• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conservation laws,Lie symmetries,self adjointness,and soliton solutions for the Selkov–Schnakenberg system

    2024-03-07 12:56:30KashifAliAlySeadawySyedRizviandNoorAziz
    Communications in Theoretical Physics 2024年2期

    Kashif Ali ,Aly R Seadawy ,Syed T R Rizvi and Noor Aziz

    1 Department of Mathematics,COMSATS University Islamabad,Lahore Campus,Pakistan

    2 Mathematics Department,Faculty of Science,Taibah University,Al-Madinah Al-Munawarah,41411,Saudi Arabia

    Abstract In this article,we explore the famous Selkov–Schnakenberg (SS) system of coupled nonlinear partial differential equations (PDEs) for Lie symmetry analysis,self-adjointness,and conservation laws.Moreover,miscellaneous soliton solutions like dark,bright,periodic,rational,Jacobian elliptic function,Weierstrass elliptic function,and hyperbolic solutions of the SS system will be achieved by a well-known technique called sub-ordinary differential equations.All these results are displayed graphically by 3D,2D,and contour plots.

    Keywords: Selkov–Schnakenberg system,Lie symmetry analysis,conservation laws,adjointness,integrability

    1.Introduction

    Partial differential equations (PDEs) play a vital role in the study of engineering and applied mathematics,particularly in fluid mechanics and electromagnetics [1–5].Nonlinear evolution equations (NLEEs) are foremost in the study of nonlinear phenomena.NLEEs are commonly applied to demonstrate the problems of plasma physics,fluid mechanics,biology,optical fibers,chemically reactive materials,chemical kinetics,electricity etc[6–11].Various methods have been utilized to find the solutions to NLEEs.They include an inverse scattering algorithm,Darboux transformations,Hirota bilinear approach,Lie symmetry analysis (LSA) etc [12–15].The Lie Group approach,also called LSA,is a successful and fruitful mechanism for attaining the symmetries,exact solutions,and conservation laws(CLs)of NLEEs[16].It was introduced by the Norwegian mathematician Sophus Lie in 1880.Many NLEEs have been studied under this approach.LSA is used in fractional calculus as well to produce new results.A symmetry of a differential equation (DE) converts one solution to another solution.New solutions can be produced from the older ones with the aid of symmetries of DEs[17].Symmetries and CLs are a vital part of the study of DEs.The CLs are essential because they provide a mathematical explanation of the model that certain physical quantity like energy,charge,linear,and angular momentum remains unaltered during the evolution of a physical system.An equation is integrable if it possesses CLs.The CLs of fractional PDEs are the amalgamation of works of Ibragimov[18]and Lukashchuk [19].

    CLs of a model can be evaluated by various approaches which include Noether?s theorem,variational approach,conservation theorem characteristic method,scaling invariance method etc [20–23].Hussain et al discussed the Burgers–Huxley equation by LSA and found the CLs[24].Rashidi and Hejazi[25]in their work used LSA to attain the solutions of a fractional integro-differential system called the Vlasov–Maxwell system.Bahi and Hilal [26] used LSA to find the CLs and exact solutions of the generalized time-fractional Korteweg-de Vries-Burgers-like equation.Liu et al used LSA on generalized time-fractional diffusion equations and also derived the CLs and exact solutions of the model [27–32].

    Figure 1.Numerical graphs of solution A1(x,t) for suitable parameters α=0.5,c=3,δ=1,η=0.5,p=3,q=2,Q=-0.5.

    Figure 2.Numerical graphs of solution A2(x,t) for suitable parameters α=0.5,c=3,δ=1,η=0.5,p=3,q=2,Q=0.5.

    Figure 3.Numerical graphs of solution A3(x,t) for suitable parameters α=0.5,c=3,δ=1,η=-0.5,p=3,q=2,Q=0.5,?=0.01.

    Any equation is said to be self-adjoint if its adjoint equation upon substitution is equal to the original equation.CLs have been derived on the basis of self-adjointness.The equations that are nonlinearly self-adjoint can be written in a strictly self-adjoint form with the aid of suitable multipliers.As a result,any linear equation can be expressed in a nonlinear strictly self-adjoint form [33].An integrable model possesses soliton solutions.A soliton is a wave that retains its shape and velocity on collision with another soliton.Many researchers have worked on finding the soliton solutions of the models [34–40] by different techniques.

    In 1952,Alan Turning [41] gave a concept of turning pattern which describes how patterns like stripes and spots can be set up naturally from a homogeneous uniform state.In one of his papers,he pondered over the behavior of the system where two diffusible materials come across each other to form a spatially periodic pattern.Reaction-diffusion systems (DRS) are mathematical models corresponding to physical phenomena.They are frequently used in the alteration in time and space of concentration of one or several chemical products.We can observe DRS in chemistry,biology,physics,etc.In this article,we will acknowledge a simple reaction model for glycolysis known as a Selkov–Schnakenberg (SS)system proposed by Schnakenberg in 1979.It is a chemical reaction with limited cycle behavior involving three stages:

    V,W and P,T are chemical products and chemical sources representing dimensionless concentrations of the reactants.So the SS system is a couple of nonlinear PDEs of the form[42]

    where R(x,t)and S(x,t)represent the concentrations of the two reactants.α and γ are diffusion coefficients of R and S.β,δ ≥0,σ>0.If β=0=δ,equation(1)is transformed into the Selkov model [43].If δ=0 and σ>0 equation (1) is turned to the Schnakenberg model [44].The remaining manuscript is organized as follows:In section 2,LSA is performed for the abovequoted model.In section 3,CLs have been formulated.In section 4,the self-adjointness(SA)of the model is discussed.In section 5,the model is solved by the sub-ordinary differential equations (sub-ODE) approach in detail.In section 6,we will interpret the solution of the model with their 3D,2D,and contour profiles for various parameters.Later,section 7 provides results and discussions of our model.At the end,in section 8,we will wind up the article by providing our conclusion.

    2.Lie Symmetry Analysis

    In this section,our main focus is on LSA for equation (1)which is elaborated below.Let us assume we have one parameter Lie Group of point transmformations [45,46]

    where ?≤1 is the group parameter.ξ1(x,t,R,S),ξ2(x,t,R,S),η1(x,t,R,S)and η2(x,t,R,S)are the infinitesimal generators which we have to calculate.The vector field associated with the above-mentioned group of transformations is given by

    For system 1 Pr2will be the second prolongation then the Lie’s invariance condition is

    Using SYM package launched by Dimas and Tsoubelis [47]we get the determining equations which are obtained by equating the polynomials to zero.Solution of these determining equations give values of ξ1(x,t,R,S),ξ2(x,t,R,S),η1(x,t,R,S) and η2(x,t,R,S) as

    Case (i):When

    α=0,γ=0 and RS ≠0.

    where c1,c2and c3are constants.The Lie symmetry algebra introduced by equation (1) is spanned by the linearly independent operators

    3.Conservation laws

    In this section,we compute CLs [45] for the SS system by a new procedure that is based on the formal Lagrangian [48].The conserved vectors for each symmetry are established below.The Lagrangian is given by

    where z(x,t)=RB1and w(x,t)=-SB1.B1ia an arbitrary constant.

    For symmetry Y1,the conserved vectors areFor symmetry Y2,the conserved vectors are:

    4.Self adjointness

    Let us assume a system of DEs withequations with p dependent variables and g=(g1,…,gp)[49].

    This system is said to have nonlinearly SA if the succeeding adjoint equations

    are satisfied for all solutions g of the system(28)upon replacing

    4.1.Nonlinear self adjointness of the Selkov–Schnakenberg system

    Our main aim is to show that equation (1) is nonlinearly SA.The adjoint equation for equation (1) is stated as

    Suppose z=Z(x,t,R,S) and w=W(x,t,R,S),after performing a few calculations the following equation is attained

    Now equating the coefficients of Rt,St,Rx,Sx,Rxx,Sxxto zero,we obtain

    The solution of Z(x,t,R,S) and W(x,t,R,S) is found to be

    where B1is any constant.Hence,equation(1)is a nonlinearly SA with the substitution equation given by equation (33).

    5.Sub-ODE technique

    In this section,the soliton solutions of SS equation(1)will be obtained via a sub-ODE mechanism by the assumption [50],

    where c is the non-zero velocity of the soliton,A(ψ)and B(ψ)are real functions explaining the appearance of the solitary wave.Inserting equation(5)and equation(35)in equation(1)we achieve a system of ODEs

    As stated in the sub-ODE algorithm,we presume that(38)has a solution

    where m is a parameter and G(ψ) satisfies the equation

    where J,H,L,M,and Q are constants and m is found by the homogeneous balance method [50] between A″ and A3in equation (38)

    Now the solution of equation (38) is given as:

    Substituting equation (41) together with equation (43) in equation(38)and equating the coefficients of powers of G we arrive at the following equations:

    But the old woman looked at her steadily9, and knew her again, and said: How have you managed to grow so young and beautiful? I should like to be young and beautiful too

    Type 1.Substituting J=H=M=0 in equation (44) we have

    Using equation (45) along with equation (25) of [50] in equation (43) we obtain the bright soliton solution of equation (1) as

    Using equation (45) along with equation (26) of [50] in equation(43)we achieve the periodic solution of equation(1)as

    Using equation (45) along with equation (27) of [50] in equation (43) we get the rational solution of equation (1)

    Using equation (52) along with equation (28) of [50] in equation(43)we get the dark soliton solution of equation(1)as

    Using equation (52) along with equation (29) of [50] in equation (43) the periodic solution is given by

    Type 3.Putting H=M=0 in equation (44) we obtain

    When m →0,then equation (58) is converted to:

    When m →1,then equation (58) is converted to:

    Using equation (57) along with equation (31) of [50] in equation (43) we get

    When m →1,then equation (63) is converted to:

    Using equation (57) along with equation (32) of [50] in equation (43) we get

    When m →0,then equation (66) is converted to:

    Using equation (69) along with equation (33) of [50] in equation (43) we get the bright soliton solution of equation (1) as

    Using equation (69) along with equation (34) of [50] in equation (43) we get the periodic solution of equation (1) as

    Type 5.Putting L=Q=0 in equation (44) we attain

    Using equation (74) along with equation (36) of [50] in equation (43) we get various Weierstrass elliptic solutions of equation (1) as

    Using equation (77) along with equation (37) of [50] in equation (43) we get more Weierstrass elliptic solutions of equation (1) as

    Using equation (77) along with equation (41) of [50] in equation (43) we get

    Using equation (84) along with equation (43) of [50] in equation (43) we get different positive solutions of equation (1) as

    Using equation (87) along with equation (44) of [50] in equation (43) we get

    Using equation (87) along with equation (45) of [50] in equation (43) we get

    Type 7.Substituting J=H=0 in equation (44) we have

    Using equation (93) along with equation (46) of [50] in equation (43) we obtain the hyperbolic function solutions of equation (1) as

    Using equation (93) along with equation (47) of [50] in equation (43) we attain

    Using equation (98) along with equation (48) of [50] in equation (43) we obtain the periodic solutions of equation (1) as

    Using equation (98) along with equation (49) of [50] in equation (43) we attain

    Figure 4.Numerical graphs of solution B4(x,t) for suitable parameters α=2,c=-3,δ=0.5,η=1,p=2,q=2,Q=-3,?=0.01.

    Figure 5.Numerical graphs of solution B5(x,t) for suitable parameters α=2,c=-3,δ=0.5,η=-2,p=5,q=4,Q=3,?=0.01.

    Figure 6.Numerical graphs of solution A7(x,t) for suitable parameters α=0.5,c=3,δ=0,η=3,m=1,p=2,q=2,Q=4.

    6.Graphical Representation

    The graphical representation of the SS system is given below by 3D,2D,and contour plots.

    7.Result and discussions

    Many authors have worked on the SS diffusion-reaction system.Li et al analyzed the SS diffusion-reaction system for the stability and instability of constant steady-state solutions[51].Al Noufaey discovered the semi-analytical solutions of the SS system by the Glarekin approach [52].Iqbal et al explored the soliton solutions of the SS model [42].Uecker and Wetzel proved the existence of various spatial patterns of the SS system [53].In this paper,we have utilized LSA to find the infinitesimal generators and symmetries of the SS system represented by equation (1).Next,its nonlinear self adjointness has been discussed.Moreover,the sub-ODE method is used to find soliton solutions of the model.Bright and periodic soliton solutions are shown by A1(x,t),B1(x,t),A13(x,t),B13(x,t),A2(x,t),B2(x,t),A5(x,t),B5(x,t),A14(x,t),B14(x,t),A24(x,t),B24(x,t)and A25(x,t),B25(x,t),respectively(figures 1–10).A4(x,t) and B4(x,t) present the dark soliton solutions and their graphical representation is given in figures 4 and 5 and JES solutions are represented by A6(x,t),B6(x,t),A7(x,t),B7(x,t),A8(x,t),B8(x,t),A9(x,t),B9(x,t),A10(x,t),B10(x,t),A11(x,t),B11(x,t),A12(x,t)and B12(x,t)and graphically by figures 8–12.Weierstrass elliptic solutions are presented by A15(x,t),B15(x,t),A16(x,t),B16(x,t),A17(x,t),B17(x,t),A18(x,t) and B18(x,t) and from figures 13–17.Hyperbolic function solutions are given by A22(x,t),B22(x,t)and A23(x,t),B23(x,t)and graphically by figures 18 and 19.The governing model has positive solutions shown by A19(x,t),B19(x,t),A20(x,t),B20(x,t),A21(x,t) and B21(x,t) and graphically by figures 20 and 21.

    Figure 7.Numerical graphs of solution A10(x,t) for suitable parameters α=-2,c=3,δ=0,η=3,m=1,p=5,q=2,Q=0.5.

    Figure 8.Numerical graphs of solution A12(x,t) for suitable parameters α=2,c=-5,δ=2,η=3,m=1,p=1,q=2,Q=0.5.

    Figure 9.Numerical graphs of solution B13(x,t) for suitable parameters α=2,c=-1,δ=0,η=2,μ=1,M=-4,p=3,q=2.

    Figure 10.Numerical graphs of solution B14(x,t) for suitable parameters μ=1,α=2,c=-1,δ=0.5,η=4,M=4,p=3,q=1.

    Figure 11.Numerical graphs of solution A15(x,t)for suitable parameters δ=0.5,α=-3,β=2,c=3,η=2,H=1,M=4,p=3,q=2.

    Figure 12.Numerical graphs of solution B16(x,t) for suitable parameters α=-3,c=2,δ=0,η=2,p=1,q=1,Q=3.

    Figure 13.Numerical graphs of solution B17(x,t) for suitable parameters α=-3,c=2,δ=6,η=2,p=1,q=4,Q=3.

    Figure 14.Numerical graphs of solution A18(x,t) for suitable parameters α=5,c=2,δ=1,η=-2,p=1,q=1,Q=3.

    Figure 15.Numerical graphs of solution B19(x,t) for suitable parameters α=5,c=25,δ=15,η=20,μ=10,p=10,q=10.

    Figure 16.Numerical graphs of solution B20(x,t) for suitable parameters α=5,c=2,δ=1,η=-4,μ=2,p=1,q=1,Q=5,?=1.

    Figure 17.Numerical graphs of solution B21(x,t) for suitable parameters α=5c=-2,δ=0.25,η=4,μ=2,p=1,q=1.

    Figure 18.Numerical graphs of solution A22(x,t)for suitable parameters α=2.5,c=3,δ=0,η=2,μ=0.5,M=2,p=1,q=1,Q=1.

    Figure 19.Numerical graphs of solution A23(x,t) for suitable parameters α=5,c=2,δ=0,η=-4,μ=1,M=4,p=1,q=1,Q=1.

    Figure 20.Numerical graphs of solution B24(x,t) for suitable parameters α=-2.5,c=-2,δ=1,η=2,M=1,p=1,q=1,Q=2.

    Figure 21.Numerical graphs of solution B25(x,t) for suitable parameters α=-3,c=3,δ=0,η=3,M=4,p=1,q=1,Q=2.

    8.Concluding remarks

    In this paper,the SS system has been discussed by LSA.We have explored the Lie point symmetries,infinitesimal generators,and the nonlinear SA and CLs of the SS system.Several soliton solutions like bright,dark solitons,periodic solitons,bell,kink shaped,Weierstrass elliptic function solutions,Jacobi,and Hyperbolic are developed for the above model by using the sub-ODE method with the help of Mathematica.A graphical representation is given for all the solutions evaluated in the paper.

    久久人妻av系列| 欧美成人性av电影在线观看| 久久国产乱子伦精品免费另类| 精品不卡国产一区二区三区| 三级毛片av免费| 久久中文字幕人妻熟女| 亚洲国产看品久久| 亚洲精品一卡2卡三卡4卡5卡| 熟女少妇亚洲综合色aaa.| 久久精品91无色码中文字幕| 久久婷婷人人爽人人干人人爱| 亚洲精品在线美女| 怎么达到女性高潮| 夜夜夜夜夜久久久久| 免费搜索国产男女视频| 亚洲精品色激情综合| 伊人久久大香线蕉亚洲五| 熟妇人妻久久中文字幕3abv| 亚洲男人的天堂狠狠| 久久久久九九精品影院| 久久久久久国产a免费观看| 亚洲 国产 在线| 在线十欧美十亚洲十日本专区| 国产精品久久电影中文字幕| 欧美丝袜亚洲另类 | 亚洲 国产 在线| www日本在线高清视频| 日本三级黄在线观看| 精品一区二区三区四区五区乱码| 日韩欧美免费精品| 午夜福利欧美成人| 全区人妻精品视频| 欧美激情久久久久久爽电影| 男女那种视频在线观看| 国产视频内射| 嫩草影院入口| 亚洲熟妇中文字幕五十中出| 欧美日本亚洲视频在线播放| 亚洲欧美日韩东京热| 国产高清三级在线| 亚洲第一欧美日韩一区二区三区| 亚洲欧美一区二区三区黑人| 精品乱码久久久久久99久播| 国产三级中文精品| 欧美激情久久久久久爽电影| 精品国产乱子伦一区二区三区| 在线免费观看不下载黄p国产 | 久久天堂一区二区三区四区| 大型黄色视频在线免费观看| 成人高潮视频无遮挡免费网站| 99热这里只有是精品50| 国产成人aa在线观看| av视频在线观看入口| 亚洲精品美女久久久久99蜜臀| 天天躁狠狠躁夜夜躁狠狠躁| 一区二区三区激情视频| 91在线观看av| 免费看日本二区| 毛片女人毛片| 色精品久久人妻99蜜桃| 性色av乱码一区二区三区2| 久久国产乱子伦精品免费另类| 老熟妇乱子伦视频在线观看| 久久久久久久久中文| 欧美日韩亚洲国产一区二区在线观看| 无人区码免费观看不卡| 99在线视频只有这里精品首页| 成人特级av手机在线观看| 搡老岳熟女国产| 中文亚洲av片在线观看爽| 一级毛片精品| 日本三级黄在线观看| 三级毛片av免费| 男人的好看免费观看在线视频| 久久香蕉国产精品| 国产私拍福利视频在线观看| 美女大奶头视频| 久久99热这里只有精品18| 免费看光身美女| 99国产精品一区二区三区| 亚洲中文字幕日韩| 日日摸夜夜添夜夜添小说| 级片在线观看| 最近在线观看免费完整版| 国产精品av久久久久免费| 亚洲av免费在线观看| 午夜福利欧美成人| 日韩人妻高清精品专区| av福利片在线观看| 国产亚洲精品av在线| 久久久久久久久免费视频了| 成年女人毛片免费观看观看9| 麻豆国产av国片精品| 母亲3免费完整高清在线观看| 色精品久久人妻99蜜桃| 日日干狠狠操夜夜爽| 国产亚洲欧美在线一区二区| 丁香欧美五月| 国产真人三级小视频在线观看| 国产精品综合久久久久久久免费| 在线国产一区二区在线| 亚洲人成网站高清观看| 中文在线观看免费www的网站| 无人区码免费观看不卡| bbb黄色大片| 成年免费大片在线观看| 亚洲五月婷婷丁香| 啪啪无遮挡十八禁网站| 床上黄色一级片| 神马国产精品三级电影在线观看| 亚洲国产高清在线一区二区三| 日韩国内少妇激情av| 中文字幕av在线有码专区| 国产又黄又爽又无遮挡在线| 国产97色在线日韩免费| 精品一区二区三区四区五区乱码| 熟女人妻精品中文字幕| 欧美日韩乱码在线| 19禁男女啪啪无遮挡网站| 中文字幕熟女人妻在线| 香蕉丝袜av| 亚洲精品美女久久av网站| 丰满的人妻完整版| 亚洲国产看品久久| 国产av在哪里看| 日韩人妻高清精品专区| 身体一侧抽搐| 国产精品亚洲一级av第二区| 国产毛片a区久久久久| 搞女人的毛片| 中文字幕av在线有码专区| 欧美绝顶高潮抽搐喷水| 亚洲国产日韩欧美精品在线观看 | 午夜福利在线观看吧| 免费看十八禁软件| 亚洲欧美一区二区三区黑人| 国产高清视频在线观看网站| 久久这里只有精品中国| 国产又色又爽无遮挡免费看| 亚洲成人中文字幕在线播放| 在线永久观看黄色视频| 99热只有精品国产| 亚洲av美国av| 欧美黑人欧美精品刺激| 久久99热这里只有精品18| 亚洲一区二区三区色噜噜| 一二三四在线观看免费中文在| 亚洲av五月六月丁香网| 麻豆一二三区av精品| 国产av麻豆久久久久久久| 精品久久久久久久久久久久久| 午夜成年电影在线免费观看| 亚洲精品乱码久久久v下载方式 | 日本a在线网址| 一个人免费在线观看的高清视频| 老汉色av国产亚洲站长工具| 日韩欧美三级三区| 精品乱码久久久久久99久播| 最新中文字幕久久久久 | 日韩欧美三级三区| 国产欧美日韩一区二区三| 国产精品av视频在线免费观看| 国产不卡一卡二| 男人舔女人下体高潮全视频| 国产不卡一卡二| 波多野结衣高清无吗| 91字幕亚洲| 97碰自拍视频| 精品人妻1区二区| 人人妻人人澡欧美一区二区| 久久欧美精品欧美久久欧美| 97碰自拍视频| 亚洲精品在线观看二区| 一区二区三区高清视频在线| 亚洲成人久久性| 亚洲成av人片在线播放无| 国产精品电影一区二区三区| 久久久国产成人精品二区| 精品日产1卡2卡| 亚洲精华国产精华精| 99国产综合亚洲精品| 国产成人福利小说| 久久中文看片网| 在线永久观看黄色视频| 久久天堂一区二区三区四区| www.999成人在线观看| 欧美在线黄色| 精华霜和精华液先用哪个| 亚洲专区中文字幕在线| 成人av一区二区三区在线看| 免费在线观看影片大全网站| 亚洲av成人不卡在线观看播放网| 免费看a级黄色片| 男女午夜视频在线观看| ponron亚洲| 欧美日本亚洲视频在线播放| 黄色女人牲交| 精品久久久久久久毛片微露脸| 亚洲av成人av| 久久久水蜜桃国产精品网| 视频区欧美日本亚洲| 嫩草影院精品99| 观看美女的网站| 欧美黑人巨大hd| 十八禁人妻一区二区| 精品乱码久久久久久99久播| 国产精品,欧美在线| 长腿黑丝高跟| 午夜福利免费观看在线| 少妇裸体淫交视频免费看高清| 岛国在线免费视频观看| 日本 欧美在线| 两性夫妻黄色片| 国产精品影院久久| 人人妻人人澡欧美一区二区| 国产精品久久久av美女十八| 久久亚洲精品不卡| 18禁国产床啪视频网站| 国产精品av久久久久免费| 嫁个100分男人电影在线观看| 99国产精品一区二区蜜桃av| 亚洲人成电影免费在线| 久久这里只有精品19| 日本在线视频免费播放| 国产av麻豆久久久久久久| 啦啦啦观看免费观看视频高清| 91老司机精品| 国产伦精品一区二区三区四那| 亚洲 欧美一区二区三区| 看黄色毛片网站| 国产视频一区二区在线看| 午夜福利18| 亚洲美女视频黄频| 美女黄网站色视频| 欧美性猛交黑人性爽| 欧美成人性av电影在线观看| 国产黄色小视频在线观看| 亚洲人与动物交配视频| 国产在线精品亚洲第一网站| netflix在线观看网站| 国产99白浆流出| 国产精品影院久久| 色吧在线观看| 久久久国产精品麻豆| 久久久久久久精品吃奶| 亚洲精品久久国产高清桃花| 国产亚洲精品久久久com| 最新在线观看一区二区三区| 两个人看的免费小视频| 老司机深夜福利视频在线观看| 精品福利观看| 国产一级毛片七仙女欲春2| 波多野结衣高清无吗| 久久精品国产亚洲av香蕉五月| 亚洲国产欧洲综合997久久,| 最近视频中文字幕2019在线8| 国产成人精品久久二区二区91| www.www免费av| 国产成人av教育| 法律面前人人平等表现在哪些方面| 精品一区二区三区av网在线观看| 国产毛片a区久久久久| 女人高潮潮喷娇喘18禁视频| 老熟妇仑乱视频hdxx| 日本免费一区二区三区高清不卡| 国产野战对白在线观看| 精品乱码久久久久久99久播| 国产精品女同一区二区软件 | 亚洲,欧美精品.| 综合色av麻豆| 久久久久国内视频| 欧美成狂野欧美在线观看| 少妇的丰满在线观看| 色尼玛亚洲综合影院| 免费观看精品视频网站| 一本综合久久免费| 男人舔女人的私密视频| 美女大奶头视频| 久久天堂一区二区三区四区| 最近视频中文字幕2019在线8| 午夜精品在线福利| 色综合欧美亚洲国产小说| 国产人伦9x9x在线观看| 亚洲人成网站高清观看| 超碰成人久久| 日韩欧美 国产精品| 亚洲美女视频黄频| 久久久国产精品麻豆| 色精品久久人妻99蜜桃| 最新在线观看一区二区三区| 天堂网av新在线| 熟女电影av网| 亚洲国产精品999在线| 国产私拍福利视频在线观看| 极品教师在线免费播放| 久久性视频一级片| 国产精品永久免费网站| 亚洲午夜理论影院| 久久久久久人人人人人| 亚洲国产欧洲综合997久久,| 免费人成视频x8x8入口观看| 午夜激情福利司机影院| 一本精品99久久精品77| 黄色成人免费大全| 18禁观看日本| 国产蜜桃级精品一区二区三区| 国产精品精品国产色婷婷| 亚洲精品久久国产高清桃花| www国产在线视频色| 人人妻人人看人人澡| 黄色成人免费大全| 亚洲国产看品久久| 91在线精品国自产拍蜜月 | 桃红色精品国产亚洲av| xxxwww97欧美| 最近最新中文字幕大全电影3| 黑人操中国人逼视频| 人妻夜夜爽99麻豆av| 午夜福利欧美成人| 最近视频中文字幕2019在线8| 成年人黄色毛片网站| 日本在线视频免费播放| 欧美绝顶高潮抽搐喷水| av国产免费在线观看| а√天堂www在线а√下载| 国产成人aa在线观看| 成人18禁在线播放| 网址你懂的国产日韩在线| 巨乳人妻的诱惑在线观看| 麻豆国产97在线/欧美| 99久久无色码亚洲精品果冻| 精品午夜福利视频在线观看一区| 99久久99久久久精品蜜桃| 免费在线观看影片大全网站| 久久99热这里只有精品18| 黄频高清免费视频| 精品无人区乱码1区二区| 看黄色毛片网站| 99国产极品粉嫩在线观看| 天堂√8在线中文| 一级作爱视频免费观看| 看免费av毛片| 91字幕亚洲| 日韩欧美三级三区| 久久亚洲真实| 亚洲男人的天堂狠狠| 国产亚洲精品av在线| 欧美又色又爽又黄视频| 亚洲精品美女久久av网站| 国产真实乱freesex| 天堂影院成人在线观看| 成人国产综合亚洲| 精品国产三级普通话版| 国产伦人伦偷精品视频| 欧美黄色淫秽网站| 看黄色毛片网站| 久久久久久人人人人人| 久久久精品欧美日韩精品| 久久久色成人| 天堂影院成人在线观看| 免费av不卡在线播放| 一区福利在线观看| 精品免费久久久久久久清纯| 欧美黄色淫秽网站| 中文资源天堂在线| www.自偷自拍.com| 琪琪午夜伦伦电影理论片6080| av女优亚洲男人天堂 | 久久久久亚洲av毛片大全| 欧美日韩中文字幕国产精品一区二区三区| 久久久色成人| 怎么达到女性高潮| 三级国产精品欧美在线观看 | 国产精品99久久99久久久不卡| 国产野战对白在线观看| 亚洲中文av在线| bbb黄色大片| 无限看片的www在线观看| 男女做爰动态图高潮gif福利片| 男人的好看免费观看在线视频| 九色国产91popny在线| 老熟妇仑乱视频hdxx| 综合色av麻豆| 色av中文字幕| 国产精品98久久久久久宅男小说| 啦啦啦免费观看视频1| 一个人免费在线观看电影 | 熟女电影av网| 免费高清视频大片| 国产淫片久久久久久久久 | 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 色综合站精品国产| 国产日本99.免费观看| 成人永久免费在线观看视频| 国内揄拍国产精品人妻在线| 桃红色精品国产亚洲av| 精品一区二区三区av网在线观看| 亚洲精品在线美女| 国产三级中文精品| 国产精品精品国产色婷婷| 夜夜夜夜夜久久久久| 又黄又粗又硬又大视频| 欧美在线黄色| 日本 欧美在线| 中文在线观看免费www的网站| 亚洲第一区二区三区不卡| 99在线人妻在线中文字幕| 成人av在线播放网站| 18+在线观看网站| 亚洲欧美精品专区久久| 岛国在线免费视频观看| 高清毛片免费看| 高清午夜精品一区二区三区| 亚洲熟妇中文字幕五十中出| 久99久视频精品免费| 欧美日本视频| 精华霜和精华液先用哪个| 亚洲五月天丁香| 十八禁国产超污无遮挡网站| ponron亚洲| 免费看美女性在线毛片视频| 中文字幕制服av| 精品国产露脸久久av麻豆 | 亚洲av二区三区四区| 免费不卡的大黄色大毛片视频在线观看 | 免费黄网站久久成人精品| 黄色日韩在线| 亚洲一级一片aⅴ在线观看| 99在线视频只有这里精品首页| 看片在线看免费视频| 亚洲自拍偷在线| 美女内射精品一级片tv| 国产成人a区在线观看| 亚洲乱码一区二区免费版| 最后的刺客免费高清国语| 久久这里有精品视频免费| 日本色播在线视频| 六月丁香七月| 久久这里有精品视频免费| 亚洲欧洲国产日韩| 乱系列少妇在线播放| 亚洲国产精品合色在线| 有码 亚洲区| 热99re8久久精品国产| 一个人看视频在线观看www免费| 亚洲欧洲国产日韩| 欧美色视频一区免费| 日日摸夜夜添夜夜添av毛片| 久久久久精品久久久久真实原创| 国产老妇伦熟女老妇高清| 看片在线看免费视频| 亚洲怡红院男人天堂| 中文字幕精品亚洲无线码一区| 国产黄片美女视频| 国产男人的电影天堂91| 日日摸夜夜添夜夜添av毛片| 1000部很黄的大片| 国产黄色小视频在线观看| 精品久久久噜噜| 欧美日韩在线观看h| 国产在视频线精品| 中文字幕av在线有码专区| 欧美bdsm另类| 国产老妇伦熟女老妇高清| 久久久久久久久久成人| 我的女老师完整版在线观看| 99热6这里只有精品| 成年版毛片免费区| 床上黄色一级片| 中文字幕制服av| 日韩欧美 国产精品| 精品免费久久久久久久清纯| 国产色爽女视频免费观看| 亚洲精品,欧美精品| 日韩欧美精品免费久久| 中文字幕av在线有码专区| 亚洲欧洲国产日韩| 国产精品美女特级片免费视频播放器| 久久鲁丝午夜福利片| 长腿黑丝高跟| 老司机福利观看| 边亲边吃奶的免费视频| av视频在线观看入口| 联通29元200g的流量卡| 国产一区二区在线观看日韩| 国产片特级美女逼逼视频| 日本熟妇午夜| 国产黄a三级三级三级人| 国产91av在线免费观看| 成人毛片a级毛片在线播放| 欧美激情在线99| 成人午夜精彩视频在线观看| 久久亚洲精品不卡| 少妇人妻精品综合一区二区| 国产高清不卡午夜福利| 最近视频中文字幕2019在线8| 亚洲天堂国产精品一区在线| 蜜臀久久99精品久久宅男| 国产在视频线精品| 国产免费男女视频| 亚洲精品国产成人久久av| 一级爰片在线观看| 色噜噜av男人的天堂激情| 午夜激情欧美在线| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频| 久久久久久久久中文| 五月玫瑰六月丁香| 又爽又黄a免费视频| 日本色播在线视频| 亚洲人与动物交配视频| 精品国产一区二区三区久久久樱花 | 亚洲美女搞黄在线观看| 久久99蜜桃精品久久| 乱系列少妇在线播放| 久久精品91蜜桃| 美女内射精品一级片tv| 国产成人一区二区在线| 麻豆国产97在线/欧美| 国产高清三级在线| 热99在线观看视频| 超碰97精品在线观看| 亚洲精品aⅴ在线观看| 日韩欧美精品免费久久| 一个人看的www免费观看视频| 美女xxoo啪啪120秒动态图| 成人欧美大片| 最近最新中文字幕免费大全7| 成人亚洲精品av一区二区| 午夜日本视频在线| 99在线视频只有这里精品首页| 色网站视频免费| 国产黄片视频在线免费观看| kizo精华| 国产一区二区亚洲精品在线观看| 久久久a久久爽久久v久久| 久久久久精品久久久久真实原创| 麻豆av噜噜一区二区三区| 中文字幕av成人在线电影| 日本一二三区视频观看| 免费无遮挡裸体视频| 校园人妻丝袜中文字幕| 久久久欧美国产精品| 中文精品一卡2卡3卡4更新| av线在线观看网站| 五月伊人婷婷丁香| 99热这里只有是精品在线观看| 亚洲精品aⅴ在线观看| 午夜福利视频1000在线观看| 成年版毛片免费区| 午夜亚洲福利在线播放| 日韩在线高清观看一区二区三区| 国产成人精品婷婷| 国产 一区 欧美 日韩| 亚洲av成人精品一二三区| 亚洲精品456在线播放app| 日日啪夜夜撸| 最近2019中文字幕mv第一页| 亚洲av日韩在线播放| 国产精华一区二区三区| .国产精品久久| 亚洲aⅴ乱码一区二区在线播放| 欧美+日韩+精品| 成人漫画全彩无遮挡| 国产午夜精品一二区理论片| 久久人人爽人人爽人人片va| 国产大屁股一区二区在线视频| 精品国产三级普通话版| 国产精品蜜桃在线观看| 国产午夜精品久久久久久一区二区三区| 日韩 亚洲 欧美在线| 91久久精品电影网| 天天躁日日操中文字幕| 在线天堂最新版资源| 在现免费观看毛片| 亚洲精品乱码久久久久久按摩| 热99re8久久精品国产| 精品一区二区三区人妻视频| 国产精华一区二区三区| 国产av码专区亚洲av| 午夜老司机福利剧场| 精品不卡国产一区二区三区| 国产精品久久视频播放| 亚洲成色77777| 亚洲精品影视一区二区三区av| 欧美不卡视频在线免费观看| 欧美激情在线99| 岛国毛片在线播放| 亚洲欧美日韩卡通动漫| 成人高潮视频无遮挡免费网站| 日本av手机在线免费观看| 欧美+日韩+精品| 日本免费a在线| 少妇高潮的动态图| 午夜老司机福利剧场| 最近中文字幕2019免费版| videossex国产| 色网站视频免费| 亚洲综合精品二区| 永久免费av网站大全| 能在线免费观看的黄片| 日韩av在线免费看完整版不卡| 51国产日韩欧美| 国产精品国产三级专区第一集| 欧美3d第一页| 男人舔女人下体高潮全视频| 亚洲av电影不卡..在线观看| 26uuu在线亚洲综合色| 欧美成人午夜免费资源| 菩萨蛮人人尽说江南好唐韦庄 | 国产又色又爽无遮挡免| 我要搜黄色片| 三级男女做爰猛烈吃奶摸视频| 大香蕉97超碰在线|