• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Vision Enabled Contactless Cross-Domain Machine Fault Diagnosis With Neuromorphic Computing

    2024-03-04 07:44:32XinruiChenXiangLiShupengYuYaguoLeiNaipengLiandBinYang
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Xinrui Chen , Xiang Li , Shupeng Yu , Yaguo Lei ,Naipeng Li , and Bin Yang

    Dear Editor,

    This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision.A specially designed bio-inspired deep transfer spiking neural network (SNN) model is proposed for processing the event streams of visionary data, feature extraction and fault diagnosis.The proposed method can also extract domain-invariant features from different machine operating conditions without target-domain machine faulty data.Experiments on rotating machines are carried out for validations of the proposed method, and the proposed method is verified to be effective in contactless fault diagnosis.

    Related work: Rotating machines are widely used in the field of industrial manufacturing [1], [2].Once the rotating machine fails, it will affect the overall performance of the mechanical equipment and even cause serious safety accidents.Therefore, it is particularly important to develop efficient fault diagnosis method for rotating machines [3], [4].

    In the past years, a large number of machine learning-based methods have been proposed to solve the fault diagnosis problems of rotating machines [5]-[7].Not only that, deep learning-based methods are also developing rapidly [8]-[10].However, the existing methods for capturing the vibrations of rotating machines still have significant limitations in deployment in industrial applications.Recently, event-based cameras have been used to capture the vibrations of rotating machines.Different from traditional vision-based fault diagnosis tasks [11], event vision-based methods have more advantages, but there are very few related studies.Liet al.[12] used event-based cameras to conduct contactless fault diagnosis of rolling bearings and achieved reliable results.However, this method still uses traditional neural network as the feature extraction network and loses the temporal characteristics of the data.

    The SNN is a special bio-inspired structure that can process the temporal characteristics contained in the data and has lower energy consumption.Therefore, this special structure has good application prospects in engineering [13], [14].Xuet al.[15] introduce attention mechanism into SNN for bearing fault diagnosis.Zhanget al.[16]completed end-to-end model training on the rolling bearing dataset using SNN with convolution.Although the existing researches on SNN have achieved some results, the advantages have not been fully demonstrated.

    Problem statement: Intelligent fault diagnosis algorithms for rotating machines have achieved great success in recent years.The most popularly used signal for fault diagnosis is the vibration acceleration data collected from contact accelerometers.However, the contact accelerometers have significant limitations in deployment in industrial applications and the other existing contactless sensors are often costly or ineffective.Meanwhile, the common deep neural net-

    Corresponding author: Xiang Li.

    Citation: X.Chen, X.Li, S.Yu, Y.Lei, N.Li, and B.Yang, “Dynamic vision enabled contactless cross-domain machine fault diagnosis with neuromorphic computing,”IEEE/CAA J.Autom.Sinica, vol.11, no.3, pp.788-790, Mar.2024.

    The authors are with the Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049,China (e-mail: chenxinrui@stu.xjtu.edu.cn; lixiang@xjtu.edu.cn; yushupeng@stu.xjtu.edu.cn; yaguolei@mail.xjtu.edu.cn; naipengli@mail.xjtu.edu.cn; binyang@xjtu.edu.cn).

    Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

    Digital Object Identifier 10.1109/JAS.2023.124107 work-based methods have high requirements on computations.That makes the current mainstream intelligent fault diagnosis methods less applicable in the real engineering problems.In addition, it often occurs that the distribution of training data (source domain) and testing data (target domain) are inconsistent [17], and usually the trainable parts of the target domain do not contain faulty data.In order to solve the above problems, we propose a dynamic vision enabled contactless cross-domain method with neuromorphic computing for fault diagnosis of rotating machines.

    Intelligent fault diagnosis method: In this letter, we use the event-based camera to capture vibrations.The event-based camera records the light and shade changes of the target area and outputs them in asynchronous event streams.The event streams can be represented as, The individual eventeican be expressed as

    wheretirepresentsthe timewhenthei-theventoccurs,xiandyirepresentthex-axisand y-axispositionswheretheeventoccurs.pirepresents the polarity of the event,pi=1 indicates that the brightness of the position increases, andpi=-1 indicates that the brightness of the position decreases.The shape of a single sample is (Vt,Vx,Vy), whereVtis the time step of the event, which represents the time length of

    the sample, andVxandVyare the lengths of the x and y-directional,respectively, which are related to the selected RoI.

    After that, a bio-inspired SNN model is proposed for processing the event streams.Compared with the traditional neural network, the SNN has a more efficient and energy-saving structure.The SNN processes data in a completely new way, specifically, the spiking data are all in the form of spikes of 0 and 1.As one of the most popular spiking neurons, leaky integrate and fire (LIF) neurons are often used for computation of spiking data,

    wheretrepresents the time step, τ is the time constant,uandOsrepresent the membrane potential and output of the LIF neuron,ur1is the resting potential of theLIF neuron membrane,ur2is the reset potential of the LIF neuron membrane, and ωmis them-th The weight of each synapse,Tωis the integration time window,tmnis theTωwindow,K(·) represents the delay kernel function,uthis the ignimoment when then-th pulse of them-th synapse is excited within the tion threshold.

    In this letter, SNN with convolution (SCNN) is used as the feature extraction network.The parameters of the SNN model designed in this letter mainly refer to the structures of the existing traditional convolutional networks which have been widely proven to be effective.Specifically, the SNN proposed in this letter contains a bottleneck block for feature extraction, and a classifier for feature classification.As shown in Table 1, we first use two convolutional layers for feature extraction, and two max-pooling layers for feature compression.Next, the features are flattened and output through two linear layers for feature classification, and the activation function in SCNN is replaced by the spiking layers.

    In rotating machine fault diagnosis, using effective domain adaptation methods to narrow the distribution difference between the source domain and the target domain often achieves satisfactory results [18].In this letter, the maximum mean difference (MMD) between the source domain and the target domain is first calculated.However,compared with conventional data types, the output of SNN has one more time dimensionVt.Therefore, this letter combines the time dimension of the SNN outputs,

    wherevrepresents the feature value, andstrepresents the spikes of the SNN output at timet.Next, the MMD can be calculated,

    Fig.1.Flowchart of the proposed contactless intelligent fault diagnosis method for rotating machines.

    Table 1.The SNN Model Proposed in This Letter

    where Hkrepresents the reproducing kernel Hilbert space (RKHS)with characteristic kernelk.Therefore, the objective function to calculate the distribution difference between the source domain and the target domain can be defined as

    whereS f(j)andT f(j)represent thej-th layer features of the source domain and the target domain, respectively.In addition, this letter proposes a deep distance metric learning method inspired by [18], the metrics we use include inter-class separabilityLinterand intra-class compactness respectivelyLintra,

    wheref(m)x(i)represents the characteristics of thei-th type of data after them-th layer.clsrepresents the number of categories.The objective function for metric learning can be defined as

    In summary, this letter mainly proposes a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing, the overall fault diagnosis process is shown in Fig.1.The event-based camera is adopted to capture the vibrations of rotating machines, and a bio-inspired deep transfer SNN model is proposed for processing the event streams.

    Experimental study: The method proposed in this letter is verified on the rolling bearing test rig, as shown in Fig.2.The test rig is driven by a motor and the motor drives the shaft through a coupling.The bearing model on the shaft is ER-16K, and the event-based camera is placed in front of the bearing, The event-based sensor used in this letter is Prophesee 3.1.

    Fig.2.The appearance and structure of the rolling bearing test rig.

    This experiment includes four types of states of rolling bearings in total, including healthy, outer ring fault (Outer), inner ring fault(Inner) and rolling element fault (Ball).The source domain data is collected at a rotational speed of 40 Hz, and the target domain data is collected at 30 Hz.The settings when generating samples are as follows.The number of time steps is 10, the time length of a single time step is 1ms, the RoI size is 30×30.In this experiment, a total of 1000 samples are generated for each class, the size of training sets is 800,and the size of testing sets is 200.

    In order to verify the effectiveness of the method proposed in this letter, we have completed different methods at the same time as a comparison.Specifically, this leftter also studies the following methods.

    1) CNN only: This method is a basic control experiment.We only use CNN as the basic feature extraction network, and the domain adaptation method is not used.

    2) SNN only: In this method, the structure of the CNN network is converted to the SNN used in this letter, so as to form a contrast, and the domain adaptation method is not used for model training as well.

    3) TCNN: This method uses the mainstream CNN network and combines the domain adaptation method, in order to verify the competitiveness of the method used in this letter.Therefore, except that we replaced the SNN in the proposed method with CNN, the other parts are exactly the same.

    The training accuracies of the four methods are shown in Fig.3.Each type of method was conducted three times, and the experimental results are shown in Table 2.Fig.4 uses tSNE to intuitively show the distribution of features extracted by the four types of methods in the source and target data.Fig.5 is an intuitive comparison of the spiking outputs and the corresponding label.

    From the experiments in this letter, it can be concluded that, first of all, the method proposed in this letter is highly competitive compared with the traditional CNN-based method.The average precision of the method proposed in this letter can reach 98.12%, slightly higher than 95.99% of the CNN-based method, and the convergence speed during training is faster.In addition, the SNN-based crossdomain fault diagnosis method used in this letter improves model performance under different rotating speeds.Compared to the methods without cross-domain algorithms, the average accuracy proposed method increases by around 13%.Moreover, the method proposed in this letter has a good application prospect.Due to the advantages of SNN, the proposed method can be much more energy efficient compared with traditional CNN-based methods.

    Fig.3.The trend of testing accuracy with the number of epochs.

    Table 2.Comparison of the Accuracies of Different Methods

    Fig.4.The tSNE dimensionality reduction visualization diagram of different experimental results.

    Fig.5.Comparison of ground truths and model prediction.

    Conclusions: This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is used to capture the vibrations of the rotating machines, and the vibration signals are processed by a specially designed SCNN.In addition, we propose a specially designed SNN-based cross-domain fault diagnosis method to achieve cross-domain fault diagnosis for rotating machines without faulty data from the target domain.Finally, the method is verified on the rolling bearing test rig.Compared with the current mainstream CNNbased fault diagnosis methods, the method in this letter has strong competitiveness, and proposes a very effective direction for contactless vision-based fault diagnosis.

    Acknowledgments: This work was supported in part by the National Key R&D Program of China (2022YFB3402100) and the National Science Fund for Distinguished Young Scholars of China(52025056).

    十八禁网站免费在线| 亚洲天堂国产精品一区在线| 亚洲av中文字字幕乱码综合| 99热精品在线国产| 欧美3d第一页| www.熟女人妻精品国产| a级一级毛片免费在线观看| h日本视频在线播放| 亚洲av成人不卡在线观看播放网| 少妇被粗大猛烈的视频| 国产精品精品国产色婷婷| 男女视频在线观看网站免费| 亚洲无线在线观看| 丝袜美腿在线中文| 久久久国产成人精品二区| 国产在线精品亚洲第一网站| 波野结衣二区三区在线| 国产男靠女视频免费网站| 欧美黄色片欧美黄色片| АⅤ资源中文在线天堂| 欧美成人性av电影在线观看| 国产中年淑女户外野战色| 午夜久久久久精精品| 国产伦在线观看视频一区| 国产午夜福利久久久久久| 18禁黄网站禁片免费观看直播| 亚洲,欧美精品.| 两个人视频免费观看高清| 国产成人aa在线观看| 亚洲男人的天堂狠狠| 久久久精品大字幕| .国产精品久久| 一级a爱片免费观看的视频| АⅤ资源中文在线天堂| 亚洲欧美日韩高清专用| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 啦啦啦观看免费观看视频高清| 99久久99久久久精品蜜桃| 极品教师在线视频| 两个人的视频大全免费| 色5月婷婷丁香| 99久久99久久久精品蜜桃| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区亚洲精品在线观看| www.www免费av| 欧美在线一区亚洲| 国产日本99.免费观看| 美女被艹到高潮喷水动态| 欧美最新免费一区二区三区 | 自拍偷自拍亚洲精品老妇| 色噜噜av男人的天堂激情| 欧美黑人欧美精品刺激| 男人的好看免费观看在线视频| 亚洲人与动物交配视频| 真人一进一出gif抽搐免费| 成年女人看的毛片在线观看| 白带黄色成豆腐渣| 亚洲一区二区三区色噜噜| 亚洲成人久久性| 99国产极品粉嫩在线观看| 精品人妻视频免费看| 精品人妻1区二区| 精品国产亚洲在线| 国产精品国产高清国产av| 国产精品人妻久久久久久| 亚洲最大成人中文| 午夜福利在线观看免费完整高清在 | 国产 一区 欧美 日韩| 天天一区二区日本电影三级| 成人三级黄色视频| 亚洲精品成人久久久久久| 精品久久久久久久久av| 亚洲成人久久爱视频| 亚洲av成人精品一区久久| 亚洲av二区三区四区| 久久国产乱子免费精品| 最近中文字幕高清免费大全6 | 一级作爱视频免费观看| 国产激情偷乱视频一区二区| av天堂在线播放| 乱人视频在线观看| 亚洲一区高清亚洲精品| 99国产精品一区二区三区| 久久久久亚洲av毛片大全| 精品久久久久久久久av| 亚洲av免费高清在线观看| 日韩欧美在线二视频| 激情在线观看视频在线高清| 亚洲av美国av| 亚洲五月天丁香| 中文字幕精品亚洲无线码一区| 观看免费一级毛片| 麻豆久久精品国产亚洲av| 在线免费观看的www视频| 欧美xxxx黑人xx丫x性爽| 91麻豆av在线| 亚洲av二区三区四区| 午夜a级毛片| 嫩草影院新地址| 欧美黄色淫秽网站| 在线十欧美十亚洲十日本专区| 五月伊人婷婷丁香| 天美传媒精品一区二区| 成人亚洲精品av一区二区| 搞女人的毛片| 精品久久久久久久久亚洲 | 舔av片在线| 久99久视频精品免费| 看免费av毛片| 亚洲精品亚洲一区二区| 噜噜噜噜噜久久久久久91| 最新在线观看一区二区三区| 国产精品不卡视频一区二区 | 午夜福利在线观看免费完整高清在 | 美女黄网站色视频| 狠狠狠狠99中文字幕| 国产精品亚洲av一区麻豆| 91九色精品人成在线观看| av天堂在线播放| 俄罗斯特黄特色一大片| 国产日本99.免费观看| 日日摸夜夜添夜夜添av毛片 | 九色成人免费人妻av| 给我免费播放毛片高清在线观看| 中文在线观看免费www的网站| 日日摸夜夜添夜夜添小说| 国产精品99久久久久久久久| 精品久久久久久久久久免费视频| 97超级碰碰碰精品色视频在线观看| 国产视频内射| 桃红色精品国产亚洲av| 91久久精品国产一区二区成人| 1024手机看黄色片| 看片在线看免费视频| 一进一出抽搐gif免费好疼| АⅤ资源中文在线天堂| 亚洲成a人片在线一区二区| 精品日产1卡2卡| 亚洲欧美日韩东京热| 搡老岳熟女国产| 亚洲av第一区精品v没综合| 久久九九热精品免费| 久久人人爽人人爽人人片va | 天堂影院成人在线观看| 99久国产av精品| 久久久久久久亚洲中文字幕 | 男女床上黄色一级片免费看| 国产美女午夜福利| 内射极品少妇av片p| 亚洲精品日韩av片在线观看| 91久久精品国产一区二区成人| 欧美中文日本在线观看视频| 婷婷亚洲欧美| 变态另类丝袜制服| 无人区码免费观看不卡| 18+在线观看网站| 国产男靠女视频免费网站| 一级毛片久久久久久久久女| 国产成人欧美在线观看| 又黄又爽又免费观看的视频| 色综合亚洲欧美另类图片| 我要搜黄色片| www.熟女人妻精品国产| 国产一区二区三区视频了| 亚洲精品粉嫩美女一区| 51国产日韩欧美| 午夜日韩欧美国产| 婷婷六月久久综合丁香| 久99久视频精品免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | www.999成人在线观看| 51午夜福利影视在线观看| 国产精品嫩草影院av在线观看 | 亚洲熟妇中文字幕五十中出| 国产黄a三级三级三级人| 淫秽高清视频在线观看| 精品免费久久久久久久清纯| 欧美xxxx黑人xx丫x性爽| 色哟哟·www| 日韩欧美精品免费久久 | 亚洲,欧美,日韩| 亚洲国产精品合色在线| 免费看光身美女| av福利片在线观看| 老熟妇仑乱视频hdxx| 我的女老师完整版在线观看| 五月玫瑰六月丁香| 欧美成人性av电影在线观看| 精品无人区乱码1区二区| 久久伊人香网站| 国产 一区 欧美 日韩| 九九在线视频观看精品| 国产精品av视频在线免费观看| 亚洲狠狠婷婷综合久久图片| 天美传媒精品一区二区| 性色avwww在线观看| 热99re8久久精品国产| 校园春色视频在线观看| 波多野结衣巨乳人妻| 日本熟妇午夜| 国产一级毛片七仙女欲春2| ponron亚洲| 国产高清激情床上av| 国产一区二区在线av高清观看| 我要看日韩黄色一级片| 欧美黑人巨大hd| 国产美女午夜福利| 高潮久久久久久久久久久不卡| 伊人久久精品亚洲午夜| 在线天堂最新版资源| 国产午夜精品久久久久久一区二区三区 | 久久精品国产亚洲av天美| 色综合婷婷激情| ponron亚洲| 中文字幕人成人乱码亚洲影| 男女床上黄色一级片免费看| 91久久精品国产一区二区成人| 国产成人欧美在线观看| 成年版毛片免费区| 色吧在线观看| 熟女人妻精品中文字幕| 国产精品人妻久久久久久| 91av网一区二区| 色哟哟·www| 在线免费观看不下载黄p国产 | 蜜桃久久精品国产亚洲av| 国产精品亚洲美女久久久| 国产男靠女视频免费网站| 色吧在线观看| 一边摸一边抽搐一进一小说| 桃色一区二区三区在线观看| 一本精品99久久精品77| 九九在线视频观看精品| 午夜福利18| 一二三四社区在线视频社区8| 乱人视频在线观看| 亚洲无线在线观看| 国产主播在线观看一区二区| 亚洲av成人av| 男插女下体视频免费在线播放| 日韩有码中文字幕| 精品99又大又爽又粗少妇毛片 | 麻豆一二三区av精品| 欧美日本视频| 亚洲va日本ⅴa欧美va伊人久久| 日本黄色视频三级网站网址| 在线天堂最新版资源| 欧美午夜高清在线| 丁香欧美五月| 亚洲 国产 在线| av国产免费在线观看| 在线观看一区二区三区| 搡女人真爽免费视频火全软件 | 两个人的视频大全免费| 美女高潮喷水抽搐中文字幕| 精品久久久久久久末码| 久久6这里有精品| 久久精品国产亚洲av天美| 亚洲精品在线美女| 露出奶头的视频| 国产美女午夜福利| 亚洲av中文字字幕乱码综合| 国产毛片a区久久久久| 深夜a级毛片| 亚洲自偷自拍三级| 91久久精品国产一区二区成人| 久久99热6这里只有精品| 成人国产综合亚洲| 91麻豆精品激情在线观看国产| 欧美色视频一区免费| 蜜桃久久精品国产亚洲av| 国产老妇女一区| 亚洲激情在线av| 嫁个100分男人电影在线观看| 日本一本二区三区精品| 三级国产精品欧美在线观看| 丰满人妻一区二区三区视频av| 亚洲无线在线观看| 欧美成人免费av一区二区三区| 日本成人三级电影网站| 久久精品影院6| 非洲黑人性xxxx精品又粗又长| 亚洲色图av天堂| 床上黄色一级片| 成熟少妇高潮喷水视频| 国产午夜福利久久久久久| 国产精品亚洲一级av第二区| 精品一区二区三区人妻视频| 国产欧美日韩一区二区三| 18禁在线播放成人免费| 国产综合懂色| 欧美日韩综合久久久久久 | 麻豆久久精品国产亚洲av| 女人十人毛片免费观看3o分钟| 精品久久久久久久人妻蜜臀av| eeuss影院久久| 一区二区三区免费毛片| 国产精品久久电影中文字幕| 中文字幕av成人在线电影| 一区二区三区免费毛片| 脱女人内裤的视频| 日本免费一区二区三区高清不卡| 久久久久久久久中文| 亚洲,欧美,日韩| 国产三级在线视频| 变态另类丝袜制服| 天美传媒精品一区二区| 99热6这里只有精品| 国产伦一二天堂av在线观看| 此物有八面人人有两片| 国产精品自产拍在线观看55亚洲| 亚洲人成伊人成综合网2020| 又爽又黄a免费视频| 特级一级黄色大片| 制服丝袜大香蕉在线| 国产亚洲精品综合一区在线观看| 国产精品爽爽va在线观看网站| 精品一区二区三区av网在线观看| 亚洲自偷自拍三级| 怎么达到女性高潮| 我的女老师完整版在线观看| 亚洲精品乱码久久久v下载方式| 人人妻人人澡欧美一区二区| 麻豆国产av国片精品| 国产精品1区2区在线观看.| 欧美性感艳星| 看免费av毛片| 97超视频在线观看视频| 亚洲avbb在线观看| 色在线成人网| 久久久久性生活片| 成人特级黄色片久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久中文| 久久久久久久久久黄片| 婷婷丁香在线五月| 18+在线观看网站| 精品久久久久久久久亚洲 | 免费人成视频x8x8入口观看| 亚洲三级黄色毛片| 亚洲美女视频黄频| 国产视频内射| 欧美日韩黄片免| 一个人观看的视频www高清免费观看| 亚洲国产日韩欧美精品在线观看| 国产精品一区二区三区四区久久| 午夜福利成人在线免费观看| 亚洲真实伦在线观看| 桃红色精品国产亚洲av| 白带黄色成豆腐渣| 长腿黑丝高跟| 免费黄网站久久成人精品 | 成年人黄色毛片网站| 婷婷亚洲欧美| 俄罗斯特黄特色一大片| 亚洲中文日韩欧美视频| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久免费视频| 国产高潮美女av| 亚洲五月天丁香| 少妇熟女aⅴ在线视频| 欧美日韩中文字幕国产精品一区二区三区| 国产高清三级在线| 国内揄拍国产精品人妻在线| 亚洲精品456在线播放app | 国产三级在线视频| 精品无人区乱码1区二区| 精品一区二区三区视频在线观看免费| 中亚洲国语对白在线视频| 波野结衣二区三区在线| 亚洲国产精品成人综合色| 国产精品国产高清国产av| 天堂√8在线中文| 欧美色欧美亚洲另类二区| 亚洲经典国产精华液单 | av视频在线观看入口| 国产av麻豆久久久久久久| 色在线成人网| 最近在线观看免费完整版| 99久久成人亚洲精品观看| 老熟妇仑乱视频hdxx| or卡值多少钱| 精品午夜福利视频在线观看一区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇熟女久久| 色播亚洲综合网| 男女那种视频在线观看| 一进一出抽搐gif免费好疼| 亚洲精华国产精华精| 内射极品少妇av片p| 精品免费久久久久久久清纯| 网址你懂的国产日韩在线| 色精品久久人妻99蜜桃| 国产午夜福利久久久久久| 好男人在线观看高清免费视频| 不卡一级毛片| 中文字幕精品亚洲无线码一区| av中文乱码字幕在线| 在线免费观看不下载黄p国产 | 国产一区二区亚洲精品在线观看| 91九色精品人成在线观看| 我要搜黄色片| 一个人看的www免费观看视频| 天天躁日日操中文字幕| 午夜两性在线视频| 精品熟女少妇八av免费久了| 最好的美女福利视频网| 久久草成人影院| 美女大奶头视频| 婷婷丁香在线五月| 91麻豆精品激情在线观看国产| 99热这里只有是精品50| 久久久久久久午夜电影| 亚洲,欧美,日韩| 女人十人毛片免费观看3o分钟| 日韩精品中文字幕看吧| 桃红色精品国产亚洲av| 日韩人妻高清精品专区| 欧美中文日本在线观看视频| 亚洲美女视频黄频| 国产色婷婷99| 丰满乱子伦码专区| 国产伦在线观看视频一区| 岛国在线免费视频观看| 久久国产精品影院| 精品一区二区三区视频在线| 免费看a级黄色片| 精品午夜福利视频在线观看一区| 亚洲综合色惰| 免费观看精品视频网站| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩东京热| 久久亚洲真实| 日本成人三级电影网站| 久久久国产成人免费| 欧美又色又爽又黄视频| 婷婷丁香在线五月| 国产精品一及| 波多野结衣巨乳人妻| 免费观看人在逋| 国语自产精品视频在线第100页| 夜夜夜夜夜久久久久| 亚洲美女黄片视频| 久99久视频精品免费| 欧美日韩黄片免| 国产精品久久久久久人妻精品电影| 天堂av国产一区二区熟女人妻| 少妇裸体淫交视频免费看高清| 午夜精品一区二区三区免费看| 亚洲国产欧美人成| 久久久久久久久久成人| 性插视频无遮挡在线免费观看| 三级男女做爰猛烈吃奶摸视频| 美女cb高潮喷水在线观看| 12—13女人毛片做爰片一| 国产视频内射| 97人妻精品一区二区三区麻豆| 日本三级黄在线观看| 在线免费观看的www视频| 免费一级毛片在线播放高清视频| 欧美一区二区国产精品久久精品| 亚洲,欧美,日韩| 一个人观看的视频www高清免费观看| 成年版毛片免费区| 高清毛片免费观看视频网站| 国产免费一级a男人的天堂| xxxwww97欧美| 久久精品国产自在天天线| 老女人水多毛片| 久久精品综合一区二区三区| 熟妇人妻久久中文字幕3abv| 久久天躁狠狠躁夜夜2o2o| 不卡一级毛片| xxxwww97欧美| 亚洲美女视频黄频| 亚洲av成人精品一区久久| 琪琪午夜伦伦电影理论片6080| 久久久久久久久久成人| 欧美黑人巨大hd| 色哟哟哟哟哟哟| 国产成人av教育| 亚洲国产精品999在线| 国内久久婷婷六月综合欲色啪| 天堂动漫精品| 免费av观看视频| 欧美激情在线99| 日韩中文字幕欧美一区二区| 一级作爱视频免费观看| 久久人人精品亚洲av| 中出人妻视频一区二区| 丰满的人妻完整版| 精品国内亚洲2022精品成人| 美女xxoo啪啪120秒动态图 | 国产欧美日韩一区二区精品| 亚洲美女黄片视频| 中文字幕人妻熟人妻熟丝袜美| 丰满乱子伦码专区| 99久久九九国产精品国产免费| 国产精品嫩草影院av在线观看 | 久久精品国产清高在天天线| 波多野结衣巨乳人妻| 99国产精品一区二区蜜桃av| 欧美日韩黄片免| 国产亚洲欧美98| 男女做爰动态图高潮gif福利片| 国产精品电影一区二区三区| 亚洲av一区综合| 全区人妻精品视频| aaaaa片日本免费| 欧美日韩福利视频一区二区| 国产午夜精品久久久久久一区二区三区 | 国产不卡一卡二| 淫妇啪啪啪对白视频| 一级毛片久久久久久久久女| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久爱视频| 日韩欧美精品v在线| 黄色丝袜av网址大全| 国产精品三级大全| 国产精品乱码一区二三区的特点| 十八禁人妻一区二区| 国产av在哪里看| 欧美国产日韩亚洲一区| 国产亚洲欧美在线一区二区| 欧美精品啪啪一区二区三区| 亚洲欧美日韩高清专用| av国产免费在线观看| 啦啦啦观看免费观看视频高清| 51午夜福利影视在线观看| av天堂中文字幕网| x7x7x7水蜜桃| 丰满的人妻完整版| 在线播放无遮挡| www.www免费av| 亚洲真实伦在线观看| 日本在线视频免费播放| 综合色av麻豆| 欧美激情久久久久久爽电影| 真实男女啪啪啪动态图| 长腿黑丝高跟| 成人国产综合亚洲| 国产美女午夜福利| 久久婷婷人人爽人人干人人爱| 成人精品一区二区免费| 午夜亚洲福利在线播放| 国产毛片a区久久久久| 在线观看午夜福利视频| 精品一区二区三区视频在线观看免费| 亚洲av免费高清在线观看| 精品一区二区三区人妻视频| 精品一区二区三区视频在线| 亚洲第一区二区三区不卡| 男插女下体视频免费在线播放| 国产精品亚洲一级av第二区| 欧美乱妇无乱码| 国产高清视频在线播放一区| 日韩有码中文字幕| 亚洲精品在线观看二区| 国产成人欧美在线观看| avwww免费| 尤物成人国产欧美一区二区三区| 亚洲av免费在线观看| 男女那种视频在线观看| 色哟哟·www| 国产午夜精品论理片| 啪啪无遮挡十八禁网站| 亚洲人成网站在线播放欧美日韩| 国产精品嫩草影院av在线观看 | 国产精品一区二区三区四区免费观看 | 18+在线观看网站| 亚洲av第一区精品v没综合| 网址你懂的国产日韩在线| 午夜免费激情av| 久久久久久九九精品二区国产| 国产亚洲欧美98| 热99在线观看视频| 免费人成在线观看视频色| 天天躁日日操中文字幕| 国产男靠女视频免费网站| 国产成人a区在线观看| 99国产精品一区二区蜜桃av| 97碰自拍视频| 天堂影院成人在线观看| 性色av乱码一区二区三区2| 国产精品综合久久久久久久免费| 精品久久久久久成人av| 舔av片在线| 色哟哟哟哟哟哟| 亚洲国产精品久久男人天堂| 九九热线精品视视频播放| 亚洲国产高清在线一区二区三| 老司机福利观看| 综合色av麻豆| 国产一级毛片七仙女欲春2| 国产精品久久电影中文字幕| 乱人视频在线观看| 我的老师免费观看完整版| 亚洲人成网站在线播| 久久久久久大精品| 精品一区二区三区视频在线观看免费| 欧美极品一区二区三区四区| 亚洲av日韩精品久久久久久密| 亚洲中文字幕日韩| 午夜福利成人在线免费观看| or卡值多少钱| 人妻夜夜爽99麻豆av| 在线播放国产精品三级| 少妇裸体淫交视频免费看高清| 国产爱豆传媒在线观看| 99久久成人亚洲精品观看| 日本a在线网址| 久久欧美精品欧美久久欧美| 亚洲人成网站高清观看| 久久亚洲真实| 亚洲欧美日韩无卡精品|