• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Value Iteration-Based Cooperative Adaptive Optimal Control for Multi-Player Differential Games With Incomplete Information

    2024-03-04 07:44:00YunZhangLuluZhangandYunzeCai
    IEEE/CAA Journal of Automatica Sinica 2024年3期

    Yun Zhang , Lulu Zhang , and Yunze Cai

    Abstract—This paper presents a novel cooperative value iteration (VI)-based adaptive dynamic programming method for multi-player differential game models with a convergence proof.The players are divided into two groups in the learning process and adapt their policies sequentially.Our method removes the dependence of admissible initial policies, which is one of the main drawbacks of the PI-based frameworks.Furthermore, this algorithm enables the players to adapt their control policies without full knowledge of others’ system parameters or control laws.The efficacy of our method is illustrated by three examples.

    I.INTRODUCTION

    TODAY, in areas such as intelligent transportation and military, many complex tasks or functions need to be implemented through the cooperation of multiple agents or controllers.In general, these agents are individualized and have their own different incentives.This individualization forms a multi-player differential game (MPDG) model.In such game models, players are described by ordinary differential equations (ODE) and equipped with different objective functions.Each player needs to interact and cooperate with others to reach a global goal.Dynamic programming (DP) is a basis tool to solve an MPDG problem, but solving the so-called coupled Hamilton-Jacobi-Bellman (CHJB) equations and the“curse of dimensionality” are the main obstacles to the solution.

    To overcome above difficulties, a powerful mechanism called adaptive DP (ADP) [1] was proposed.ADP approximates optimal value functions and corresponding optimal control laws with nonlinear approximators and has been applied successfully in problems of nonlinear optimal control [2], trajectory tracking [3] and resource allocation [4].A wide range of ADP frameworks have been developed so far to deal with different MPDG formulations [5]-[9].Most of state-of-the-art developments are based on policy iteration (PI) for policy learning [6], [10], [11].A common feature of these PI-based methods is that it requires a stabilizing control policy to start the learning process [12].However, this is an overly restrictive assumption, especially when the system is complicated and strongly nonlinear.To relax the above assumption, value iteration (VI) is an important alternative approach which does not need to assume the initial policy is stabilizing.Recently,some variant VI methods have been developed in discretetime linear and nonlinear systems and the convergence proofs of these methods have been considered [13], [14].However, a continuous-time counterpart of the VI method is missing for continuous-time MPDG problem with continuous state and action spaces.It is worth mentioning that in [12], authors propose a VI-based algorithm to obtain the optimal control law for continuous-time nonlinear systems.This result can be a basis for a VI-based ADP framework for MPDG.

    MPDG equipped with incomplete information structure has always been one of the most popular study topics.With incomplete information structure, players do not have complete information of others, such as states and policies.This setting is of practical value because factors like environmental noise or communication limitation may make the complete information assumption fail.No matter what causes the imperfection, it is advantageous for agents to search for optimal policies with less requirement of information.There exist many frameworks proposed to deal with partially or completely unknown information about teammates or opponents in MPDG, where the missing information can be model dynamics or control polices.For unknown dynamics, [15] and[16] introduce a model identifier to reconstruct the unknown system first.Another common way is to remove dynamics parameters from CHJB with the help of PI framework, see [8],[17], [18].However, to compensate for the lack of model information, most studies above require knowledge of the weights of the other players.A few researches attempt to circumvent this limitation.Some studies try to estimate the neighbors’ inputs by limited information available to each player [19], [20].In [21], authors use Q-learning to solve discrete-time cooperative games without knowledge of the dynamics and objective functions of the other players.

    The objective of this article is to provide a VI-based ADP framework for continuous-time MPDG with incomplete information structure.The information structure we are interested in is the one where players do not have knowledge of the others’ dynamics, objective functions or control laws.Firstly, we extend the finite horizon HJB equation in [12] to the best response HJB equation for MPDG.It shows that with the policies of all other players fixed, MPDG problem can be considered as an optimal control problem for a single-controller system.Secondly, we divide players into two categories for learning process.In each learning iteration, only one player adapts its control law and all others do not.With the above design, we give our cooperative VI-based ADP (cVIADP)algorithm.This new algorithm does not need initial admissible policy any more, and it can update control polices by solving an ODE instead of coupled HJB equations.Furthermore,in the learning process of each player, the state of the system and parameters of its own objective function and control law are the only information needed.

    The structure of this article is organized as follows: Section II formulates the MPDG problem and introduces necessary preliminaries about DP and HJB equations.In Section III, our VI-based ADP framework for MPDG is proposed and its convergence is proven.An NN-based implementation of our cVIADP framework is given in Section IV and we prove the estimated weights converge to the optimal solutions.The performance of our algorithm is demonstrated in Section V by two numerical simulations.Finally, the conclusions are drawn in Section VI.

    II.PROBLEM FORMULATION AND PRELIMINARIES

    A. Problem Formulation

    Consider the dynamic system consisting ofNplayers described by

    dent onu-i, when integrating,u-iaffects the trajectory ofx,and affects the valueJiindirectly.

    The classical Nash equilibrium solution to a multi-player game is defined as anN-tuple policywhich satisfy

    An undesirable situation may occur with such definition when each player has no influence on each other’s costs.In this case, every player chooses its own single-controller optimal solution since for any different policies of all other playersu-i,i,

    To rule out such undesirable case, we use the following stronger definition of Nash equilibrium.

    Definition 1(Interactive Nash Equilibrium[22]): AnNtuple policy,...,} is said to constitute an interactive Nash equilibrium solution for anN-player game if, for alli∈[1:N], condition (3) holds and in addition there exists a policyfor player k (k≠i) such that

    The basic MPDG problem is formulated as follows.

    Problem 1: ?i∈[1:N],?x0∈Ω, Find the optimal strategyfor playeriunder the dynamics (1) such that theNtupleconstitutes an interactive Nash equilibrium.

    Problem 1 is assumed that complete information is available to all players.To elaborate the setting of incomplete information, we define an information set of playeriover a time interval [t0,t1] as

    wherex([t0,t1]) represents the state trajectory of all players over a time interval [t0,t1].The MPDG problem with incomplete information is given as below.

    Problem 2: Solve Problem 1 under the assumption that playerihas only access to Fi([t0,t1]) over a time interval[t0,t1].

    Remark 1: The incomplete information structure is characterized by the limit information from neighbors.Note that all elements exceptxin Fi([t0,t1]) are equipped with subscripti,which means objective functions and control policies of neighbors are unavailable for playeri.The statexis the only global information accessible to all players, and the players can only depend on Fi([t0,t1]) to obtain their own optimal polices.

    B. Dynamic Programming for Single-Controller System

    IfN=1, Problem 1 is equivalent to an optimal control problem of a single-controller system.One can solve this problem by dynamic programming (DP) theory.Consider the following finite-horizon HJB equation:

    whereV(x,s):Rn×R →R.

    The following lemma ensures the convergence ofV(x,s),and its proof can be found in [12].

    III.VALUE ITERATION-BASED ADP FOR MULTI-PLAYER GAMES

    In this section, we design a VI framework to obtain optimal policy for each player aimed at Problem 1, and give the convergence proof of this framework.Thus, throughout this section, we assume all players have complete information of the game model temporarily.

    Define the best response HJB function for playerias (7)with arbitrary policies μ-i,

    withVi(·,0)=V0(·).

    Assumption 1:V0(·)∈P is proper and (10) admits a unique solution.

    First we introduce the following lemma, which can be considered as an extension of Lemma 1 for multi-player systems.

    We borrow the concepts ofadaptingplayers andnon-adaptingplayers in [21].As defined therein, the adapting player is the one who is currently exciting the system and adapting its control law while non-adapting players keep their policies unchanged.

    3)Role Switching: Select another playeri+1 as the adapting player, and the playeriis set to be non-adapting.

    Remark 2: In Step 3, all players are pre-ordered as a loop.After the adaptation of playerNends, player 1 is selected as a new circulation.

    Remark 3: The cooperation among players shows up in two ways.On the one hand, players need to communicate with each other to obtain necessary information for iterations.On the other hand, as stated in Remark 2, players need to negotiate to determine an order.

    The following theorem shows the convergence of the cooperative VI.

    Proof: Lets→∞ in (11), and with (12), one has

    From (12) again, it has

    Therefore,

    According to (16) and (17), it follows that:

    and by integration we have

    IV.NN-BASED IMPLEMENTATION OF COOPERATIVE VI-BASED ADP WITH INCOMPLETE INFORMATION

    The VI framework introduced in Section III depends on complete information ofTo circumvent this assumption and solve Problem 2, an NN-based implementation of cooperative VI is given in this section.

    Remark 5:The choice of the basis function family varies from case to case.Polynomial terms, sigmoid and tanh function are commonly used.Polynomial basis can approximate functions in P more easily and with appropriate choice, the approximation scope can be global.Sigmoid or tanh functions are more common in neural network and have good performance in local approximation.

    The corresponding estimation of μiis given by

    Remark 7: The role of Line 7 in Algorithm 1 is to excite the adapting player and satisfy the Assumption 2.At the same time, since the convergence of the best response HJB equation in Lemma 2 is based on fixed policy μ-i, the probing noise is only added to the adapting player and the other players follow their own policies without noise.

    Proof: The proof consists of two steps.Step one, show that the the solutionconverges asymptotically to.Since the policies of all other players are fixed, (25) is the best response HJB equation (10) for playeri.Let

    In this section, we present several examples to verify the performance of the proposed VI algorithm in Section IV.

    A. Example 1: A 2-Player Nonlinear Game

    First, we consider a 2-player nonlinear game where the input gain matricesgi(x),i=1,2 are constant.The system model is described by

    Fig.1 shows the evolutions of]converge after 33 iterations for each controller.The estimated value surfaces ofare depicted in Fig.2, which verify that∈P.Fig.3 shows the system trajectory with the same initial state under initial and learned control laws.The policy obtained by our cVIADP makes the system converge to the equilibrium point more quickly and eliminate the static error of initial policy.

    Remark 9:Notice that in Fig.2, the value ofV?[k]increases

    Fig.1.Updates of weights of two controllers in Example 1.

    Fig.2.Value surfaces of estimated functions V?[k] for different k in Example 1.

    Fig.3.Evolutions of system states with learned policy (solid) and initial policy (dashed) in Example 1.

    B. Example 2: A 3-Player Nonlinear Game

    dependentgi(x).The dynamics is described as follows [15]:

    Next, we consider a 3-player nonlinear game with state-

    Fig.4 shows the evolutions ofThe algorithm converges after 15 iterations for each player.The iterations ofare depicted in Fig.5.To test the performance of the learned policy, both the policies after and before the learning process are applied to the system with the same initial conditions.Fig.6 shows the evolution of the system state.Notice that the system with the initial policy is unstable.However after learning, the policy can stabilize the system.This experiment shows that our cVIADP algorithm can work without the dependence of initial admissible policy, which is the main limit of PI-based algorithms.

    Fig.4.Updates of weights of three controllers in Example 2.

    C. Example 3: A Three-Agent Linear Game

    Finally, we consider a non-zero-sum game consisting of three agents with linear independent systemsx˙i=Aixi+Biui,i=1, 2, 3, given by

    Fig.5.Value surfaces of estimated functions V?[k] for different k in Example 2.

    Fig.6.Evolution of system states with learned policy (solid) and initial policy (dashed) in Example 2.

    Letx=[x1,x2,x3]T, and (32) can be integrated into the same form as (1) withf=diag{A1,A2,A3}1d iag{A1,A2,A3} is a block matrix whose diagonal elements are A 1,A2,A3 and zero otherwise.,g1=[BT1, 01×2,01×2]T,g2=[01×2,BT2, 01×2]Tandg3=[01×2, 01×2,]T.

    The parameters of objective functions areQ1=I2,Q2=2I2,Q3=0.5I3,R1=2R2=R3=1.The basis function family is chosen as {?i(x)}=∪1≤p≤q≤3{xq} and the corresponding partial derivative { ?x?i(x)} is calculated.

    The value surfaces of the estimated value functionsV?iwith respect toxiare plotted in Fig.7.In each sub-figure, the statex-iis fixed asx-i(0).As we can see from Fig.8, the ADP algorithm converges after 7 iterations for each player.Fig.9 shows the state evolutions of three agents, indicating the learned policies stabilize all agents.

    Fig.7.Value surfaces of estimated function V?i in Example 3.In each subfigure, the state x-i is fixed at x-i(0) and the surfaces illustrate the graph ofV?i w.r.t xi.

    Fig.8.Updates of weights of three agents in Example 3.

    Fig.9.State evolutions of three agents in Example 3.

    VI.CONCLUSION

    In this paper, we propose a cooperative VI-based ADP algorithm for continuous-time MPDG problem.In cVIADP, players learn their optimal control policies in order without knowing parameters of other players.The value functions and control policies of players are estimated by NN approximators,and their policy weights are updated via an ordinary differential equation.Furthermore, the requirement of stabilizing initial control policies of PI-based algorithm is removed.In future work, we will focus on practical implementation aspects such as role switching mechanism and efficient excitation.

    男人操女人黄网站| 久久狼人影院| 欧美性长视频在线观看| 国产精品一区二区在线不卡| 操美女的视频在线观看| 如日韩欧美国产精品一区二区三区| 日本a在线网址| 国产亚洲精品久久久久5区| 日韩欧美三级三区| 久久国产精品男人的天堂亚洲| 久久人人97超碰香蕉20202| 亚洲人成网站在线播放欧美日韩| 国产伦一二天堂av在线观看| 在线观看免费高清a一片| 免费观看精品视频网站| 成人18禁高潮啪啪吃奶动态图| 熟女少妇亚洲综合色aaa.| 最新在线观看一区二区三区| 国产精品99久久99久久久不卡| 大码成人一级视频| 99国产综合亚洲精品| 女生性感内裤真人,穿戴方法视频| 男女下面进入的视频免费午夜 | av中文乱码字幕在线| 亚洲午夜精品一区,二区,三区| 在线国产一区二区在线| 中文字幕最新亚洲高清| 18禁黄网站禁片午夜丰满| 母亲3免费完整高清在线观看| 国产精品一区二区三区四区久久 | 国产一区二区三区综合在线观看| 丁香欧美五月| 男人舔女人的私密视频| 九色亚洲精品在线播放| 亚洲专区字幕在线| 欧美另类亚洲清纯唯美| 欧美成狂野欧美在线观看| а√天堂www在线а√下载| 成人亚洲精品一区在线观看| 久久精品国产清高在天天线| 在线永久观看黄色视频| 村上凉子中文字幕在线| 精品一区二区三区视频在线观看免费 | 欧美乱妇无乱码| 国产午夜精品久久久久久| 欧美日本亚洲视频在线播放| 动漫黄色视频在线观看| 老熟妇乱子伦视频在线观看| 一本综合久久免费| 一级毛片精品| 精品国内亚洲2022精品成人| 欧美中文综合在线视频| 国产激情久久老熟女| 三级毛片av免费| 天天添夜夜摸| 中文字幕人妻丝袜一区二区| 日本 av在线| 国产野战对白在线观看| 国产精品综合久久久久久久免费 | 久久久国产成人精品二区 | 变态另类成人亚洲欧美熟女 | 成人影院久久| 亚洲男人的天堂狠狠| 欧美黄色淫秽网站| 首页视频小说图片口味搜索| 亚洲成a人片在线一区二区| 欧美中文日本在线观看视频| 午夜老司机福利片| 日本vs欧美在线观看视频| 国产熟女午夜一区二区三区| 免费看十八禁软件| 亚洲国产精品一区二区三区在线| 中文字幕人妻丝袜制服| av在线天堂中文字幕 | 久久久久久久午夜电影 | 后天国语完整版免费观看| 日本a在线网址| 久久99一区二区三区| 性色av乱码一区二区三区2| 久久久久久久午夜电影 | 久久伊人香网站| 亚洲成a人片在线一区二区| 老司机福利观看| 自拍欧美九色日韩亚洲蝌蚪91| 99香蕉大伊视频| 成人手机av| 久久精品成人免费网站| 亚洲一码二码三码区别大吗| 色精品久久人妻99蜜桃| 大香蕉久久成人网| 精品熟女少妇八av免费久了| 久久午夜亚洲精品久久| 久久香蕉激情| 久99久视频精品免费| 两性夫妻黄色片| 成年人黄色毛片网站| 桃红色精品国产亚洲av| 亚洲人成电影免费在线| 精品熟女少妇八av免费久了| 极品人妻少妇av视频| 十分钟在线观看高清视频www| 国产成人啪精品午夜网站| 免费av中文字幕在线| 久久热在线av| 黑人欧美特级aaaaaa片| 中文字幕av电影在线播放| 黑人欧美特级aaaaaa片| 丁香六月欧美| 一区二区三区国产精品乱码| 欧美日韩国产mv在线观看视频| 成人永久免费在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜91福利影院| 老熟妇乱子伦视频在线观看| 亚洲国产欧美日韩在线播放| 自线自在国产av| 色在线成人网| 国产日韩一区二区三区精品不卡| 美女午夜性视频免费| 国产欧美日韩综合在线一区二区| 女警被强在线播放| 91av网站免费观看| 啪啪无遮挡十八禁网站| 18美女黄网站色大片免费观看| 91国产中文字幕| 麻豆av在线久日| 欧美乱妇无乱码| bbb黄色大片| 欧美中文综合在线视频| 亚洲精品国产一区二区精华液| 欧美成人免费av一区二区三区| av网站在线播放免费| 成人影院久久| 天堂俺去俺来也www色官网| 老汉色av国产亚洲站长工具| 日本精品一区二区三区蜜桃| 国产三级黄色录像| 天天添夜夜摸| cao死你这个sao货| 精品福利永久在线观看| 91国产中文字幕| x7x7x7水蜜桃| 丰满人妻熟妇乱又伦精品不卡| 精品第一国产精品| 国产精品电影一区二区三区| 99国产精品99久久久久| 亚洲va日本ⅴa欧美va伊人久久| 老司机在亚洲福利影院| 午夜视频精品福利| 999久久久国产精品视频| 亚洲第一av免费看| 亚洲,欧美精品.| 人人妻人人爽人人添夜夜欢视频| 女生性感内裤真人,穿戴方法视频| 亚洲九九香蕉| 日韩高清综合在线| 电影成人av| 中文字幕人妻熟女乱码| 日韩一卡2卡3卡4卡2021年| 久久午夜综合久久蜜桃| 99精品在免费线老司机午夜| 热re99久久国产66热| 久久青草综合色| 91九色精品人成在线观看| 亚洲国产精品合色在线| 一边摸一边做爽爽视频免费| 韩国精品一区二区三区| 国产不卡一卡二| 日韩三级视频一区二区三区| 精品久久久久久久毛片微露脸| 国产精品 国内视频| 操出白浆在线播放| 欧洲精品卡2卡3卡4卡5卡区| 夜夜躁狠狠躁天天躁| 国产亚洲精品综合一区在线观看 | 久久影院123| 国产在线精品亚洲第一网站| 国产成人免费无遮挡视频| 国产伦一二天堂av在线观看| 一区二区三区激情视频| 亚洲国产精品999在线| 欧美激情 高清一区二区三区| 日本免费a在线| 欧美日韩福利视频一区二区| 丰满人妻熟妇乱又伦精品不卡| 免费观看精品视频网站| 老司机亚洲免费影院| 亚洲成人久久性| 啦啦啦免费观看视频1| a级片在线免费高清观看视频| 十八禁网站免费在线| 人成视频在线观看免费观看| 热99re8久久精品国产| 成人18禁在线播放| 91精品国产国语对白视频| 黑人巨大精品欧美一区二区mp4| 久久人人精品亚洲av| 在线免费观看的www视频| 久久中文字幕人妻熟女| 久久精品亚洲av国产电影网| 久久草成人影院| 久久国产亚洲av麻豆专区| 亚洲精品一卡2卡三卡4卡5卡| 18禁观看日本| 亚洲国产看品久久| 久久香蕉国产精品| cao死你这个sao货| 国产麻豆69| 成人影院久久| 亚洲va日本ⅴa欧美va伊人久久| 久久精品91蜜桃| 天天影视国产精品| 黄色视频不卡| 国产精品久久视频播放| 极品人妻少妇av视频| 久久热在线av| 成人永久免费在线观看视频| 天堂俺去俺来也www色官网| av在线播放免费不卡| av有码第一页| 亚洲一码二码三码区别大吗| 99riav亚洲国产免费| 免费不卡黄色视频| 亚洲欧美日韩高清在线视频| 黄色成人免费大全| 国产精品影院久久| 岛国视频午夜一区免费看| 香蕉丝袜av| 国产av又大| 男女高潮啪啪啪动态图| 欧美乱色亚洲激情| 好男人电影高清在线观看| 日本 av在线| 亚洲熟妇熟女久久| 午夜亚洲福利在线播放| 别揉我奶头~嗯~啊~动态视频| 欧美成人免费av一区二区三区| 黄色怎么调成土黄色| 侵犯人妻中文字幕一二三四区| 97碰自拍视频| 亚洲久久久国产精品| 中国美女看黄片| 丰满人妻熟妇乱又伦精品不卡| 精品高清国产在线一区| 国产视频一区二区在线看| 亚洲第一av免费看| 精品久久久久久久毛片微露脸| 超色免费av| 亚洲男人的天堂狠狠| 精品卡一卡二卡四卡免费| 麻豆成人av在线观看| 国产一区在线观看成人免费| 国产精品爽爽va在线观看网站 | 丰满迷人的少妇在线观看| 手机成人av网站| 97碰自拍视频| 欧美黑人欧美精品刺激| 亚洲精华国产精华精| 亚洲免费av在线视频| 国产精品电影一区二区三区| 精品一区二区三区视频在线观看免费 | 一二三四在线观看免费中文在| 亚洲第一av免费看| 午夜福利免费观看在线| 欧美精品一区二区免费开放| 国内久久婷婷六月综合欲色啪| 女人爽到高潮嗷嗷叫在线视频| 黄色 视频免费看| 80岁老熟妇乱子伦牲交| 1024视频免费在线观看| videosex国产| 18禁裸乳无遮挡免费网站照片 | 日日夜夜操网爽| 变态另类成人亚洲欧美熟女 | 婷婷精品国产亚洲av在线| 欧美激情极品国产一区二区三区| 老鸭窝网址在线观看| 欧美中文综合在线视频| 9热在线视频观看99| 欧美+亚洲+日韩+国产| www.999成人在线观看| 桃红色精品国产亚洲av| 多毛熟女@视频| 无限看片的www在线观看| 久久人人精品亚洲av| 国产精品自产拍在线观看55亚洲| 无人区码免费观看不卡| 精品国内亚洲2022精品成人| 麻豆久久精品国产亚洲av | 国产成人一区二区三区免费视频网站| 欧美久久黑人一区二区| 亚洲欧美日韩另类电影网站| 亚洲精品一二三| 18美女黄网站色大片免费观看| 欧美中文综合在线视频| 欧美精品亚洲一区二区| 亚洲第一av免费看| 狠狠狠狠99中文字幕| 成人三级做爰电影| 高清欧美精品videossex| 波多野结衣av一区二区av| 叶爱在线成人免费视频播放| 97超级碰碰碰精品色视频在线观看| 亚洲中文日韩欧美视频| 伊人久久大香线蕉亚洲五| 黄色视频不卡| 日本wwww免费看| 窝窝影院91人妻| 97碰自拍视频| 天天添夜夜摸| 两人在一起打扑克的视频| 亚洲av片天天在线观看| 婷婷精品国产亚洲av在线| 亚洲av电影在线进入| 在线观看日韩欧美| 精品国内亚洲2022精品成人| 久久人人97超碰香蕉20202| 天堂√8在线中文| 久99久视频精品免费| 精品卡一卡二卡四卡免费| 波多野结衣高清无吗| 精品久久久久久久毛片微露脸| 国产成人欧美在线观看| 香蕉久久夜色| av欧美777| 久久九九热精品免费| 日韩大尺度精品在线看网址 | 热re99久久精品国产66热6| 国产欧美日韩精品亚洲av| 别揉我奶头~嗯~啊~动态视频| 精品高清国产在线一区| 神马国产精品三级电影在线观看 | 亚洲精品国产区一区二| 亚洲精品一区av在线观看| 亚洲精品国产精品久久久不卡| 午夜精品久久久久久毛片777| 精品一区二区三区av网在线观看| 精品国产超薄肉色丝袜足j| 老汉色av国产亚洲站长工具| 欧美精品一区二区免费开放| 日韩大尺度精品在线看网址 | 欧美日韩亚洲高清精品| 黄色视频不卡| 极品人妻少妇av视频| 一区二区三区国产精品乱码| 久久久精品欧美日韩精品| 中国美女看黄片| 亚洲欧美日韩高清在线视频| 日本免费一区二区三区高清不卡 | 国产一区二区在线av高清观看| 很黄的视频免费| 不卡av一区二区三区| avwww免费| 成人手机av| 看免费av毛片| 91字幕亚洲| videosex国产| 校园春色视频在线观看| 国产99白浆流出| 视频区欧美日本亚洲| 婷婷丁香在线五月| 国产乱人伦免费视频| 亚洲,欧美精品.| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人免费无遮挡视频| 久久国产乱子伦精品免费另类| 免费搜索国产男女视频| 久久人妻av系列| 天天躁夜夜躁狠狠躁躁| 国产精品av久久久久免费| 亚洲欧美精品综合久久99| 超碰成人久久| 久热这里只有精品99| 国产成人av教育| 中文字幕精品免费在线观看视频| 国产又爽黄色视频| 一个人观看的视频www高清免费观看 | 成熟少妇高潮喷水视频| 日韩中文字幕欧美一区二区| 亚洲精品美女久久av网站| 欧美丝袜亚洲另类 | 国产精品国产高清国产av| 日韩欧美三级三区| 日本wwww免费看| 久久国产精品影院| 亚洲熟妇熟女久久| 国产国语露脸激情在线看| 黑人操中国人逼视频| 亚洲成人精品中文字幕电影 | 久久久国产一区二区| 亚洲三区欧美一区| 久久久久久大精品| 成人三级做爰电影| 在线观看www视频免费| 国产一区二区三区在线臀色熟女 | 天天躁狠狠躁夜夜躁狠狠躁| 日韩人妻精品一区2区三区| 精品一区二区三区av网在线观看| av中文乱码字幕在线| av超薄肉色丝袜交足视频| 精品久久久久久久久久免费视频 | 午夜福利免费观看在线| 精品日产1卡2卡| 黄色 视频免费看| 久久人妻福利社区极品人妻图片| 日本三级黄在线观看| 欧美一区二区精品小视频在线| 男女之事视频高清在线观看| 精品第一国产精品| 亚洲精品一区av在线观看| 久久亚洲真实| 国产激情欧美一区二区| 欧美av亚洲av综合av国产av| 久久久久久久久久久久大奶| 国产精品野战在线观看 | aaaaa片日本免费| 亚洲精品一卡2卡三卡4卡5卡| 成人亚洲精品一区在线观看| 午夜成年电影在线免费观看| 999久久久国产精品视频| 18禁美女被吸乳视频| 成人18禁高潮啪啪吃奶动态图| 好男人电影高清在线观看| 亚洲国产精品一区二区三区在线| 国产高清videossex| 国产无遮挡羞羞视频在线观看| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费 | 俄罗斯特黄特色一大片| 久久午夜综合久久蜜桃| 亚洲自拍偷在线| 久99久视频精品免费| 国产乱人伦免费视频| 久久久久久大精品| 国产激情久久老熟女| 亚洲专区中文字幕在线| a级毛片在线看网站| 国产成人免费无遮挡视频| 亚洲激情在线av| 久久久国产成人精品二区 | 人成视频在线观看免费观看| 国产99久久九九免费精品| 日本欧美视频一区| 久99久视频精品免费| 欧美日韩av久久| 亚洲性夜色夜夜综合| 亚洲国产中文字幕在线视频| 亚洲 国产 在线| 一级片免费观看大全| 夜夜躁狠狠躁天天躁| 99re在线观看精品视频| 在线观看日韩欧美| 一边摸一边抽搐一进一出视频| 一a级毛片在线观看| 99精品久久久久人妻精品| 一边摸一边抽搐一进一出视频| 琪琪午夜伦伦电影理论片6080| 搡老乐熟女国产| 国产亚洲精品第一综合不卡| 欧美人与性动交α欧美精品济南到| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久av网站| 欧美中文综合在线视频| 婷婷精品国产亚洲av在线| www.www免费av| 成人永久免费在线观看视频| 欧美日本中文国产一区发布| 久久草成人影院| 精品国产美女av久久久久小说| 精品熟女少妇八av免费久了| 老司机在亚洲福利影院| 亚洲av日韩精品久久久久久密| 亚洲欧洲精品一区二区精品久久久| 亚洲成人精品中文字幕电影 | 可以在线观看毛片的网站| 国产精品香港三级国产av潘金莲| 三级毛片av免费| 妹子高潮喷水视频| 一个人观看的视频www高清免费观看 | 在线观看www视频免费| 免费人成视频x8x8入口观看| 成人精品一区二区免费| www.999成人在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品男人的天堂亚洲| aaaaa片日本免费| 少妇粗大呻吟视频| 大香蕉久久成人网| 变态另类成人亚洲欧美熟女 | 欧美在线一区亚洲| 色播在线永久视频| 亚洲av成人av| 久久热在线av| 日韩欧美一区视频在线观看| 久久久国产成人精品二区 | 国产国语露脸激情在线看| 不卡一级毛片| a在线观看视频网站| 亚洲一区中文字幕在线| 叶爱在线成人免费视频播放| 精品高清国产在线一区| 国产一区二区在线av高清观看| 丰满迷人的少妇在线观看| 另类亚洲欧美激情| 熟女少妇亚洲综合色aaa.| 国产三级在线视频| bbb黄色大片| 悠悠久久av| tocl精华| 亚洲欧美激情在线| 精品福利永久在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲第一av免费看| 操美女的视频在线观看| 亚洲 国产 在线| 18禁黄网站禁片午夜丰满| 亚洲一区二区三区色噜噜 | 我的亚洲天堂| 精品一品国产午夜福利视频| 亚洲第一欧美日韩一区二区三区| 国产男靠女视频免费网站| 精品国产一区二区久久| 亚洲专区中文字幕在线| 国产熟女午夜一区二区三区| 天堂俺去俺来也www色官网| 国产精品久久视频播放| 曰老女人黄片| 男女下面插进去视频免费观看| 一本大道久久a久久精品| 99精国产麻豆久久婷婷| 一级毛片高清免费大全| 在线天堂中文资源库| 久久青草综合色| 免费高清视频大片| 人人妻人人添人人爽欧美一区卜| 亚洲第一青青草原| 正在播放国产对白刺激| 少妇被粗大的猛进出69影院| 成人亚洲精品av一区二区 | 国产区一区二久久| 亚洲精品一区av在线观看| 精品国产一区二区久久| 欧美+亚洲+日韩+国产| 18禁黄网站禁片午夜丰满| 一进一出抽搐gif免费好疼 | 麻豆成人av在线观看| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 亚洲aⅴ乱码一区二区在线播放 | 国产高清视频在线播放一区| 男人操女人黄网站| 麻豆久久精品国产亚洲av | 国产精品亚洲一级av第二区| 久久精品91无色码中文字幕| 黄色成人免费大全| 亚洲人成电影观看| 日韩中文字幕欧美一区二区| 超色免费av| 老汉色∧v一级毛片| 久久香蕉激情| ponron亚洲| 三级毛片av免费| 日韩欧美国产一区二区入口| 国产欧美日韩综合在线一区二区| 日本免费一区二区三区高清不卡 | 中文欧美无线码| 亚洲精品成人av观看孕妇| www.www免费av| 一区二区三区激情视频| 两性夫妻黄色片| 999精品在线视频| 后天国语完整版免费观看| 亚洲专区中文字幕在线| av福利片在线| 黑人巨大精品欧美一区二区蜜桃| aaaaa片日本免费| 久久久国产欧美日韩av| 首页视频小说图片口味搜索| 在线视频色国产色| 老司机午夜福利在线观看视频| 巨乳人妻的诱惑在线观看| 欧美成人免费av一区二区三区| 在线观看一区二区三区| 国产精品永久免费网站| 久久中文看片网| 黄色a级毛片大全视频| 99在线人妻在线中文字幕| 黄色毛片三级朝国网站| 国产亚洲欧美在线一区二区| 色综合婷婷激情| 少妇裸体淫交视频免费看高清 | 免费观看精品视频网站| 女性生殖器流出的白浆| 99久久99久久久精品蜜桃| 国产亚洲精品久久久久5区| 欧美不卡视频在线免费观看 | 精品久久蜜臀av无| 久久狼人影院| 国产av一区在线观看免费| 免费在线观看完整版高清| 亚洲欧美日韩高清在线视频| 亚洲精品国产精品久久久不卡| 精品国产国语对白av| 99精国产麻豆久久婷婷| 日韩国内少妇激情av| 啪啪无遮挡十八禁网站| 夜夜看夜夜爽夜夜摸 | 成人影院久久| 长腿黑丝高跟| 精品国产国语对白av| 天堂中文最新版在线下载| 欧美不卡视频在线免费观看 | 别揉我奶头~嗯~啊~动态视频| www.自偷自拍.com| 亚洲一区高清亚洲精品|