A thanks Silesian University in Opava for their hospitality during his visit.A.? would like to acknowledge the contribution of the COST Action CA18108 -Quantum gravity phenomenology in the multi-messenger approach (QG-MM) and the COST Action CA21106 -COSMIC WISPers in the Dark Universe: Theory,astrophysics and experiments (CosmicWISPers).A.? acknowledges the support received from the Scientific and Technological Research Council of Türkiye(TüB?TAK),the Abdus Salam International Centre for Theoretical Physics,Trieste,Italy and the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP3).

    国产aⅴ精品一区二区三区波| 在线观看av片永久免费下载| 久久久成人免费电影| 国产精品女同一区二区软件| 久久99热6这里只有精品| 人妻丰满熟妇av一区二区三区| 少妇高潮的动态图| 亚洲成人精品中文字幕电影| 噜噜噜噜噜久久久久久91| 久久九九热精品免费| 直男gayav资源| 日韩国内少妇激情av| 久久欧美精品欧美久久欧美| 嫩草影院精品99| 在线免费十八禁| 国产大屁股一区二区在线视频| 欧美激情久久久久久爽电影| 少妇人妻一区二区三区视频| 亚洲七黄色美女视频| 三级毛片av免费| 精品国内亚洲2022精品成人| 22中文网久久字幕| 久久久久久大精品| 能在线免费观看的黄片| 亚洲人成网站在线观看播放| 亚洲真实伦在线观看| 99在线人妻在线中文字幕| 禁无遮挡网站| 亚洲图色成人| 99视频精品全部免费 在线| 美女免费视频网站| 美女xxoo啪啪120秒动态图| 亚洲成人久久爱视频| 亚洲欧美日韩高清在线视频| 国产高清视频在线播放一区| 国产精品人妻久久久影院| 最后的刺客免费高清国语| 精品久久久久久成人av| 亚洲,欧美,日韩| 亚洲精品在线观看二区| 黄色视频,在线免费观看| 最近2019中文字幕mv第一页| 午夜免费男女啪啪视频观看 | 少妇猛男粗大的猛烈进出视频 | 午夜视频国产福利| 悠悠久久av| 亚洲av免费在线观看| 一边摸一边抽搐一进一小说| 精品一区二区三区av网在线观看| 国产高清视频在线播放一区| 变态另类丝袜制服| 欧美色视频一区免费| 十八禁国产超污无遮挡网站| 国产女主播在线喷水免费视频网站 | 搡老妇女老女人老熟妇| 亚洲av一区综合| 国产白丝娇喘喷水9色精品| 亚洲中文日韩欧美视频| 国产精品永久免费网站| 午夜激情欧美在线| 美女 人体艺术 gogo| 亚洲精品影视一区二区三区av| 嫩草影院新地址| 日韩欧美免费精品| 一边摸一边抽搐一进一小说| 亚洲高清免费不卡视频| 欧美色视频一区免费| 国产单亲对白刺激| 国产毛片a区久久久久| 日产精品乱码卡一卡2卡三| 美女大奶头视频| 黄片wwwwww| 永久网站在线| 国产伦一二天堂av在线观看| 成年av动漫网址| 国产精品一二三区在线看| 插阴视频在线观看视频| 99热只有精品国产| 国产精品日韩av在线免费观看| 国产成人影院久久av| 少妇人妻精品综合一区二区 | 久久精品国产鲁丝片午夜精品| 99在线视频只有这里精品首页| 欧美激情在线99| 搡老妇女老女人老熟妇| 直男gayav资源| 国产熟女欧美一区二区| 精品乱码久久久久久99久播| 成年版毛片免费区| 国产久久久一区二区三区| 在线免费十八禁| 亚洲国产精品成人久久小说 | 天美传媒精品一区二区| 日韩av在线大香蕉| 国产又黄又爽又无遮挡在线| 久久热精品热| 亚洲av第一区精品v没综合| 夜夜夜夜夜久久久久| 晚上一个人看的免费电影| 一级黄片播放器| 亚洲av成人av| 国产高清视频在线观看网站| 女生性感内裤真人,穿戴方法视频| 欧美性猛交黑人性爽| 哪里可以看免费的av片| 亚洲精品影视一区二区三区av| av黄色大香蕉| 精品人妻偷拍中文字幕| 最近中文字幕高清免费大全6| 成熟少妇高潮喷水视频| av在线蜜桃| 国产一区二区激情短视频| 一边摸一边抽搐一进一小说| 免费在线观看成人毛片| 少妇猛男粗大的猛烈进出视频 | av在线老鸭窝| 成人美女网站在线观看视频| 免费无遮挡裸体视频| 久久这里只有精品中国| 成人性生交大片免费视频hd| 日韩,欧美,国产一区二区三区 | 午夜影院日韩av| 久久久精品欧美日韩精品| 久久九九热精品免费| 亚洲久久久久久中文字幕| 中文字幕免费在线视频6| 久久久久国内视频| 亚洲四区av| 乱系列少妇在线播放| 夜夜夜夜夜久久久久| 99热这里只有是精品在线观看| 97超视频在线观看视频| 免费观看人在逋| 男人和女人高潮做爰伦理| 蜜桃亚洲精品一区二区三区| 精品久久久久久成人av| av在线播放精品| 欧美一区二区亚洲| 99国产精品一区二区蜜桃av| 亚洲高清免费不卡视频| 99久国产av精品国产电影| 熟女人妻精品中文字幕| 干丝袜人妻中文字幕| 中文在线观看免费www的网站| 国产精品99久久久久久久久| 久久精品91蜜桃| 午夜影院日韩av| 变态另类丝袜制服| 成人午夜高清在线视频| 美女内射精品一级片tv| 日韩强制内射视频| 成人漫画全彩无遮挡| 男人的好看免费观看在线视频| 国产精品嫩草影院av在线观看| 精品日产1卡2卡| 国产激情偷乱视频一区二区| 日韩中字成人| 99久久精品国产国产毛片| 99热精品在线国产| 草草在线视频免费看| 精品一区二区三区视频在线| 国产精品亚洲美女久久久| 国产极品精品免费视频能看的| 欧美bdsm另类| 波多野结衣高清作品| 亚洲熟妇熟女久久| 日本免费a在线| 久久6这里有精品| 日韩三级伦理在线观看| 久久久久久大精品| 国产亚洲欧美98| 国产亚洲精品综合一区在线观看| 熟妇人妻久久中文字幕3abv| av.在线天堂| 人妻丰满熟妇av一区二区三区| 国产在视频线在精品| 天堂av国产一区二区熟女人妻| 亚洲最大成人中文| 97人妻精品一区二区三区麻豆| 国产av不卡久久| 日日摸夜夜添夜夜爱| 麻豆av噜噜一区二区三区| 在线播放国产精品三级| 可以在线观看毛片的网站| 精品熟女少妇av免费看| 国产精品爽爽va在线观看网站| 亚洲人成网站在线播| 国产午夜福利久久久久久| 综合色av麻豆| 国产综合懂色| 国产一区二区三区av在线 | 欧美xxxx性猛交bbbb| 伊人久久精品亚洲午夜| 精品久久国产蜜桃| 亚洲图色成人| 蜜臀久久99精品久久宅男| 亚洲五月天丁香| 久久久久久久亚洲中文字幕| 一级a爱片免费观看的视频| 亚洲va在线va天堂va国产| a级一级毛片免费在线观看| 国产不卡一卡二| 国产淫片久久久久久久久| 亚洲成av人片在线播放无| 国产高潮美女av| 深夜精品福利| 国产私拍福利视频在线观看| 久久精品影院6| 久久综合国产亚洲精品| 亚洲国产精品成人综合色| 国产精品美女特级片免费视频播放器| 蜜桃久久精品国产亚洲av| 国产精品不卡视频一区二区| 91久久精品电影网| 久久人人爽人人爽人人片va| 日本一二三区视频观看| 国产色爽女视频免费观看| 九九在线视频观看精品| www.色视频.com| 日韩欧美精品免费久久| 亚洲第一电影网av| 国产视频一区二区在线看| 色综合亚洲欧美另类图片| 日韩欧美精品免费久久| 中文字幕人妻熟人妻熟丝袜美| 九九在线视频观看精品| 国产男人的电影天堂91| 18禁裸乳无遮挡免费网站照片| 老女人水多毛片| 免费av不卡在线播放| 3wmmmm亚洲av在线观看| 综合色丁香网| 国产中年淑女户外野战色| 精品一区二区三区av网在线观看| 小说图片视频综合网站| 在线观看一区二区三区| 美女xxoo啪啪120秒动态图| 午夜老司机福利剧场| 99热这里只有精品一区| a级一级毛片免费在线观看| 欧美又色又爽又黄视频| 天天躁日日操中文字幕| 不卡视频在线观看欧美| 亚洲精品国产成人久久av| 99久久成人亚洲精品观看| 自拍偷自拍亚洲精品老妇| 毛片女人毛片| 一个人看的www免费观看视频| 亚洲av美国av| 狂野欧美白嫩少妇大欣赏| 国产在线男女| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 国产白丝娇喘喷水9色精品| 噜噜噜噜噜久久久久久91| 国产 一区 欧美 日韩| 蜜臀久久99精品久久宅男| 亚洲av第一区精品v没综合| 成人鲁丝片一二三区免费| 观看免费一级毛片| 黄色配什么色好看| 国产av在哪里看| 变态另类丝袜制服| 久久午夜亚洲精品久久| av黄色大香蕉| 免费无遮挡裸体视频| 欧美日韩精品成人综合77777| 欧美激情在线99| 99久久成人亚洲精品观看| 午夜福利在线观看免费完整高清在 | 精品少妇黑人巨大在线播放 | 人人妻人人看人人澡| 国产av在哪里看| 亚洲av熟女| 久久久久精品国产欧美久久久| 欧美三级亚洲精品| 色哟哟·www| 最新在线观看一区二区三区| 此物有八面人人有两片| 亚洲四区av| h日本视频在线播放| 噜噜噜噜噜久久久久久91| 午夜精品一区二区三区免费看| 日韩欧美精品v在线| 校园人妻丝袜中文字幕| 99热精品在线国产| 亚洲av成人av| 黄色欧美视频在线观看| 免费av毛片视频| 免费看日本二区| 国产乱人视频| 国产片特级美女逼逼视频| 欧美区成人在线视频| 嫩草影院新地址| 亚洲欧美成人精品一区二区| 国产一区二区激情短视频| 又黄又爽又刺激的免费视频.| 日韩精品有码人妻一区| 性欧美人与动物交配| 国产爱豆传媒在线观看| 1024手机看黄色片| 国产老妇女一区| 91久久精品国产一区二区成人| 国产伦一二天堂av在线观看| 99九九线精品视频在线观看视频| 国产亚洲精品av在线| 麻豆国产97在线/欧美| 久久人妻av系列| 男女做爰动态图高潮gif福利片| 免费看av在线观看网站| 色在线成人网| 国产精品伦人一区二区| 久久人人精品亚洲av| 久久精品夜色国产| 国产乱人视频| 非洲黑人性xxxx精品又粗又长| 12—13女人毛片做爰片一| 一级毛片我不卡| 赤兔流量卡办理| 久久国产乱子免费精品| 女人十人毛片免费观看3o分钟| 免费在线观看成人毛片| 可以在线观看毛片的网站| 亚洲乱码一区二区免费版| 99国产精品一区二区蜜桃av| 亚洲人成网站高清观看| 嫩草影视91久久| av视频在线观看入口| 亚洲人成网站高清观看| av中文乱码字幕在线| 天天躁日日操中文字幕| 国产av麻豆久久久久久久| 黄片wwwwww| 麻豆成人午夜福利视频| 欧美激情久久久久久爽电影| 国产欧美日韩精品亚洲av| 国产v大片淫在线免费观看| 日本黄大片高清| 少妇裸体淫交视频免费看高清| 日韩在线高清观看一区二区三区| 黄色视频,在线免费观看| 中文字幕av在线有码专区| 色哟哟·www| 成人一区二区视频在线观看| 成年版毛片免费区| 久久午夜福利片| 一个人看的www免费观看视频| av视频在线观看入口| 免费看光身美女| 午夜亚洲福利在线播放| 黄色配什么色好看| 天天躁日日操中文字幕| 九九在线视频观看精品| 国产亚洲精品久久久com| 全区人妻精品视频| 禁无遮挡网站| 国产女主播在线喷水免费视频网站 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美精品自产自拍| 69人妻影院| 麻豆一二三区av精品| 色综合亚洲欧美另类图片| 内地一区二区视频在线| 国产成人91sexporn| 99久久成人亚洲精品观看| 99久久精品热视频| 国产 一区 欧美 日韩| 亚洲一级一片aⅴ在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩精品成人综合77777| 欧美色欧美亚洲另类二区| 全区人妻精品视频| 日韩欧美免费精品| 又黄又爽又刺激的免费视频.| 久久精品人妻少妇| 嫩草影院新地址| 级片在线观看| 22中文网久久字幕| 色综合站精品国产| 美女高潮的动态| 精品不卡国产一区二区三区| 成人漫画全彩无遮挡| 老司机福利观看| 午夜福利在线观看免费完整高清在 | 久久久久久久久大av| 一本精品99久久精品77| 黑人高潮一二区| 天堂网av新在线| 少妇的逼好多水| 天堂av国产一区二区熟女人妻| 成人特级av手机在线观看| 在线国产一区二区在线| 欧美性感艳星| 色5月婷婷丁香| 国产高清视频在线观看网站| 性欧美人与动物交配| 欧美不卡视频在线免费观看| 国产 一区精品| 欧美在线一区亚洲| 亚洲人成网站在线播| 永久网站在线| 一个人观看的视频www高清免费观看| 日本一本二区三区精品| 蜜臀久久99精品久久宅男| 最后的刺客免费高清国语| 三级经典国产精品| 免费人成视频x8x8入口观看| 亚洲国产日韩欧美精品在线观看| 国产视频一区二区在线看| 亚洲性久久影院| 男女边吃奶边做爰视频| 中文在线观看免费www的网站| 日本色播在线视频| 亚洲av免费高清在线观看| 欧美绝顶高潮抽搐喷水| 亚洲精品国产成人久久av| a级一级毛片免费在线观看| 亚洲国产欧洲综合997久久,| 亚洲av不卡在线观看| 不卡一级毛片| 69av精品久久久久久| 亚洲欧美成人精品一区二区| 少妇的逼好多水| 在线播放国产精品三级| 国产免费一级a男人的天堂| 性插视频无遮挡在线免费观看| 色5月婷婷丁香| 丰满人妻一区二区三区视频av| 国产亚洲欧美98| 亚洲电影在线观看av| 舔av片在线| 亚洲精品乱码久久久v下载方式| 女同久久另类99精品国产91| 男人舔女人下体高潮全视频| 九九热线精品视视频播放| 麻豆av噜噜一区二区三区| 三级国产精品欧美在线观看| 欧美一区二区国产精品久久精品| 蜜桃亚洲精品一区二区三区| 精品福利观看| 国产伦精品一区二区三区视频9| 久久精品国产亚洲网站| 在线观看av片永久免费下载| 日本免费a在线| 精品久久久久久久人妻蜜臀av| 久久久久久伊人网av| 成年女人毛片免费观看观看9| 一区二区三区高清视频在线| 舔av片在线| 亚洲图色成人| 最好的美女福利视频网| 97热精品久久久久久| 久久鲁丝午夜福利片| 欧美一区二区国产精品久久精品| 91精品国产九色| h日本视频在线播放| 精品久久国产蜜桃| 女的被弄到高潮叫床怎么办| 国产免费一级a男人的天堂| 国产高清视频在线播放一区| 国产高清有码在线观看视频| 中文字幕av在线有码专区| 99久久中文字幕三级久久日本| 一级av片app| 一进一出抽搐gif免费好疼| 日本a在线网址| 国产精品电影一区二区三区| 高清日韩中文字幕在线| 久久草成人影院| 日日啪夜夜撸| 老司机影院成人| 欧美日韩综合久久久久久| 亚洲av一区综合| 亚洲人成网站在线观看播放| 欧美性猛交黑人性爽| 日韩一区二区视频免费看| 男女下面进入的视频免费午夜| 1024手机看黄色片| 成人精品一区二区免费| 精品久久久久久久久亚洲| 午夜精品在线福利| 精品一区二区三区视频在线观看免费| 亚洲精品久久国产高清桃花| 插逼视频在线观看| 精品久久久久久久久av| 高清毛片免费看| 色在线成人网| 国产精品久久久久久久久免| 亚洲精品亚洲一区二区| 久久九九热精品免费| 国产亚洲精品久久久久久毛片| 男女视频在线观看网站免费| 搞女人的毛片| 免费看美女性在线毛片视频| 色5月婷婷丁香| 美女xxoo啪啪120秒动态图| 欧美日本视频| 亚洲无线在线观看| 亚洲中文日韩欧美视频| 九九热线精品视视频播放| 少妇的逼水好多| 日韩强制内射视频| 国产亚洲精品综合一区在线观看| 淫秽高清视频在线观看| 日韩欧美在线乱码| 中文字幕熟女人妻在线| 小蜜桃在线观看免费完整版高清| 久久精品综合一区二区三区| 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区久久| 蜜桃久久精品国产亚洲av| 草草在线视频免费看| 国产欧美日韩精品一区二区| 丝袜美腿在线中文| 久久久久久九九精品二区国产| 成年女人毛片免费观看观看9| 亚州av有码| 国产亚洲精品av在线| 国模一区二区三区四区视频| 午夜福利在线在线| 日本三级黄在线观看| 男女边吃奶边做爰视频| 精品福利观看| 亚洲人与动物交配视频| 男女做爰动态图高潮gif福利片| 国产探花在线观看一区二区| 亚洲av一区综合| av.在线天堂| 成人鲁丝片一二三区免费| 国产精品国产三级国产av玫瑰| 尾随美女入室| 国产亚洲精品久久久com| 亚洲成人精品中文字幕电影| 亚洲av成人精品一区久久| 观看美女的网站| 寂寞人妻少妇视频99o| 91精品国产九色| 免费高清视频大片| 国产毛片a区久久久久| 成人性生交大片免费视频hd| 美女大奶头视频| 精品一区二区三区av网在线观看| 亚洲av第一区精品v没综合| 国产精品一区二区性色av| 一级av片app| 免费高清视频大片| 国产精品一区二区三区四区免费观看 | 精品久久久久久久久久免费视频| 校园人妻丝袜中文字幕| 免费在线观看影片大全网站| 午夜精品国产一区二区电影 | 女人十人毛片免费观看3o分钟| 两个人的视频大全免费| 国产单亲对白刺激| 99在线人妻在线中文字幕| 欧美不卡视频在线免费观看| 美女 人体艺术 gogo| 香蕉av资源在线| 亚洲,欧美,日韩| 久久久色成人| avwww免费| 午夜免费男女啪啪视频观看 | 欧美又色又爽又黄视频| 最近最新中文字幕大全电影3| 日韩欧美免费精品| 精品一区二区三区人妻视频| 欧美另类亚洲清纯唯美| 亚洲精品国产成人久久av| 99视频精品全部免费 在线| 免费看av在线观看网站| 哪里可以看免费的av片| 亚洲经典国产精华液单| a级毛色黄片| 日本精品一区二区三区蜜桃| 黄色配什么色好看| 午夜激情福利司机影院| 免费av毛片视频| 久久久久久久久久成人| 久久午夜亚洲精品久久| 日韩精品有码人妻一区| 日韩在线高清观看一区二区三区| 午夜福利视频1000在线观看| 美女大奶头视频| 一级毛片aaaaaa免费看小| 卡戴珊不雅视频在线播放| 日韩人妻高清精品专区| 乱码一卡2卡4卡精品| 亚洲av第一区精品v没综合| 国内少妇人妻偷人精品xxx网站| 在线播放国产精品三级| 综合色丁香网| 久久久久久九九精品二区国产| 国产乱人偷精品视频| 一个人免费在线观看电影| ponron亚洲| 日韩欧美国产在线观看| 日本a在线网址| 亚洲激情五月婷婷啪啪| 十八禁国产超污无遮挡网站| 亚洲aⅴ乱码一区二区在线播放| 神马国产精品三级电影在线观看| 男女那种视频在线观看| а√天堂www在线а√下载| 又粗又爽又猛毛片免费看| 天堂影院成人在线观看| 国产高清有码在线观看视频| 男人舔奶头视频| 精品久久久噜噜| 精品久久久久久久末码| 亚洲欧美日韩无卡精品| a级一级毛片免费在线观看| 午夜免费激情av| avwww免费| 成人永久免费在线观看视频| 国产淫片久久久久久久久|