• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Statistical higher-order multi-scale method for nonlinear thermo-mechanical simulation of composite structures with periodically random configurations

    2024-02-28 11:53:44DONGHaoCUIJunzhi

    DONG Hao, CUI Jun-zhi

    (1.School of Mathematics and Statistics,Xidian University,Xi’an 710071,China;2.Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China)

    Abstract: Stochastic multi-scale modeling and simulation for nonlinear thermo-mechanical problems of composite structures with complicated random microstructures remains a challenging issue.In this paper,we develop a novel statistical higher-order multi-scale (SHOMS) method for nonlinear thermo-mechanical simulation of composite structures with periodically random configurations,which is designed to overcome limitations of prohibitive computation involving the macro-scale and micro-scale.By virtue of statistical multi-scale asymptotic analysis and Taylor series method,the SHOMS computational model is rigorously derived for accurately analyzing nonlinear thermo-mechanical responses of random composite structures both in the macro-scale and micro-scale.Moreover,the local error analysis of SHOMS solutions in the point-wise sense clearly illustrates the crucial indispensability of establishing the higher-order asymptotic corrected terms in SHOMS computational model for keeping the conservation of local energy and momentum.Then,the corresponding space-time multi-scale numerical algorithm with off-line and on-line stages is designed to efficiently simulate nonlinear thermo-mechanical behaviors of random composite structures.Finally,extensive numerical experiments are presented to gauge the efficiency and accuracy of the proposed SHOMS approach.

    Key words: random composite structures;nonlinear thermo-mechanical simulation;SHOMS computational model;space-time multi-scale algorithm;local error analysis

    1 Introduction

    Random composite materials have been extensively applied in a variety of engineering sectors,such as aviation,aerospace,civil construction and smart structures,etc.By randomly distributing high-performance fibrous or particulate materials into ordinary matrix material,these synthetic composite materials exhibit high temperature resistance,high fatigue resistance and high fracture resistance,etc[1,2].Especially in aviation and aerospace industries,engineering structures often served under extreme heat environment while the thermal and mechanical properties of component materials exhibit obviously temperature-dependent feature.These complicated nonlinear behaviors and randomly geometric heterogeneities of the composite structures raise a grand challenge to effective numerical simulation[3].

    To the best of our knowledge,traditional numerical methods including the finite element method(FEM)[4],boundary element method[5]and meshless method[6]have been adopted to the simulation of nonlinear thermo-mechanical problems.Moreover,Abdoun et al.[7]used homotopy and asymptotic numerical method to simulate and analyze the thermal buckling and vibration of laminated composite plates with temperature-dependent properties.Najibi et al.[8]employed higher-order graded finite element method to conduct thermal stress analysis for a hollow FGM cylinder with nonlinear temperature-dependent material properties.In Ref.[9],the state space method and transfer-matrix method are adopted to obtain the displacements and stresses for the thick beams with temperature-dependent material properties under thermo-mechanical loads.However,the direct numerical simulation for composite materials needs a tremendous amount of computational resources or even ineffective to capture their microscopic behaviors due to highly heterogeneous components.

    To accomplish effective modeling and efficient simulation for inhomogeneous materials,scientists and engineers presented a variety of multi-scale methods,such as asymptotic homogenization method(AHM)[10],multi-scale finite element method (MsFEM)[11],heterogeneous multi-scale method(HMM)[12],variational multi-scale method(VMS)[13],multi-scale eigenelement method (MEM)[14],localized orthogonal decomposition method (LOD)[15]and finite volume based asymptotic homogenization theory(FVBAHT)[16],etc.However,numerical computation and theoretical analysis find that most of above-mentioned multi-scale methods are lower-order(first-order) multi-scale method in essence[17,18],which can only capture macroscopic and inadequate microscopic information of heterogeneous materials,especially for high-contrast composite materials.To improve inadequate numerical accuracy of classical lower-order multi-scale approaches,Cui and his research team systematically developed a class of higher-order (second-order) multi-scale methods,whose numerical accuracy is significantly improved for simulating authentic composite materials.Hence,these higher-order multi-scale approaches are extensively used in multi-physics coupling problem,stochastic problem,structural mechanics problem and nonlinear multi-scale problem of heterogeneous materials,etc[19-23].The reviews of above-mentioned multi-scale approaches show that these methods have a strong potential to encourage important advances in modeling and simulating a certain range of composites’ behaviors.However,they still need to be improved for random composite materials with complex non-deterministic microstructure.The uncertainties in the microstructure prominently affect the mechanical properties of the composite materials.Some stochastic multi-scale computational schemes have been established in recent years based on perturbation-based stochastic finite element method[24-26],spectral stochastic finite element method[27-30]and stochastic collocation method[31,32]for specific problems.Especially in Ref.[30],the spectral stochastic FEM is applied to analysis multiple-random field RC structures.Furthermore,combining with Monte Carlo method,the higher-order multi-scale methods proposed by Cui and his research team have been applied to simulate a wide range of physical behaviors of random composite materials[19,20,23,33,34].However,there are few works about multi-scale thermo-mechanical simulation of random composite materials with temperature-dependent properties.Hence,it is of great theoretical and engineering values to develop effective multi-scale approaches for nonlinear thermo-mechanical simulation of random composite materials.

    2 Statistical higher-order multi-scale computational model

    2.1 Microscopic representation of random composite

    The primary challenge for solving random multi-scale problems pertains to their auxiliary cell problems defined on the entire spaceΝ(Ν=2,3).To tackle this challenge,by using “periodization” and “cutoff” techniques in previous studies[19,20,23],the unit cell problems defined on macroscopic composite structureΩare approximated by transforming them into unit cell problems on a finite domain so-called microscopic unit cellYs(s=1,2,3,…denotes the index of random samples) with spatial sizeεand infinite random sampling,see Fig.1 for a schematic explanation,which corresponds to random sampleωsobeying a given probability distribution modelP(ω) with random variableω.

    In this study,the investigated composite structures are comprised of matrix and randomly distributed reinforced (or soften) particles or fibers,or porous media[35,36],as shown in Fig.2.Based on computer representation idea and its improved algorithm devised by Li et al.[37,38],we employ open-source Freefem++ software to establish the detailed computer representation algorithm for generating microscopic configurations of random composite materials as follows.

    Fig.1 Composite structures with periodically random configurations

    Fig.2 Random composite structures with different microscopic configurations

    (S1) Regarding random particulate and fibrous materials in Fig.2,the probability distribution model is first employed to generate the random geometric parameters (x1,x2,a,b,θ1) or (x1,x2,x3,a,b,c,θ1,θ2,θ3) for 2D or 3D randomly distributed configurations.

    (S2) Then,judge whether the newly generated configuration is located inside RVE and whether the newly generated configuration intersects with other previously generated configurations.We use whether the distance between the central points of the previously generated configurations and newly generated configuration is greater than the sum of the radii of both configurations as criterion.Additionally,to enhance the packing ratio of microscopic inclusions,we use the following rule as revised discriminate criterion:There exist such intersection points on previous configuration those connect the centers of previous ones with the points on the surfaces of new generated configuration.

    (S3) When generating a sufficient amount of microscopic configurations,mesh generation algorithm based on Delaunay Refinement method (Freefem++ command:“buildmesh” or “tetg” for 2D or 3D geometrical configurations,respectively) is adopted to create the microscopic configurations of the investigated random composites[39].

    For geometric parameters(x1,x2,a,b,θ1)in 2D case,x1andx2represent the central coordinates of the elliptical inclusion for thex-axis andy-axis.aandbdenote the lengths of the long half-axis and short half-axis of the elliptical inclusion andθ1represents the intersection angle between the long half-axis of the elliptical inclusion and thex-axis.For geometric parameters (x1,x2,x3,a,b,c,θ1,θ2,θ3) in 3D case,x1,x2andx3are the central coordinates of the ellipsoidal inclusion for thex-axis,y-axis andz-axis.a,bandcdenote the lengths of the long half-axis,middle half-axis and short half-axis of the ellipsoidal inclusion.θ1,θ2andθ3are the three Euler angles of the ellipsoidal inclusion,respectively.Moreover,by increasing the ratio of their long half-axis to short half-axis,the elliptical or ellipsoidal particles can be changed as fibrous inclusions.To sum up,the above methodologies accomplish the effective generation of finite element mesh for random composites.

    2.2 Stochastic multi-scale nonlinear thermo-mechanical problems

    Based on the classical thermo-mechanical model[3],the stochastic governing equations for describing the nonlinear thermo-mechanical problems of composite structures with periodically random configurations are set up,whose material parameters all possess the temperature-dependent properties.

    (1)

    where notationΩrepresents a bounded convex domain inΝ(Ν=2,3) with a boundary ?ΩT∪?Ωu∪?Ωq∪?Ωσ.In the micro-scale,the domainΩcan be defined by a statistical periodic layout of microscopic unit cellYscorresponding to random sampleωs.The characteristic size of microscopic cellYsis characterized by a parameterε.TheTε(x,t,ω) andε(x,Tε,ω) is the mass density;cε(x,Tε,ω) is specificthe second order thermal modulus tensor.Furthermore,we assume that all material parameters satisfy Lipschitz continuous condition with respect to temperature variableTεand are statistical periodicis the prescribed temperature on the boundaryis the prescribed heat flux normal to the boundary ?Ωqwith the normal vectorni,andis the prescribed traction on the boundary ?Ωσwith the normal vectoris the initial temperature;The internal heat source and body forces are represented byh(x,t) andfi(x,t),respectively.To begin with,let us sety=x/εas microscopic coordinates of statistical periodic unit cellYs=[0,1]N.With this notation,we have the chain rule for the spatial scales as follows.

    (2)

    which will be extensively used in the sequel.

    2.3 Statistical higher-order multi-scale computational model

    (3)

    By aid of the above Taylor’s formula(4) and multi-index notation(5),the material parameters depending on temperatureTεthus can be expanded as follows[22]

    kij(y,T0+εT1+ε2T2+O(ε3),ω)=

    kij(y,T0,ω)+D(0,1,0)kij(y,T0,ω)[εT1+ε2T2+

    O(ε3)]2+O([εT1+ε2T2+O(ε3)]3)=

    kij(y,T0,ω)+εT1D(0,1,0)kij+

    (4)

    cε(x,Tε,ω)=c(0)+εc(1)+ε2c(2)+O(ε3)

    (5)

    By substituting equations (3)-(5) into the multi-scale coupling problem (1) and utilizing the chain rule (2),we can expand the derivatives and match terms with the same order of the small parameterε.Then,according to the similar higher-order multi-scale analysis in Ref.[22],O(ε-2)-order equations allow us to reasonably obtain the following results

    (6)

    And then,according to O(ε-1)-order equations,the first-order correctorsT1andui1can be individually constructed as follows

    (7)

    (8)

    (9)

    (10)

    Subsequently,we perform a volume integral on both sides ofO(ε0)-order equations on microscopic unit cellYsand apply the Gauss theorem onO(ε-1)-order equations.By further applying the Kolmogorov’s strong law of large numbers,the macroscopic homogenized equations associated with multi-scale problem (1) are derived as follows

    (11)

    where the macroscopic homogenized material parameters in (11) are defined as follows

    (12)

    The effective material coefficients in (12) are evaluated using the following formulas,which correspond to microscopic unit cellYswith random sampleωs

    (13)

    After that,by substituting (6,7) intoO(ε0)-order equations,and then subtractingO(ε0)-order equations from (11),the concrete expressions forT2andui2can be defined as follows

    (14)

    (15)

    (16)

    (17)

    (18)

    (19)

    (20)

    (21)

    (22)

    (23)

    (24)

    Summing up,the macro-micro coupled SHOMS asymptotic solutions of the multi-scale nonlinear dynamic thermo-mechanical problem (1) are established.

    2.4 Local error analysis of statistical multi-scale solutions in point-wise sense

    To begin with,two kinds of the multi-scale approximate solutions of stochastic multi-scale problem (1) are defined as follows

    (25)

    Next,we introduce the following residual functions for thelocal numerical accuracy analysis.

    (26)

    (27)

    (28)

    Noting the residual equations (27),it can be concluded that the residual error of SLOMS solutions is of order-O (1) in the point-wise sense,primarily due to the presence of terms F0and S0i.Comparing with the residual equations (28),the residual error of SHOMS solutions is of order-O(ε) in the point-wise sense.This implies that the SHOMS solutions can satisfy the local energy conservation of thermal equation and local momentum conservation of mechanical equations of the original stochastic multi-scale equations (1) in the point-wise sense,which can still provide the required accuracy for engineering computation and accurately capture the microscopic oscillating behaviors exhibited by random composite materials.

    3 Space-time multi-scale numerical algorithm

    In this section,a new space-time multi-scale numerical algorithm with off-line and on-line stages is presented for the stochastic nonlinear governing equations (1) based on the FEM in spatial region and the finite difference method (FDM) in time direction.The detailed algorithm is listed as follows.

    3.1 Off-line computation for microscopic cell problems

    3.2 On-line computation for macroscopic homogenized problem and statistical higher-order multi-scale solutions

    (3) It should be highlighted that,decoupled thermal equation is a nonlinear system which can not be computed directly.Herein,the direct iterative method is employed for simulating the nonlinear system.

    (4) For arbitrary point (x,t)∈Ω×(0,T*),to apply the interpolation method to acquire the corresponding values of first-order auxiliary cell functions,second-order auxiliary cell functions and homogenized solutions.The spatial derivatives in formulas (7,14) are evaluated by the average technique on relative elements[40],and the temporal derivatives in formula (14) are evaluated by using the difference scheme at every time steps.Then,the temperature fieldT(2ε)(x,t,ω) and displacement fieldu(2ε)(x,t,ω) are computed.Moreover,we can further employ the higher-order interpolation method and post-processing technique in[41,42]to obtain the high-accuracy SHOMS solutions.

    4 Numerical experiments

    In this section,the numerical accuracy andefficiency of the proposed SHOMS method are demonstrated by several numerical examples.Since obtaining the exact solutions for the multi-scale nonlinear problem (1) is extremely difficult or even impossible,direct numerical simulation (DNS) solutions on the fine grid for the multi-scale nonlinear problem (1) are taken as the reference solutions denoted asTDNS(x,t) anduDNS(x,t).In the following numerical experiments,some error notations are introduced,Terr0,Terr1 and Terr2 represent theL2norm errors,TErr0,TErr1 and TErr2 represent theH1semi-norm errors for macroscopic homogenized solution,SLOMS solutions and SHOMS solutions of temperature field respectively;Uerr0,Uerr1 and Uerr2 represent theL2norm errors,UErr0,UErr1 and UErr2 represent theH1semi-norm errors for macroscopic homogenized solution,SLOMS solutions and SHOMS solutions of displacement field respectively.

    Example 1Validation of the SHOMS me-thod for nonlinear thermo-mechanical simulation in periodic composite structure.

    A 2D composite structure with periodically microscopic configurations is investigated here,whose macrostructureΩand unit cellY^sare shown in Fig.3,whereΩ=(x1,x2)=[0,1]×[0,1] cm2and periodic unit cell sizeε=1/5.This 2D composite structure is clamped on its four boundaries,and the temperature at the boundaries is kept at 373.15 K.In addition,the internal heat source and body forces are set ash=5000 J/(cm2·s) and (f1,f2)=(-2000,-2000) N/cm2.And,the material parameters of 2D composite structure are demonstrated in Table 1.

    Fig.3 Illustration of investigated 2D composite structure Implementing the SHOMS method to multi-scale nonlinear coupling equations (1) in time interval t∈[0,1] s with temporal step Δt=0.002 s,we define service temperature range [273.15,873.15] K of investigated composite structure and 60 representative macroscopic parameters in temperature range.In this example,the total auxiliary cell problems need to be solved off-line 4380 times,in which the 13 first-order cell functions and 60 second-order cell functions are solved on 60 macroscopic temperature interpolation points.The information of FEM meshes is listed in Tab.2.After off-line computation for microscopic cell problems and on-line computation for macroscopic homogenized problems and higher-order multi-scale solutions,we depict the computational results in Fig.4~Fig.8.

    Tab.1 Material parameters of 2D composite structure

    Tab.2 Summary of computational cost

    Fig.4 Numerical results of temperature field at t=0.2 s

    Fig.5 Numerical results of displacement field at t=0.2 s

    Fig.6 Numerical results of temperature field at t=1.0 s

    Fig.7 Numerical results of displacement field at t=1.0 s

    Fig.8 Evolutive relative errors of temperature and displacement fields According to the computational resource cost in Tab.2,the SHOMS method can greatly economize computer memory without losing precision.Actually,both the SHOMS method and direct numerical simulation are performed on a HP desktop workstation equipped with an Intel(R) Core(TM) i7-8750H processor (2.20 GHz) and 16.0 GB of internal memory.As illustrated in Fig.4~Fig.7,we can conclude that the higher-order multi-scale solutions can accurately capture the microscopic oscillatory behaviors and preferably approximate the exact solutions of the investigated 2D composite structure compared with macroscopic homogenized solutions and lower-order multi-scale solutions,especially for temperature field.From the evolutive relative errors in Fig.8,it can clearly demonstrate that the two-stages space-time multi-scale numerical algorithm is accurate and stable in the long-time numerical simulation.Furthermore,it is worth emphasizing that the presented SHOMS approach remains effective even for a relatively small parameter ε,namely existing a great number of microscopic unit cells in inhomogeneous structures.At this time,the high-resolution DNS simulation can not guarantee the convergence for the investigated large-scale problems.This obvious advantage of the SHOMS approach is of great application values for engineering computation.

    Example 2Application of the SHOMS method for equivalent material parameters computation of random composite structure.

    In this example,two kinds of composite materials with matrix Ti-6Al-4V and random inclusion ZrO2,and matrix SiC and random inclusion C are investigated by the SHOMS method,as exhibited in Fig.9.The detailed material parameters for the investigated composite materials are presented in the following Tab.3 and Tab.4.

    Fig.9 Several random RVEs of the composites employed for predicting equivalent material parameters

    Tab.3 Material property parameters of Ti-6Al-4V/ZrO2 composite

    Tab.4 Material property parameters of SiC/C composite

    By using the SHOMS method,the equivalent material parameters at macro-scale are obtained by the mean value of 50 randomly microscopic samples.The corresponding results are depicted in Fig.10.According to the numerical results in Fig.10,we can conclude that the predictive values of Ti-6Al-4V/ZrO2composite and SiC/C composite fall between lower and upper bounds of Voigt-Reuss method,Hashin-Shtrikman method and also approximate the predicted values of Hobbs method.Hence,the proposed SHOMS can be employed to predict the temperature-dependent equivalent material properties of Ti-6Al-4V/ZrO2composite and SiC/C composite.

    Fig.10 A comparison of the predictive results of equivalent material parameters

    Example 3Application of the SHOMS method fornonlinear thermo-mechanical simulation in random composite structure.

    This example mainly study the nonlinear thermo-mechanical simulation of 2D composite structure with randomly microscopic configurations,as depicted in Fig.11.In addition,the setting of initial-boundary conditions,heat source,body forces and material parameters in this example is the same as those of Example 1.

    Fig.11 Illustration of investigated 2D composite structure Applying thenovel SHOMS method to multi-scale nonlinear coupling equations (1) within time interval t∈[0,1] s with temporal step Δt=0.002 s,we establish the service temperature range of the investigated composite structure as [273.15,873.15] K.In this service temperature range,we distribute 60 representative macroscopic parameters detailed information of FEM meshes is listed in Tab.5.After off-line computation for microscopic cell problems and on-line computation for macroscopic homogenized problems and higher-order multi-scale solutions,we present the computational results in Fig.12~Fig.16.

    Tab.5 Summary of computational cost

    Fig.12 Numerical results of temperature field at t=0.2 s

    Fig.13 Numerical results of displacement field at t=0.2 s

    Fig.14 Numerical results of temperature field at t=1.0 s

    Fig.15 Numerical results of displacement field at t=1.0 s As indicated Tab.5,thenovel SHOMS method can significantly reduce computer memory without losing precision.Moreover,the numerical results in Fig.12~Fig.15 reveal that the higher-order multi-scale solutions can accurately capture the microscopic oscillatory behaviors and provide preferable approximations to the exact solutions compared with macroscopic homogenized solutions

    Fig.16 Evolutive relative errors of temperature and displacement fields and lower-order multi-scale solutions,especially for temperature field.The evolutive relative errors shown in Fig.16 clearly demonstrate the accuracy and stability of the two-stages space-time multi-scale numerical algorithm in the long-time numerical simulation.Furthermore,it is important to highlight that the SHOMS approach remains effective even for a relatively small parameter ε,which corresponds to a large number of microscopic unit cells in heterogeneous structures.In contrast,the high-resolution DNS simulation fails to converge for the investigated large-scale problems.This prominent computational advantage is of significant practical value of the SHOMS approach in engineering computations.

    5 Conclusions and outlook

    In the present work,a novel statistical higher-order multi-scale method is developed for effectively simulating nonlinear thermo-mechanical problems of composite structures with periodically random configurations and temperature-dependent properties,which serve under extreme heat environment.The main contributions of this work are threefold:First,the statistical multi-scale formulations with the higher-order correction terms are established for composite structures with periodically random configurations.Second,the local error estimations for the statistical multi-scale solutions of nonlinear thermo-mechanical systems are derived in detail.Third,a space-time numerical algorithm with off-line and on-line stages is designed to overcome the prohibitive computation of direct numerical simulation.Furthermore,numerical results demonstrate that the presented SHOMS approach can effectively simulate nonlinear thermo-mechanical coupling behaviors with less computational cost and accurately capture the microscopic oscillatory information caused by randomly heterogeneous configurations.Besides,the proposed SHOMS approach can accurately predict the equivalent material parameters of random composite structures compared with the predictive results of some theoretical models,which illustrate that high temperature field has a remarkable effect on macroscopic thermo-mechanical properties.

    In the future,the SHOMS method will be extended to more complex nonlinear problems including thermal convection and radiation effects under extreme thermal environment.Additionally,machine learning approaches and parallel algorithm will be introduced in the off-line stage of SHOMS framework,in order to avoid repetitive statistical computation and improve computational efficiency.

    最近2019中文字幕mv第一页| 十八禁高潮呻吟视频| 黑人巨大精品欧美一区二区蜜桃| 中文字幕制服av| 久久人人爽人人片av| 亚洲精品一二三| 美国免费a级毛片| 欧美日韩av久久| 欧美日韩av久久| 老汉色∧v一级毛片| 国产亚洲av片在线观看秒播厂| 国产亚洲av片在线观看秒播厂| 久久精品aⅴ一区二区三区四区 | 国产乱人偷精品视频| 午夜福利乱码中文字幕| 亚洲,欧美,日韩| 叶爱在线成人免费视频播放| 美女大奶头黄色视频| 亚洲精品,欧美精品| 免费观看a级毛片全部| 久久久久精品久久久久真实原创| 男的添女的下面高潮视频| 纵有疾风起免费观看全集完整版| 久久免费观看电影| 久久99蜜桃精品久久| 亚洲美女视频黄频| www.熟女人妻精品国产| 日韩成人av中文字幕在线观看| 丝袜美足系列| 最近2019中文字幕mv第一页| 中文字幕亚洲精品专区| 天天躁狠狠躁夜夜躁狠狠躁| 一个人免费看片子| 久久久久久免费高清国产稀缺| 建设人人有责人人尽责人人享有的| 亚洲,一卡二卡三卡| 啦啦啦在线免费观看视频4| 久久热在线av| 伦理电影免费视频| 一级毛片电影观看| 精品一区在线观看国产| 国产日韩一区二区三区精品不卡| 精品一区在线观看国产| 黑人猛操日本美女一级片| 激情五月婷婷亚洲| 一级毛片电影观看| 91久久精品国产一区二区三区| 国产日韩一区二区三区精品不卡| 啦啦啦在线免费观看视频4| 国产成人a∨麻豆精品| 美女福利国产在线| 免费看av在线观看网站| 国产午夜精品一二区理论片| 午夜福利在线观看免费完整高清在| 精品国产乱码久久久久久小说| 久久热在线av| 97精品久久久久久久久久精品| 国产野战对白在线观看| 大香蕉久久网| 中文欧美无线码| 日韩中文字幕视频在线看片| 国产精品人妻久久久影院| 国产人伦9x9x在线观看 | 日韩视频在线欧美| 精品少妇黑人巨大在线播放| 成人亚洲欧美一区二区av| 你懂的网址亚洲精品在线观看| 日韩人妻精品一区2区三区| 国产 一区精品| 亚洲国产av影院在线观看| 亚洲av福利一区| 久久综合国产亚洲精品| 丝袜美足系列| 美女国产高潮福利片在线看| 国产乱来视频区| 男女午夜视频在线观看| 亚洲,欧美精品.| 一级毛片黄色毛片免费观看视频| 亚洲经典国产精华液单| 国产av精品麻豆| 色网站视频免费| 日本免费在线观看一区| 熟女电影av网| 成年美女黄网站色视频大全免费| 在线看a的网站| 免费人妻精品一区二区三区视频| av福利片在线| 视频区图区小说| 少妇人妻久久综合中文| 可以免费在线观看a视频的电影网站 | 国产精品久久久久久精品电影小说| 另类精品久久| 久久国内精品自在自线图片| 欧美最新免费一区二区三区| av在线观看视频网站免费| 亚洲欧洲国产日韩| 日韩精品有码人妻一区| 黑人欧美特级aaaaaa片| 在现免费观看毛片| 欧美精品亚洲一区二区| 国产无遮挡羞羞视频在线观看| av在线app专区| 巨乳人妻的诱惑在线观看| 久久亚洲国产成人精品v| 国产免费现黄频在线看| 男女免费视频国产| 在线看a的网站| 天天躁日日躁夜夜躁夜夜| 久久久久久久久免费视频了| 热re99久久国产66热| 亚洲美女搞黄在线观看| 久久久久精品人妻al黑| 欧美bdsm另类| 人人妻人人添人人爽欧美一区卜| 国产一级毛片在线| 黄色配什么色好看| 日韩精品有码人妻一区| 精品少妇内射三级| 晚上一个人看的免费电影| 深夜精品福利| 午夜av观看不卡| 欧美日韩视频高清一区二区三区二| 久久久久久免费高清国产稀缺| 亚洲成av片中文字幕在线观看 | 中文字幕最新亚洲高清| 久久久精品区二区三区| 美女午夜性视频免费| 欧美黄色片欧美黄色片| 亚洲av日韩在线播放| 久久99精品国语久久久| 久久久国产一区二区| 一区二区三区乱码不卡18| 欧美日韩亚洲高清精品| 最近2019中文字幕mv第一页| 飞空精品影院首页| av在线app专区| 赤兔流量卡办理| 色网站视频免费| 国产黄色免费在线视频| 日产精品乱码卡一卡2卡三| 亚洲国产av影院在线观看| 99热网站在线观看| 欧美另类一区| 国精品久久久久久国模美| 一本久久精品| 女人被躁到高潮嗷嗷叫费观| 另类亚洲欧美激情| av.在线天堂| 最黄视频免费看| 夫妻午夜视频| 久久国产亚洲av麻豆专区| 91精品伊人久久大香线蕉| 免费黄色在线免费观看| 免费看av在线观看网站| 在线观看一区二区三区激情| 九草在线视频观看| 汤姆久久久久久久影院中文字幕| 少妇的丰满在线观看| 免费av中文字幕在线| 男女午夜视频在线观看| 免费看不卡的av| 国产精品av久久久久免费| 久久精品亚洲av国产电影网| 婷婷色综合大香蕉| 精品一区在线观看国产| 欧美国产精品va在线观看不卡| 999久久久国产精品视频| 热99久久久久精品小说推荐| 90打野战视频偷拍视频| 99精国产麻豆久久婷婷| 只有这里有精品99| 一边亲一边摸免费视频| 又黄又粗又硬又大视频| 性色av一级| 国产成人午夜福利电影在线观看| 欧美激情高清一区二区三区 | av线在线观看网站| 久久av网站| 伊人亚洲综合成人网| 日本午夜av视频| 一区二区av电影网| 国产综合精华液| a 毛片基地| 亚洲成人一二三区av| 午夜福利乱码中文字幕| 一级,二级,三级黄色视频| 欧美日韩视频高清一区二区三区二| 久久人人97超碰香蕉20202| 久久人妻熟女aⅴ| 国产精品欧美亚洲77777| 激情视频va一区二区三区| 久久久国产精品麻豆| 久久久久视频综合| 亚洲欧美日韩另类电影网站| 黄色配什么色好看| 国产精品亚洲av一区麻豆 | 欧美97在线视频| av在线观看视频网站免费| 少妇猛男粗大的猛烈进出视频| 欧美精品高潮呻吟av久久| 男女边摸边吃奶| 看免费av毛片| 国产亚洲av片在线观看秒播厂| 日韩人妻精品一区2区三区| 午夜免费鲁丝| 国产野战对白在线观看| 国产成人av激情在线播放| 欧美激情高清一区二区三区 | 亚洲av福利一区| 看免费av毛片| 美女视频免费永久观看网站| 亚洲精品美女久久av网站| 中文欧美无线码| 国产亚洲欧美精品永久| 精品国产国语对白av| 久久久久国产精品人妻一区二区| 新久久久久国产一级毛片| 国产精品久久久久久久久免| 国产成人av激情在线播放| 水蜜桃什么品种好| 成年女人毛片免费观看观看9 | 日日爽夜夜爽网站| av不卡在线播放| 亚洲精品中文字幕在线视频| av视频免费观看在线观看| 老鸭窝网址在线观看| 国产激情久久老熟女| 一本大道久久a久久精品| 黄色 视频免费看| 少妇被粗大的猛进出69影院| 最近中文字幕2019免费版| 婷婷色综合大香蕉| 免费av中文字幕在线| 国产老妇伦熟女老妇高清| 欧美97在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲综合精品二区| 亚洲视频免费观看视频| 国产一区二区在线观看av| 777久久人妻少妇嫩草av网站| 九草在线视频观看| av网站在线播放免费| 亚洲成人一二三区av| 你懂的网址亚洲精品在线观看| 久久午夜综合久久蜜桃| 十八禁高潮呻吟视频| 日韩一本色道免费dvd| 卡戴珊不雅视频在线播放| 日韩视频在线欧美| 欧美日韩精品成人综合77777| 我要看黄色一级片免费的| 午夜福利,免费看| 日韩中字成人| 久久久久精品性色| 在线天堂中文资源库| 精品午夜福利在线看| 久久久精品区二区三区| 肉色欧美久久久久久久蜜桃| 制服人妻中文乱码| 十八禁高潮呻吟视频| 2022亚洲国产成人精品| 9191精品国产免费久久| 赤兔流量卡办理| 亚洲伊人久久精品综合| 一二三四在线观看免费中文在| 人人妻人人澡人人爽人人夜夜| 国产亚洲午夜精品一区二区久久| 熟妇人妻不卡中文字幕| 精品人妻偷拍中文字幕| 大片免费播放器 马上看| 欧美变态另类bdsm刘玥| 日韩制服骚丝袜av| 亚洲五月色婷婷综合| 国产成人精品在线电影| 精品一区在线观看国产| 日本91视频免费播放| 欧美日韩成人在线一区二区| 久久国内精品自在自线图片| 久久鲁丝午夜福利片| 午夜久久久在线观看| 免费黄网站久久成人精品| 国产黄色免费在线视频| 国产在视频线精品| 亚洲精品美女久久av网站| 国产激情久久老熟女| 18禁动态无遮挡网站| 精品国产一区二区三区久久久樱花| 一区二区av电影网| av国产久精品久网站免费入址| 亚洲伊人色综图| 老司机影院毛片| 菩萨蛮人人尽说江南好唐韦庄| 色播在线永久视频| 久久精品国产鲁丝片午夜精品| 亚洲人成77777在线视频| 精品一区二区免费观看| 9191精品国产免费久久| 丁香六月天网| 制服丝袜香蕉在线| 亚洲内射少妇av| 黄色视频在线播放观看不卡| 日韩一区二区视频免费看| 欧美精品一区二区大全| 日韩av免费高清视频| 老司机亚洲免费影院| 精品一区二区三卡| 电影成人av| √禁漫天堂资源中文www| 国产黄色视频一区二区在线观看| 考比视频在线观看| 免费高清在线观看视频在线观看| 精品第一国产精品| 成人二区视频| 大香蕉久久网| 搡女人真爽免费视频火全软件| 一二三四中文在线观看免费高清| 黑人巨大精品欧美一区二区蜜桃| videosex国产| 国产成人免费观看mmmm| 午夜福利影视在线免费观看| 亚洲精华国产精华液的使用体验| 国产精品亚洲av一区麻豆 | 18禁国产床啪视频网站| 欧美精品国产亚洲| 久久人人97超碰香蕉20202| 国产精品国产三级专区第一集| 在现免费观看毛片| 亚洲中文av在线| 亚洲欧洲精品一区二区精品久久久 | 亚洲色图 男人天堂 中文字幕| av电影中文网址| 久久鲁丝午夜福利片| 亚洲欧洲精品一区二区精品久久久 | 人妻少妇偷人精品九色| 久久国产精品大桥未久av| 黑人欧美特级aaaaaa片| 久热这里只有精品99| 日日撸夜夜添| 久久久久国产精品人妻一区二区| 久久鲁丝午夜福利片| 国产成人免费观看mmmm| 王馨瑶露胸无遮挡在线观看| 韩国av在线不卡| 欧美激情 高清一区二区三区| 久久精品亚洲av国产电影网| 成人18禁高潮啪啪吃奶动态图| 国产精品蜜桃在线观看| 亚洲中文av在线| 少妇被粗大猛烈的视频| 不卡视频在线观看欧美| 婷婷色麻豆天堂久久| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品中文字幕在线视频| 黄色配什么色好看| 国产国语露脸激情在线看| 亚洲婷婷狠狠爱综合网| 精品亚洲乱码少妇综合久久| 久久久国产精品麻豆| 亚洲成国产人片在线观看| www日本在线高清视频| 日韩一区二区视频免费看| 国产福利在线免费观看视频| av天堂久久9| 飞空精品影院首页| 午夜福利在线免费观看网站| 中国三级夫妇交换| 狂野欧美激情性bbbbbb| 99re6热这里在线精品视频| 99热国产这里只有精品6| 色播在线永久视频| 国产淫语在线视频| 国产精品国产三级专区第一集| 校园人妻丝袜中文字幕| 男人舔女人的私密视频| 亚洲,欧美精品.| 又大又黄又爽视频免费| 美国免费a级毛片| 美女高潮到喷水免费观看| 国产亚洲欧美精品永久| 国产精品蜜桃在线观看| 一区福利在线观看| 久久韩国三级中文字幕| 老汉色∧v一级毛片| 国产精品99久久99久久久不卡 | 亚洲综合色惰| 在线观看美女被高潮喷水网站| 99久国产av精品国产电影| 国产在线一区二区三区精| 日本欧美视频一区| 在线天堂中文资源库| 亚洲国产精品一区二区三区在线| 久久精品国产自在天天线| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美网| 国产无遮挡羞羞视频在线观看| 日韩精品免费视频一区二区三区| 满18在线观看网站| 久久人人爽av亚洲精品天堂| 男女午夜视频在线观看| 只有这里有精品99| 亚洲欧美清纯卡通| 久久精品国产亚洲av涩爱| 日韩不卡一区二区三区视频在线| 我要看黄色一级片免费的| 国产不卡av网站在线观看| 亚洲国产av影院在线观看| 亚洲美女搞黄在线观看| 精品一区二区三区四区五区乱码 | 中国国产av一级| 日韩在线高清观看一区二区三区| 国产精品一区二区在线不卡| 国产伦理片在线播放av一区| 国产精品女同一区二区软件| 高清视频免费观看一区二区| 亚洲精品久久午夜乱码| 免费在线观看完整版高清| 国产综合精华液| 91精品三级在线观看| 久久精品久久精品一区二区三区| www.av在线官网国产| 卡戴珊不雅视频在线播放| 亚洲成色77777| 国产精品久久久久久av不卡| 欧美日韩综合久久久久久| 日日爽夜夜爽网站| 亚洲av电影在线进入| 丰满少妇做爰视频| av.在线天堂| www日本在线高清视频| 人成视频在线观看免费观看| 欧美日韩av久久| 亚洲精品自拍成人| 国产乱来视频区| 制服诱惑二区| 女的被弄到高潮叫床怎么办| 一区二区av电影网| 老女人水多毛片| 国产男人的电影天堂91| 人妻 亚洲 视频| 中国国产av一级| 欧美av亚洲av综合av国产av | 在线观看国产h片| 亚洲欧美成人精品一区二区| 国产成人av激情在线播放| 国产探花极品一区二区| 一区二区三区四区激情视频| 男女边摸边吃奶| 国产深夜福利视频在线观看| 最新中文字幕久久久久| 国产亚洲av片在线观看秒播厂| 精品久久蜜臀av无| 少妇被粗大的猛进出69影院| 我的亚洲天堂| 久久女婷五月综合色啪小说| 亚洲四区av| 母亲3免费完整高清在线观看 | 欧美变态另类bdsm刘玥| 午夜免费鲁丝| 久久久久久久久久人人人人人人| 国产老妇伦熟女老妇高清| 精品人妻偷拍中文字幕| 亚洲成人一二三区av| 日韩精品有码人妻一区| 丁香六月天网| 国产精品欧美亚洲77777| 欧美黄色片欧美黄色片| 美女福利国产在线| 大话2 男鬼变身卡| 国产精品国产三级国产专区5o| 午夜av观看不卡| 韩国精品一区二区三区| 又粗又硬又长又爽又黄的视频| 一区二区日韩欧美中文字幕| 人人妻人人添人人爽欧美一区卜| 免费高清在线观看日韩| 免费日韩欧美在线观看| 亚洲精品视频女| 国产成人欧美| 少妇人妻久久综合中文| 在线观看免费视频网站a站| 亚洲av电影在线观看一区二区三区| 亚洲,欧美,日韩| 亚洲成人手机| 亚洲精品aⅴ在线观看| 黄网站色视频无遮挡免费观看| 最黄视频免费看| 国产亚洲av片在线观看秒播厂| 国产男女内射视频| 欧美+日韩+精品| 好男人视频免费观看在线| 满18在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 日韩一区二区视频免费看| 国产综合精华液| 国产成人精品在线电影| 久久久久精品性色| 两性夫妻黄色片| 亚洲伊人色综图| 一级片'在线观看视频| 1024香蕉在线观看| 男男h啪啪无遮挡| 最近最新中文字幕大全免费视频 | 亚洲国产最新在线播放| 欧美精品一区二区大全| 美女视频免费永久观看网站| 亚洲一级一片aⅴ在线观看| av视频免费观看在线观看| 久久青草综合色| 国产熟女欧美一区二区| 少妇熟女欧美另类| 国产 一区精品| 丁香六月天网| 亚洲欧洲精品一区二区精品久久久 | 黑人巨大精品欧美一区二区蜜桃| 一级片'在线观看视频| 人妻一区二区av| videossex国产| 日韩人妻精品一区2区三区| 久热久热在线精品观看| 最近最新中文字幕免费大全7| 秋霞伦理黄片| 最近中文字幕高清免费大全6| 99国产综合亚洲精品| 一二三四在线观看免费中文在| 日韩中字成人| 男人添女人高潮全过程视频| 色视频在线一区二区三区| 99国产综合亚洲精品| 少妇 在线观看| 成人国产麻豆网| 久久婷婷青草| 中文字幕av电影在线播放| 中文字幕另类日韩欧美亚洲嫩草| 国产乱来视频区| 色婷婷av一区二区三区视频| av视频免费观看在线观看| 久久国产亚洲av麻豆专区| 永久免费av网站大全| 妹子高潮喷水视频| 女人精品久久久久毛片| 亚洲欧美成人精品一区二区| 久久精品国产综合久久久| 麻豆av在线久日| 亚洲精品国产av蜜桃| 777米奇影视久久| 十八禁网站网址无遮挡| 亚洲欧美清纯卡通| 91aial.com中文字幕在线观看| 精品亚洲成国产av| 黑人欧美特级aaaaaa片| 欧美激情高清一区二区三区 | 免费看不卡的av| 亚洲婷婷狠狠爱综合网| 亚洲av国产av综合av卡| 97在线人人人人妻| 成人18禁高潮啪啪吃奶动态图| 黑丝袜美女国产一区| 99热全是精品| 99热网站在线观看| 欧美老熟妇乱子伦牲交| 亚洲欧美一区二区三区久久| 午夜日本视频在线| 亚洲精品国产av蜜桃| 国产精品三级大全| 国产白丝娇喘喷水9色精品| 热99国产精品久久久久久7| 香蕉国产在线看| 国产成人精品一,二区| 校园人妻丝袜中文字幕| 免费观看av网站的网址| 黄色 视频免费看| 久久久国产一区二区| 在线天堂中文资源库| 亚洲欧美中文字幕日韩二区| 欧美日韩一级在线毛片| 人妻 亚洲 视频| 精品国产国语对白av| 日产精品乱码卡一卡2卡三| 国产亚洲精品第一综合不卡| 久久人人爽av亚洲精品天堂| 制服丝袜香蕉在线| 中文字幕制服av| 在线观看国产h片| 精品人妻熟女毛片av久久网站| 中文乱码字字幕精品一区二区三区| 少妇被粗大猛烈的视频| 精品人妻在线不人妻| 国产成人a∨麻豆精品| 男女啪啪激烈高潮av片| 精品人妻一区二区三区麻豆| 国产精品女同一区二区软件| 寂寞人妻少妇视频99o| 18禁动态无遮挡网站| 多毛熟女@视频| 色网站视频免费| 免费看av在线观看网站| 中文精品一卡2卡3卡4更新| 国产一区二区激情短视频 | 亚洲激情五月婷婷啪啪| 国产日韩欧美亚洲二区| 美女xxoo啪啪120秒动态图| 免费观看av网站的网址| 午夜激情av网站| 亚洲美女黄色视频免费看| 熟妇人妻不卡中文字幕| 国产97色在线日韩免费| 天天躁狠狠躁夜夜躁狠狠躁| 女人精品久久久久毛片| 巨乳人妻的诱惑在线观看| 国产亚洲午夜精品一区二区久久| 亚洲精华国产精华液的使用体验| 国产一区二区 视频在线| 欧美黄色片欧美黄色片| 国产综合精华液| 成人亚洲精品一区在线观看|