• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conservation laws,Lie symmetries,self adjointness,and soliton solutions for the Selkov–Schnakenberg system

    2024-03-07 12:56:30KashifAliAlySeadawySyedRizviandNoorAziz
    Communications in Theoretical Physics 2024年2期

    Kashif Ali ,Aly R Seadawy ,Syed T R Rizvi and Noor Aziz

    1 Department of Mathematics,COMSATS University Islamabad,Lahore Campus,Pakistan

    2 Mathematics Department,Faculty of Science,Taibah University,Al-Madinah Al-Munawarah,41411,Saudi Arabia

    Abstract In this article,we explore the famous Selkov–Schnakenberg (SS) system of coupled nonlinear partial differential equations (PDEs) for Lie symmetry analysis,self-adjointness,and conservation laws.Moreover,miscellaneous soliton solutions like dark,bright,periodic,rational,Jacobian elliptic function,Weierstrass elliptic function,and hyperbolic solutions of the SS system will be achieved by a well-known technique called sub-ordinary differential equations.All these results are displayed graphically by 3D,2D,and contour plots.

    Keywords: Selkov–Schnakenberg system,Lie symmetry analysis,conservation laws,adjointness,integrability

    1.Introduction

    Partial differential equations (PDEs) play a vital role in the study of engineering and applied mathematics,particularly in fluid mechanics and electromagnetics [1–5].Nonlinear evolution equations (NLEEs) are foremost in the study of nonlinear phenomena.NLEEs are commonly applied to demonstrate the problems of plasma physics,fluid mechanics,biology,optical fibers,chemically reactive materials,chemical kinetics,electricity etc[6–11].Various methods have been utilized to find the solutions to NLEEs.They include an inverse scattering algorithm,Darboux transformations,Hirota bilinear approach,Lie symmetry analysis (LSA) etc [12–15].The Lie Group approach,also called LSA,is a successful and fruitful mechanism for attaining the symmetries,exact solutions,and conservation laws(CLs)of NLEEs[16].It was introduced by the Norwegian mathematician Sophus Lie in 1880.Many NLEEs have been studied under this approach.LSA is used in fractional calculus as well to produce new results.A symmetry of a differential equation (DE) converts one solution to another solution.New solutions can be produced from the older ones with the aid of symmetries of DEs[17].Symmetries and CLs are a vital part of the study of DEs.The CLs are essential because they provide a mathematical explanation of the model that certain physical quantity like energy,charge,linear,and angular momentum remains unaltered during the evolution of a physical system.An equation is integrable if it possesses CLs.The CLs of fractional PDEs are the amalgamation of works of Ibragimov[18]and Lukashchuk [19].

    CLs of a model can be evaluated by various approaches which include Noether?s theorem,variational approach,conservation theorem characteristic method,scaling invariance method etc [20–23].Hussain et al discussed the Burgers–Huxley equation by LSA and found the CLs[24].Rashidi and Hejazi[25]in their work used LSA to attain the solutions of a fractional integro-differential system called the Vlasov–Maxwell system.Bahi and Hilal [26] used LSA to find the CLs and exact solutions of the generalized time-fractional Korteweg-de Vries-Burgers-like equation.Liu et al used LSA on generalized time-fractional diffusion equations and also derived the CLs and exact solutions of the model [27–32].

    Figure 1.Numerical graphs of solution A1(x,t) for suitable parameters α=0.5,c=3,δ=1,η=0.5,p=3,q=2,Q=-0.5.

    Figure 2.Numerical graphs of solution A2(x,t) for suitable parameters α=0.5,c=3,δ=1,η=0.5,p=3,q=2,Q=0.5.

    Figure 3.Numerical graphs of solution A3(x,t) for suitable parameters α=0.5,c=3,δ=1,η=-0.5,p=3,q=2,Q=0.5,?=0.01.

    Any equation is said to be self-adjoint if its adjoint equation upon substitution is equal to the original equation.CLs have been derived on the basis of self-adjointness.The equations that are nonlinearly self-adjoint can be written in a strictly self-adjoint form with the aid of suitable multipliers.As a result,any linear equation can be expressed in a nonlinear strictly self-adjoint form [33].An integrable model possesses soliton solutions.A soliton is a wave that retains its shape and velocity on collision with another soliton.Many researchers have worked on finding the soliton solutions of the models [34–40] by different techniques.

    In 1952,Alan Turning [41] gave a concept of turning pattern which describes how patterns like stripes and spots can be set up naturally from a homogeneous uniform state.In one of his papers,he pondered over the behavior of the system where two diffusible materials come across each other to form a spatially periodic pattern.Reaction-diffusion systems (DRS) are mathematical models corresponding to physical phenomena.They are frequently used in the alteration in time and space of concentration of one or several chemical products.We can observe DRS in chemistry,biology,physics,etc.In this article,we will acknowledge a simple reaction model for glycolysis known as a Selkov–Schnakenberg (SS)system proposed by Schnakenberg in 1979.It is a chemical reaction with limited cycle behavior involving three stages:

    V,W and P,T are chemical products and chemical sources representing dimensionless concentrations of the reactants.So the SS system is a couple of nonlinear PDEs of the form[42]

    where R(x,t)and S(x,t)represent the concentrations of the two reactants.α and γ are diffusion coefficients of R and S.β,δ ≥0,σ>0.If β=0=δ,equation(1)is transformed into the Selkov model [43].If δ=0 and σ>0 equation (1) is turned to the Schnakenberg model [44].The remaining manuscript is organized as follows:In section 2,LSA is performed for the abovequoted model.In section 3,CLs have been formulated.In section 4,the self-adjointness(SA)of the model is discussed.In section 5,the model is solved by the sub-ordinary differential equations (sub-ODE) approach in detail.In section 6,we will interpret the solution of the model with their 3D,2D,and contour profiles for various parameters.Later,section 7 provides results and discussions of our model.At the end,in section 8,we will wind up the article by providing our conclusion.

    2.Lie Symmetry Analysis

    In this section,our main focus is on LSA for equation (1)which is elaborated below.Let us assume we have one parameter Lie Group of point transmformations [45,46]

    where ?≤1 is the group parameter.ξ1(x,t,R,S),ξ2(x,t,R,S),η1(x,t,R,S)and η2(x,t,R,S)are the infinitesimal generators which we have to calculate.The vector field associated with the above-mentioned group of transformations is given by

    For system 1 Pr2will be the second prolongation then the Lie’s invariance condition is

    Using SYM package launched by Dimas and Tsoubelis [47]we get the determining equations which are obtained by equating the polynomials to zero.Solution of these determining equations give values of ξ1(x,t,R,S),ξ2(x,t,R,S),η1(x,t,R,S) and η2(x,t,R,S) as

    Case (i):When

    α=0,γ=0 and RS ≠0.

    where c1,c2and c3are constants.The Lie symmetry algebra introduced by equation (1) is spanned by the linearly independent operators

    3.Conservation laws

    In this section,we compute CLs [45] for the SS system by a new procedure that is based on the formal Lagrangian [48].The conserved vectors for each symmetry are established below.The Lagrangian is given by

    where z(x,t)=RB1and w(x,t)=-SB1.B1ia an arbitrary constant.

    For symmetry Y1,the conserved vectors areFor symmetry Y2,the conserved vectors are:

    4.Self adjointness

    Let us assume a system of DEs withequations with p dependent variables and g=(g1,…,gp)[49].

    This system is said to have nonlinearly SA if the succeeding adjoint equations

    are satisfied for all solutions g of the system(28)upon replacing

    4.1.Nonlinear self adjointness of the Selkov–Schnakenberg system

    Our main aim is to show that equation (1) is nonlinearly SA.The adjoint equation for equation (1) is stated as

    Suppose z=Z(x,t,R,S) and w=W(x,t,R,S),after performing a few calculations the following equation is attained

    Now equating the coefficients of Rt,St,Rx,Sx,Rxx,Sxxto zero,we obtain

    The solution of Z(x,t,R,S) and W(x,t,R,S) is found to be

    where B1is any constant.Hence,equation(1)is a nonlinearly SA with the substitution equation given by equation (33).

    5.Sub-ODE technique

    In this section,the soliton solutions of SS equation(1)will be obtained via a sub-ODE mechanism by the assumption [50],

    where c is the non-zero velocity of the soliton,A(ψ)and B(ψ)are real functions explaining the appearance of the solitary wave.Inserting equation(5)and equation(35)in equation(1)we achieve a system of ODEs

    As stated in the sub-ODE algorithm,we presume that(38)has a solution

    where m is a parameter and G(ψ) satisfies the equation

    where J,H,L,M,and Q are constants and m is found by the homogeneous balance method [50] between A″ and A3in equation (38)

    Now the solution of equation (38) is given as:

    Substituting equation (41) together with equation (43) in equation(38)and equating the coefficients of powers of G we arrive at the following equations:

    But the old woman looked at her steadily9, and knew her again, and said: How have you managed to grow so young and beautiful? I should like to be young and beautiful too

    Type 1.Substituting J=H=M=0 in equation (44) we have

    Using equation (45) along with equation (25) of [50] in equation (43) we obtain the bright soliton solution of equation (1) as

    Using equation (45) along with equation (26) of [50] in equation(43)we achieve the periodic solution of equation(1)as

    Using equation (45) along with equation (27) of [50] in equation (43) we get the rational solution of equation (1)

    Using equation (52) along with equation (28) of [50] in equation(43)we get the dark soliton solution of equation(1)as

    Using equation (52) along with equation (29) of [50] in equation (43) the periodic solution is given by

    Type 3.Putting H=M=0 in equation (44) we obtain

    When m →0,then equation (58) is converted to:

    When m →1,then equation (58) is converted to:

    Using equation (57) along with equation (31) of [50] in equation (43) we get

    When m →1,then equation (63) is converted to:

    Using equation (57) along with equation (32) of [50] in equation (43) we get

    When m →0,then equation (66) is converted to:

    Using equation (69) along with equation (33) of [50] in equation (43) we get the bright soliton solution of equation (1) as

    Using equation (69) along with equation (34) of [50] in equation (43) we get the periodic solution of equation (1) as

    Type 5.Putting L=Q=0 in equation (44) we attain

    Using equation (74) along with equation (36) of [50] in equation (43) we get various Weierstrass elliptic solutions of equation (1) as

    Using equation (77) along with equation (37) of [50] in equation (43) we get more Weierstrass elliptic solutions of equation (1) as

    Using equation (77) along with equation (41) of [50] in equation (43) we get

    Using equation (84) along with equation (43) of [50] in equation (43) we get different positive solutions of equation (1) as

    Using equation (87) along with equation (44) of [50] in equation (43) we get

    Using equation (87) along with equation (45) of [50] in equation (43) we get

    Type 7.Substituting J=H=0 in equation (44) we have

    Using equation (93) along with equation (46) of [50] in equation (43) we obtain the hyperbolic function solutions of equation (1) as

    Using equation (93) along with equation (47) of [50] in equation (43) we attain

    Using equation (98) along with equation (48) of [50] in equation (43) we obtain the periodic solutions of equation (1) as

    Using equation (98) along with equation (49) of [50] in equation (43) we attain

    Figure 4.Numerical graphs of solution B4(x,t) for suitable parameters α=2,c=-3,δ=0.5,η=1,p=2,q=2,Q=-3,?=0.01.

    Figure 5.Numerical graphs of solution B5(x,t) for suitable parameters α=2,c=-3,δ=0.5,η=-2,p=5,q=4,Q=3,?=0.01.

    Figure 6.Numerical graphs of solution A7(x,t) for suitable parameters α=0.5,c=3,δ=0,η=3,m=1,p=2,q=2,Q=4.

    6.Graphical Representation

    The graphical representation of the SS system is given below by 3D,2D,and contour plots.

    7.Result and discussions

    Many authors have worked on the SS diffusion-reaction system.Li et al analyzed the SS diffusion-reaction system for the stability and instability of constant steady-state solutions[51].Al Noufaey discovered the semi-analytical solutions of the SS system by the Glarekin approach [52].Iqbal et al explored the soliton solutions of the SS model [42].Uecker and Wetzel proved the existence of various spatial patterns of the SS system [53].In this paper,we have utilized LSA to find the infinitesimal generators and symmetries of the SS system represented by equation (1).Next,its nonlinear self adjointness has been discussed.Moreover,the sub-ODE method is used to find soliton solutions of the model.Bright and periodic soliton solutions are shown by A1(x,t),B1(x,t),A13(x,t),B13(x,t),A2(x,t),B2(x,t),A5(x,t),B5(x,t),A14(x,t),B14(x,t),A24(x,t),B24(x,t)and A25(x,t),B25(x,t),respectively(figures 1–10).A4(x,t) and B4(x,t) present the dark soliton solutions and their graphical representation is given in figures 4 and 5 and JES solutions are represented by A6(x,t),B6(x,t),A7(x,t),B7(x,t),A8(x,t),B8(x,t),A9(x,t),B9(x,t),A10(x,t),B10(x,t),A11(x,t),B11(x,t),A12(x,t)and B12(x,t)and graphically by figures 8–12.Weierstrass elliptic solutions are presented by A15(x,t),B15(x,t),A16(x,t),B16(x,t),A17(x,t),B17(x,t),A18(x,t) and B18(x,t) and from figures 13–17.Hyperbolic function solutions are given by A22(x,t),B22(x,t)and A23(x,t),B23(x,t)and graphically by figures 18 and 19.The governing model has positive solutions shown by A19(x,t),B19(x,t),A20(x,t),B20(x,t),A21(x,t) and B21(x,t) and graphically by figures 20 and 21.

    Figure 7.Numerical graphs of solution A10(x,t) for suitable parameters α=-2,c=3,δ=0,η=3,m=1,p=5,q=2,Q=0.5.

    Figure 8.Numerical graphs of solution A12(x,t) for suitable parameters α=2,c=-5,δ=2,η=3,m=1,p=1,q=2,Q=0.5.

    Figure 9.Numerical graphs of solution B13(x,t) for suitable parameters α=2,c=-1,δ=0,η=2,μ=1,M=-4,p=3,q=2.

    Figure 10.Numerical graphs of solution B14(x,t) for suitable parameters μ=1,α=2,c=-1,δ=0.5,η=4,M=4,p=3,q=1.

    Figure 11.Numerical graphs of solution A15(x,t)for suitable parameters δ=0.5,α=-3,β=2,c=3,η=2,H=1,M=4,p=3,q=2.

    Figure 12.Numerical graphs of solution B16(x,t) for suitable parameters α=-3,c=2,δ=0,η=2,p=1,q=1,Q=3.

    Figure 13.Numerical graphs of solution B17(x,t) for suitable parameters α=-3,c=2,δ=6,η=2,p=1,q=4,Q=3.

    Figure 14.Numerical graphs of solution A18(x,t) for suitable parameters α=5,c=2,δ=1,η=-2,p=1,q=1,Q=3.

    Figure 15.Numerical graphs of solution B19(x,t) for suitable parameters α=5,c=25,δ=15,η=20,μ=10,p=10,q=10.

    Figure 16.Numerical graphs of solution B20(x,t) for suitable parameters α=5,c=2,δ=1,η=-4,μ=2,p=1,q=1,Q=5,?=1.

    Figure 17.Numerical graphs of solution B21(x,t) for suitable parameters α=5c=-2,δ=0.25,η=4,μ=2,p=1,q=1.

    Figure 18.Numerical graphs of solution A22(x,t)for suitable parameters α=2.5,c=3,δ=0,η=2,μ=0.5,M=2,p=1,q=1,Q=1.

    Figure 19.Numerical graphs of solution A23(x,t) for suitable parameters α=5,c=2,δ=0,η=-4,μ=1,M=4,p=1,q=1,Q=1.

    Figure 20.Numerical graphs of solution B24(x,t) for suitable parameters α=-2.5,c=-2,δ=1,η=2,M=1,p=1,q=1,Q=2.

    Figure 21.Numerical graphs of solution B25(x,t) for suitable parameters α=-3,c=3,δ=0,η=3,M=4,p=1,q=1,Q=2.

    8.Concluding remarks

    In this paper,the SS system has been discussed by LSA.We have explored the Lie point symmetries,infinitesimal generators,and the nonlinear SA and CLs of the SS system.Several soliton solutions like bright,dark solitons,periodic solitons,bell,kink shaped,Weierstrass elliptic function solutions,Jacobi,and Hyperbolic are developed for the above model by using the sub-ODE method with the help of Mathematica.A graphical representation is given for all the solutions evaluated in the paper.

    在线观看免费视频网站a站| 免费观看av网站的网址| 国产免费福利视频在线观看| 国产av码专区亚洲av| 亚洲国产精品一区二区三区在线| 日本午夜av视频| 免费av中文字幕在线| 超碰成人久久| 国产野战对白在线观看| 夫妻性生交免费视频一级片| 99香蕉大伊视频| 中国国产av一级| 一二三四中文在线观看免费高清| 热99国产精品久久久久久7| 麻豆乱淫一区二区| 国产无遮挡羞羞视频在线观看| 日韩欧美一区视频在线观看| 永久免费av网站大全| 女人精品久久久久毛片| 亚洲精品国产av成人精品| 亚洲精品国产av蜜桃| 欧美激情 高清一区二区三区| 男的添女的下面高潮视频| 中国三级夫妇交换| 99久国产av精品国产电影| 亚洲av在线观看美女高潮| 国产在线视频一区二区| 国产欧美日韩综合在线一区二区| 中文字幕av电影在线播放| 妹子高潮喷水视频| 成年人免费黄色播放视频| 国产黄频视频在线观看| 日韩成人av中文字幕在线观看| 精品少妇一区二区三区视频日本电影 | 2018国产大陆天天弄谢| 亚洲精品国产av成人精品| 亚洲av在线观看美女高潮| 看十八女毛片水多多多| 久久精品国产自在天天线| 在线观看美女被高潮喷水网站| 亚洲五月色婷婷综合| 日韩精品免费视频一区二区三区| 男女下面插进去视频免费观看| 成年女人毛片免费观看观看9 | 日韩伦理黄色片| 观看美女的网站| 日韩中文字幕欧美一区二区 | 99久久人妻综合| av有码第一页| 少妇人妻久久综合中文| 亚洲精品国产av成人精品| 男女午夜视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| xxx大片免费视频| 一本大道久久a久久精品| 亚洲国产精品国产精品| 欧美xxⅹ黑人| 伦理电影免费视频| 久久久久久免费高清国产稀缺| 国产毛片在线视频| 免费观看a级毛片全部| 青青草视频在线视频观看| 亚洲精品第二区| h视频一区二区三区| 色哟哟·www| 久久午夜福利片| 天堂俺去俺来也www色官网| 久久久欧美国产精品| 亚洲av欧美aⅴ国产| 啦啦啦在线观看免费高清www| 天天躁日日躁夜夜躁夜夜| 老熟女久久久| 亚洲经典国产精华液单| 七月丁香在线播放| 欧美日韩av久久| 国产精品香港三级国产av潘金莲 | 深夜精品福利| 美女主播在线视频| 久久午夜福利片| 国产亚洲av片在线观看秒播厂| 五月开心婷婷网| 26uuu在线亚洲综合色| 欧美精品av麻豆av| 如何舔出高潮| 国产男女超爽视频在线观看| 少妇的丰满在线观看| 欧美国产精品va在线观看不卡| videos熟女内射| 久久久久久久久久久免费av| 菩萨蛮人人尽说江南好唐韦庄| 日日爽夜夜爽网站| 999久久久国产精品视频| 国产成人精品福利久久| 看非洲黑人一级黄片| 91在线精品国自产拍蜜月| 亚洲国产欧美日韩在线播放| 免费大片黄手机在线观看| 婷婷色综合大香蕉| 精品国产国语对白av| 精品亚洲乱码少妇综合久久| 在线看a的网站| 亚洲av福利一区| 女性被躁到高潮视频| 日韩视频在线欧美| av在线观看视频网站免费| 久久久久人妻精品一区果冻| 秋霞在线观看毛片| 波多野结衣av一区二区av| 欧美成人午夜精品| 国产老妇伦熟女老妇高清| 中文字幕精品免费在线观看视频| 爱豆传媒免费全集在线观看| 久久久久久人妻| av线在线观看网站| av在线老鸭窝| 老熟女久久久| 久久久久久人妻| 男女午夜视频在线观看| 久久婷婷青草| 国产探花极品一区二区| 国产av码专区亚洲av| 亚洲人成电影观看| 视频区图区小说| 欧美中文综合在线视频| 日日摸夜夜添夜夜爱| 最近的中文字幕免费完整| 亚洲图色成人| 18+在线观看网站| 国产成人精品久久久久久| 少妇的丰满在线观看| 不卡av一区二区三区| 欧美97在线视频| av网站免费在线观看视频| 男女边吃奶边做爰视频| 黄色 视频免费看| 在线天堂中文资源库| 国产欧美日韩综合在线一区二区| 国产片特级美女逼逼视频| 成年动漫av网址| 欧美精品人与动牲交sv欧美| 校园人妻丝袜中文字幕| 日日啪夜夜爽| 久久久亚洲精品成人影院| 精品一区在线观看国产| 青春草国产在线视频| 人人妻人人爽人人添夜夜欢视频| 人人妻人人澡人人看| 欧美日韩国产mv在线观看视频| 国产精品麻豆人妻色哟哟久久| 日本-黄色视频高清免费观看| 日本猛色少妇xxxxx猛交久久| 精品少妇一区二区三区视频日本电影 | av女优亚洲男人天堂| 国产免费又黄又爽又色| 亚洲精品日韩在线中文字幕| 国产人伦9x9x在线观看 | 国产精品av久久久久免费| 人人妻人人澡人人看| 国精品久久久久久国模美| 日韩中文字幕欧美一区二区 | 黄片播放在线免费| 国语对白做爰xxxⅹ性视频网站| 亚洲三区欧美一区| 久久人人97超碰香蕉20202| 成年女人在线观看亚洲视频| 日本黄色日本黄色录像| 一级,二级,三级黄色视频| 免费在线观看黄色视频的| 夫妻午夜视频| 午夜福利影视在线免费观看| 黄色 视频免费看| 国产成人午夜福利电影在线观看| 中文天堂在线官网| 精品一区二区三区四区五区乱码 | 日本欧美视频一区| 久久久国产精品麻豆| 只有这里有精品99| 国产男女内射视频| 美国免费a级毛片| 久久精品国产亚洲av天美| 十八禁网站网址无遮挡| 亚洲美女视频黄频| 亚洲国产av影院在线观看| av电影中文网址| 国产av一区二区精品久久| 制服诱惑二区| 国产精品久久久久久精品电影小说| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美国产精品va在线观看不卡| kizo精华| av又黄又爽大尺度在线免费看| 少妇熟女欧美另类| 99国产综合亚洲精品| 国产激情久久老熟女| 妹子高潮喷水视频| 伊人亚洲综合成人网| 综合色丁香网| 久久狼人影院| 亚洲伊人久久精品综合| 久久久久国产精品人妻一区二区| 黄色配什么色好看| 欧美另类一区| 国产亚洲精品第一综合不卡| 亚洲美女黄色视频免费看| 国产在视频线精品| 不卡视频在线观看欧美| 黑人猛操日本美女一级片| 狠狠精品人妻久久久久久综合| 国产成人精品无人区| 黄片播放在线免费| 在线观看免费视频网站a站| 欧美日韩精品成人综合77777| 丰满少妇做爰视频| 亚洲国产精品999| av片东京热男人的天堂| 国产成人欧美| 久久久久久久久久久久大奶| 免费观看性生交大片5| 十八禁高潮呻吟视频| 亚洲一码二码三码区别大吗| 国产成人a∨麻豆精品| 国产成人精品一,二区| 亚洲精品日韩在线中文字幕| 天天躁日日躁夜夜躁夜夜| 久热这里只有精品99| 成人黄色视频免费在线看| 免费日韩欧美在线观看| 99国产精品免费福利视频| 爱豆传媒免费全集在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲人成电影观看| 日韩免费高清中文字幕av| 国产不卡av网站在线观看| 久久精品久久久久久噜噜老黄| 高清欧美精品videossex| a级片在线免费高清观看视频| 成人国产麻豆网| 国产 精品1| 国产探花极品一区二区| 国产精品欧美亚洲77777| 美女视频免费永久观看网站| 国产女主播在线喷水免费视频网站| 综合色丁香网| 秋霞伦理黄片| av免费在线看不卡| 女人被躁到高潮嗷嗷叫费观| 91午夜精品亚洲一区二区三区| 国产成人a∨麻豆精品| 国产午夜精品一二区理论片| 日韩中文字幕视频在线看片| 久久久久久人妻| 男女啪啪激烈高潮av片| 中文字幕精品免费在线观看视频| 亚洲中文av在线| 大片电影免费在线观看免费| 熟妇人妻不卡中文字幕| 国产精品成人在线| 在线 av 中文字幕| 波野结衣二区三区在线| 9色porny在线观看| 999精品在线视频| 亚洲精品美女久久av网站| av福利片在线| 毛片一级片免费看久久久久| 国产精品久久久久久久久免| 捣出白浆h1v1| 亚洲欧洲国产日韩| 国产精品久久久久久av不卡| 国产乱人偷精品视频| 欧美激情高清一区二区三区 | 黑人猛操日本美女一级片| 一边摸一边做爽爽视频免费| 1024香蕉在线观看| 观看av在线不卡| 热re99久久国产66热| 波多野结衣av一区二区av| 亚洲精品日韩在线中文字幕| 久久青草综合色| 韩国精品一区二区三区| 国产成人精品在线电影| 最近最新中文字幕免费大全7| 五月天丁香电影| 久久精品aⅴ一区二区三区四区 | 国产成人欧美| 日韩在线高清观看一区二区三区| a级毛片在线看网站| 亚洲内射少妇av| 亚洲精品日本国产第一区| 久久这里有精品视频免费| 亚洲av日韩在线播放| 国产成人免费观看mmmm| 国产成人免费无遮挡视频| 九九爱精品视频在线观看| 午夜福利在线免费观看网站| 日本vs欧美在线观看视频| 午夜福利影视在线免费观看| 国产一区有黄有色的免费视频| 欧美xxⅹ黑人| 男女高潮啪啪啪动态图| 最近的中文字幕免费完整| 欧美激情 高清一区二区三区| 国产精品偷伦视频观看了| 久久青草综合色| 精品人妻一区二区三区麻豆| 欧美xxⅹ黑人| 国产视频首页在线观看| 亚洲av综合色区一区| 国产免费现黄频在线看| 国产成人91sexporn| 国产成人a∨麻豆精品| 久久人人97超碰香蕉20202| 伦精品一区二区三区| 亚洲欧美成人综合另类久久久| 咕卡用的链子| 91成人精品电影| 精品国产乱码久久久久久男人| 亚洲美女视频黄频| 黑人欧美特级aaaaaa片| 久热久热在线精品观看| 看十八女毛片水多多多| 日韩大片免费观看网站| 人妻少妇偷人精品九色| 中文字幕人妻丝袜一区二区 | 日本av免费视频播放| 毛片一级片免费看久久久久| 亚洲三级黄色毛片| 国产精品免费大片| 青春草国产在线视频| 伦理电影大哥的女人| 久久久久国产一级毛片高清牌| 一级黄片播放器| 精品国产乱码久久久久久男人| 亚洲av福利一区| 亚洲熟女精品中文字幕| 最近中文字幕高清免费大全6| 黄色 视频免费看| 国产毛片在线视频| 色网站视频免费| 深夜精品福利| 久久女婷五月综合色啪小说| 女人精品久久久久毛片| 亚洲欧美清纯卡通| 青春草视频在线免费观看| 国产福利在线免费观看视频| 欧美日韩亚洲国产一区二区在线观看 | 在现免费观看毛片| 欧美精品高潮呻吟av久久| 边亲边吃奶的免费视频| 丰满迷人的少妇在线观看| 欧美日韩亚洲高清精品| 亚洲经典国产精华液单| 久久久国产一区二区| 亚洲精品在线美女| 国产有黄有色有爽视频| 国产亚洲午夜精品一区二区久久| 国产日韩欧美视频二区| 国产精品一区二区在线观看99| 国产一区亚洲一区在线观看| 在线观看www视频免费| 亚洲第一区二区三区不卡| 校园人妻丝袜中文字幕| 丁香六月天网| 成人国产麻豆网| 国产成人欧美| 亚洲色图 男人天堂 中文字幕| 久久精品夜色国产| 男女啪啪激烈高潮av片| 亚洲欧美精品综合一区二区三区 | 看免费av毛片| 亚洲精品美女久久av网站| 亚洲国产精品一区三区| 久久av网站| 黑人猛操日本美女一级片| 男女无遮挡免费网站观看| 爱豆传媒免费全集在线观看| 国产一区有黄有色的免费视频| 日本vs欧美在线观看视频| 精品99又大又爽又粗少妇毛片| 亚洲天堂av无毛| 丰满饥渴人妻一区二区三| 国产福利在线免费观看视频| 男人爽女人下面视频在线观看| 大话2 男鬼变身卡| a级毛片黄视频| 寂寞人妻少妇视频99o| 亚洲国产最新在线播放| 国产av精品麻豆| av国产久精品久网站免费入址| 黄色一级大片看看| 午夜福利视频精品| 看十八女毛片水多多多| 精品卡一卡二卡四卡免费| 伦理电影大哥的女人| av国产精品久久久久影院| 亚洲久久久国产精品| 午夜免费鲁丝| 国产探花极品一区二区| 少妇猛男粗大的猛烈进出视频| 老汉色av国产亚洲站长工具| 中文字幕av电影在线播放| 亚洲国产日韩一区二区| 国产1区2区3区精品| 欧美黄色片欧美黄色片| 久久热在线av| 亚洲视频免费观看视频| 七月丁香在线播放| 高清在线视频一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 韩国av在线不卡| 久久久久久久久久久免费av| 午夜91福利影院| 黑丝袜美女国产一区| 91精品伊人久久大香线蕉| 成人免费观看视频高清| 99九九在线精品视频| 久久精品人人爽人人爽视色| 色播在线永久视频| 丝袜美腿诱惑在线| 老司机亚洲免费影院| 在线看a的网站| 亚洲一区中文字幕在线| 一级片免费观看大全| 国产成人aa在线观看| 男女啪啪激烈高潮av片| 建设人人有责人人尽责人人享有的| 欧美日韩成人在线一区二区| 欧美日韩亚洲高清精品| 如日韩欧美国产精品一区二区三区| 另类精品久久| 日韩中字成人| 丝瓜视频免费看黄片| 色婷婷av一区二区三区视频| 九九爱精品视频在线观看| 亚洲国产av新网站| 新久久久久国产一级毛片| 精品一区二区免费观看| 一个人免费看片子| 多毛熟女@视频| 国产成人午夜福利电影在线观看| 亚洲情色 制服丝袜| 欧美+日韩+精品| 91在线精品国自产拍蜜月| 国产成人精品福利久久| 精品国产国语对白av| 叶爱在线成人免费视频播放| 欧美 亚洲 国产 日韩一| 免费观看av网站的网址| 亚洲国产精品成人久久小说| 亚洲欧美成人综合另类久久久| 亚洲国产成人一精品久久久| 日本vs欧美在线观看视频| 精品亚洲成国产av| av又黄又爽大尺度在线免费看| 久久狼人影院| 制服人妻中文乱码| 亚洲国产日韩一区二区| 王馨瑶露胸无遮挡在线观看| 黄色配什么色好看| 色视频在线一区二区三区| 美女午夜性视频免费| 成人黄色视频免费在线看| www日本在线高清视频| 亚洲国产精品999| av一本久久久久| 一区福利在线观看| 视频区图区小说| 欧美成人午夜精品| 久久亚洲国产成人精品v| 成人国产麻豆网| 激情视频va一区二区三区| 国产成人精品久久二区二区91 | 日韩中字成人| 秋霞在线观看毛片| 亚洲国产精品一区二区三区在线| 色视频在线一区二区三区| 在线观看免费视频网站a站| 成年女人毛片免费观看观看9 | 免费在线观看完整版高清| 欧美日韩视频高清一区二区三区二| 九草在线视频观看| 夜夜骑夜夜射夜夜干| 天天操日日干夜夜撸| 少妇熟女欧美另类| 视频区图区小说| 欧美97在线视频| 亚洲av电影在线观看一区二区三区| 精品少妇黑人巨大在线播放| 好男人视频免费观看在线| 在线看a的网站| 天堂俺去俺来也www色官网| 视频区图区小说| 亚洲第一av免费看| 9色porny在线观看| 欧美日韩综合久久久久久| 丝袜脚勾引网站| 两性夫妻黄色片| 成年av动漫网址| 精品午夜福利在线看| 免费看不卡的av| 91精品伊人久久大香线蕉| 国产成人精品久久久久久| 一边摸一边做爽爽视频免费| 日韩不卡一区二区三区视频在线| 成年动漫av网址| 午夜免费鲁丝| 中文字幕人妻丝袜制服| 国产乱来视频区| 久久久精品国产亚洲av高清涩受| 国产成人精品一,二区| 国产高清国产精品国产三级| 色94色欧美一区二区| 男人爽女人下面视频在线观看| 久久精品亚洲av国产电影网| 国产乱人偷精品视频| 夫妻午夜视频| av有码第一页| a级毛片黄视频| 国产精品一国产av| tube8黄色片| 久久影院123| 女人久久www免费人成看片| 夜夜骑夜夜射夜夜干| 男女边摸边吃奶| 晚上一个人看的免费电影| 免费不卡的大黄色大毛片视频在线观看| 久热这里只有精品99| 啦啦啦在线免费观看视频4| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国产精品人妻一区二区| 少妇被粗大猛烈的视频| 精品国产一区二区三区四区第35| 成人18禁高潮啪啪吃奶动态图| kizo精华| 久久久久久久久免费视频了| 久久精品熟女亚洲av麻豆精品| 久久这里只有精品19| 亚洲精品在线美女| 伊人亚洲综合成人网| 最近手机中文字幕大全| 亚洲中文av在线| av卡一久久| 欧美日韩综合久久久久久| 黄色毛片三级朝国网站| av有码第一页| 国产精品久久久久久av不卡| 人人妻人人澡人人爽人人夜夜| 在线观看免费高清a一片| 成年人免费黄色播放视频| 男男h啪啪无遮挡| 看免费成人av毛片| 高清不卡的av网站| 午夜福利在线免费观看网站| 最近手机中文字幕大全| 午夜福利在线观看免费完整高清在| 热99国产精品久久久久久7| 日本免费在线观看一区| 最近手机中文字幕大全| 国产福利在线免费观看视频| 中文乱码字字幕精品一区二区三区| 久久久久久久久久久久大奶| 国产精品国产三级国产专区5o| 亚洲精品自拍成人| 另类精品久久| 少妇被粗大猛烈的视频| 韩国精品一区二区三区| 国产精品秋霞免费鲁丝片| 伊人久久国产一区二区| 爱豆传媒免费全集在线观看| 美女中出高潮动态图| 中文精品一卡2卡3卡4更新| 日本91视频免费播放| av免费在线看不卡| av在线老鸭窝| 亚洲精品国产一区二区精华液| 日韩精品免费视频一区二区三区| 丰满乱子伦码专区| 久久久欧美国产精品| 久久久久久久久免费视频了| 老汉色av国产亚洲站长工具| 91在线精品国自产拍蜜月| 黄色一级大片看看| 卡戴珊不雅视频在线播放| 精品酒店卫生间| 免费观看无遮挡的男女| 国产精品.久久久| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 午夜91福利影院| av.在线天堂| 日本欧美国产在线视频| 男女边摸边吃奶| 久热久热在线精品观看| 亚洲综合色惰| 国产精品不卡视频一区二区| 婷婷色综合www| 最黄视频免费看| 考比视频在线观看| 亚洲欧美清纯卡通| 最黄视频免费看| 午夜免费男女啪啪视频观看| 中文字幕精品免费在线观看视频| 美女主播在线视频| 国产又色又爽无遮挡免| 国产精品久久久久成人av| 日本色播在线视频| 赤兔流量卡办理| 99久久精品国产国产毛片| 日本午夜av视频| 国产午夜精品一二区理论片| 又黄又粗又硬又大视频| 欧美bdsm另类| 国产精品不卡视频一区二区| 五月天丁香电影| 性少妇av在线| 伦精品一区二区三区|