• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    類鈣鈦礦甲酸鹽的線性和非線性光學(xué)響應(yīng)

    2024-01-20 03:56:04冉叢嬌黃智鵬
    關(guān)鍵詞:同濟(jì)大學(xué)鈣鈦礦工程學(xué)院

    齊 魯 冉叢嬌 吳 超 黃智鵬 張 弛

    (同濟(jì)大學(xué)化學(xué)科學(xué)與工程學(xué)院中澳功能分子材料聯(lián)合研究中心,上海 200092)

    Organic-inorganic hybrid materials are highly attractive in solar cells, photo-detectors, ferroelectrics,optical information processing, and laser frequency conversion due to their excellent performance and versatility[1-5].Nonlinear optical (NLO) crystals can generate coherent laser light, which is widely used in photolithography and semiconductor manufacturing,and plays an important role in solid-state lasers[6-10].Recently, a series of excellent organic-inorganic hybrid NLO crystals, such as (o-C5H4NHOH)2[I7O18(OH)] ?3H2O[11], (C(NH2)3)6(PO4)2·3H2O[12], Cs3Cl(HC3N3S3)[13],and (2cepyH)SbBr4[14], have been developed.It is of great importance and interest to search for new functional building blocks as well as the as-constructed new organic-inorganic hybrid NLO crystals.Organic molecules play an important role in modulating the optical properties when designing organic-inorganic hybrid NLO crystals.π-Conjugated organic cations exemplified by (C(NH2)3)+cation[15-16], melamine[17], and 4-hydroxypyridine[18], have been discovered and proved to be efficient NLO-active groups owing to their strong hyperpolarizability and polarizability anisotropy.Recently, Lin et al.adopted melamine and synthesized a potential ultraviolet NLO material (C3H7N6)2Cl2·H2O exhibiting a strong second harmonic generation (SHG)response and large birefringence[17].(C(NH2)2NHNO2)+is an excellent cationic NLO-active group, and the resultant material showed excellent NLO properties[19].Inorganic anions are an important component of NLO materials.Significant efforts have been focused on these inorganic salts containingπ-conjugated planar groups (e.g.BO33-, CO32-, NO3-), such as KBe2BO3F2[20],LiB3O5[21],β-Ba2B2O4[22], ABCO3F (A=K, Rb, B=Mg, Ca,Sr)[23], LiZn(OH)CO3[24], Bi3TeO6OH(NO3)2[25], RE(OH)2NO3(RE=La, Y, and Gd)[26].However, owing to the intricate multiple inter-anion interactions,the combination of two types ofπ-conjugated groups into one structure to create new NLO materials is thus far underexploited[27].

    The organic-inorganic hybrid perovskites with general formula ABXn(n=3,4)have attracted extraordinary attention in physics, chemistry, and materials science[28-30].The unique structural feature offers tremendous possibilities for optical property tuning owing to the flexible and replaceable A, B, and X sites[31].We report herein the construction of the NLO-active formate salts (CH(NH2)2)[RE(HCOO)4] (RE=Y, Er) containing theπ-conjugated formamidine cation and formate anion.Both two materials are isostructural with perovskite-like structures.The synthesis, UV-Vis-NIR spectroscopy, SHG response, and birefringence are demonstrated.Density functional theory (DFT) calculation was performed to reveal relationships between linear and nonlinear optical properties and electronic states.

    1 Experimental

    1.1 Reagents

    Yttrium nitrate (Y(NO3)3·6H2O, 99.99%, Xiya Reagent),erbium nitrate(Er(NO3)3·5H2O,99%,Adamas Reagent), formamide (CH3NO, 99%, Adamas Reagent)were commercially available and used as received without further purification.

    1.2 Synthesis of (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4]

    A mixture of Y(NO3)3·6H2O (0.192 g, 0.50 mmol)and CH3NO (5 mL) was tightly sealed in a 23 mL autoclave equipped with a Teflon liner.The autoclave was heated at 110 ℃for 72 h and then cooled slowly to room temperature at a rate of 3 ℃·h-1.The product was collected by vacuum filtration, washed with ethanol,and dried in the air.Colorless block crystals of(CH(NH2)2)[Y(HCOO)4] were isolated in a yield of 70%(based on Y) using a microscope.The same process was operated to synthesize compound (CH(NH2)2)[Er(HCOO)4] using Er(NO3)3·5H2O (0.222 g, 0.50 mmol), and CH3NO (5 mL).Pink block crystals were picked out in a yield of 75%(based on Er).

    1.3 Single crystal and powder X-ray diffraction

    Single-crystal X-ray diffraction data collection of(CH(NH2)2)[RE(HCOO)4] (RE=Y, Er) was carried out on a Bruker D8 VENTURE CMOS X-ray diffractometer using graphite-monochromated MoKαradiation (λ=0.071 073 nm) at room temperature.APEX Ⅱsoftware was applied to collect and reduce data.For (CH(NH2)2)[Y(HCOO)4], in a range of 3.25°<θ<27.12°, a total of 10 270 reflections were collected and 1 150 were independent withRint=0.049 1,of which 1 089 were observed withI>2σ(I).For (CH(NH2)2)[Er(HCOO)4], in a range of 3.255°<θ<27.14°, a total of 9 394 reflections were collected and 1 152 were independent withRint=0.034 3,of which 1 129 were observed withI>2σ(I).Semiempirical absorption corrections based on equivalent reflections were applied for both data sets using the APEX Ⅱprogram.The two structures of (CH(NH2)2)[RE(HCOO)4] (RE=Y, Er) were solved by direct methods and refined onF2by full-matrix least-squares methods using Olex2 software package[32-33].All hydrogen atoms were placed in calculated positions and refined with a riding model.The detailed crystallographic data and structural refinement parameters of the two compounds are summarized in Table S1 (Supporting information).Selected bond distances (nm) and angles(°)are given in Table S2 and S3,while hydrogenbonding interactions are provided in S4 and S5.Powder X-ray diffraction (PXRD) was used to confirm the phase purity of (CH(NH2)2)[RE(HCOO)4] (RE=Y, Er).The PXRD analysis of each sample was carried out on a Bruker D8 X-ray diffractometer equipped with CuKαradiation (λ=0.154 18 nm)in a 2θrange of 5°-80°with a step size of 0.02° at room temperature, and the working voltage and current were 40 kV and 40 mA,respectively.

    CCDC:2312145,(CH(NH2)2)[Y(HCOO)4];2312159,(CH(NH2)2)[Er(HCOO)4].

    1.4 Energy-dispersive X-ray spectroscopy

    Elemental analyses were performed using energydispersive X - ray spectroscopy (EDS) with a field -emission scanning electron microscope(FESEM,Hitachi S-4800, Japan).The EDS analyses on (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] confirm the presence of C,H,O,N,and Y/Er,which are evenly dispersed in both samples(Fig.S1).

    1.5 Infrared and UV-Vis-NIR diffuse reflectance spectra

    The infrared (IR) spectra were recorded on a Nicolet iS10 Fourier transform IR spectrometer (resolution 4 cm-1,spectral range 400-4 000 cm-1).Optical diffuse-reflectance spectra were collected on a Cary 5000 UV-Vis-NIR spectrophotometer over the spectral range 200-800 nm at room temperature and a BaSO4plate was used as a 100% reflectance standard.Reflectance spectra were converted into absorbance spectra using the Kubelka-Munk functionα/S=(1-R)2/(2R), whereαis the absorption coefficient,Sis the scattering coefficient that is practically wavelength-independent when the particle size is larger than 5 μm, andRis the reflectance[34].

    1.6 Thermal analysis

    A Netzsch STA 409PC thermal analyzer was used to analyze the thermal stabilities of (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4].The samples were heated from 30 to 800 ℃with a heating rate of 15 ℃·min-1under a nitrogen atmosphere.

    1.7 Powder SHG measurements

    The SHG intensities of (CH(NH2)2) [Y(HCOO)4]and (CH(NH2)2)[Er(HCOO)4] were measured employing the powder measurement method proposed by Kurtz and Perry[35].A Q-switched Nd∶YAG laser with 1 064 nm radiation was employed for the visible SHG study.Because the SHG efficiency is related to the particle size,the polycrystalline samples of (CH(NH2)2)[Y(HCOO)4]and (CH(NH2)2)[Er(HCOO)4] were ground and sieved into several particle size ranges (0-26, 26-50, 50-74,74-105,105-150,150-200,and 200-280μm).Crystalline KDP with the same particle size ranges was used as references.

    1.8 Birefringence measurements

    The birefringences of (CH(NH2)2)[Y(HCOO)4] and(CH(NH2)2)[Er(HCOO)4] were assessed with a polarizing microscope (ZEISS Axio Scope.A1) equipped with a Berek compensator.The wavelength of the light source was 546 nm.The positive and negative rotation of compensation affords the relative retardation.

    1.9 Theoretical calculations

    First-principles calculations on (CH(NH2)2)[Er(HCOO)4] were performed using the CASTEP package[36], a total energy package based on pseudopotential DFT[37].The correlation-exchange terms in the Hamiltonian were described by the functional developed by Perdew, Burke, and Ernzerhof in the generalized gradient approximation form[38-39].Optimized norm-conserving pseudopotentials[40]in the Kleinman-Bylander form were adopted to model the effective interaction between the valence electrons and atom cores, which allows the choice of a relatively small plane-wave basis set without compromising the computational accuracy.A kinetic energy cutoff of 850 eV and dense Monkhorst-Pack[41]k-point meshes spanning less than 1.5×10-5nm3in the Brillouin zone were chosen.

    2 Results and discussion

    2.1 Synthesis, phase purity, IR, and thermal stability

    The mixed organic cationic hybrid formates(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4]was obtained through a mild solvothermal method.Both two crystals were synthesized directly by employing in situ reactions[42].The phase purity of crystalline(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4]were confirmed by PXRD (Fig.S2).The IR spectra of(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4]were similar owing to their isostructural feature.The IR absorption bands and their assignments are shown in Fig.S3, and they are characteristic of N—H vibrations in the formamidine (CH(NH2)2)+cation and formate HCOO-anion.(CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] also exhibited similar thermal behavior(Fig.S4), and taking (CH(NH2)2)[Y(HCOO)4] as representative.The thermal analysis curve of (CH(NH2)2)[Y(HCOO)4] (Fig.S4a) exhibited three weight - loss steps: in the first stage (220-300 ℃), the weight loss of 28.85% was close to the calculated value of 28.57% by loss of 2CO and 2NH3.The second weight loss of 27.62% was close to the calculated value of 28.25% by loss of 1.5H2,1.5CO,and CO2in a range of 310-410 ℃.The minor weight loss of 6.38% that occurred in a range of 410-800 ℃is due to the loss of CO2(Calcd.6.98%).The residue of (CH(NH2)2) [Y(HCOO)4] and(CH(NH2)2)[Er(HCOO)4] after 800 ℃was confirmed as Y2O3/Er2O3by PXRD(Fig.S5).

    2.2 UV-Vis-NIR diffuse reflectance spectra

    The study of optical diffuse reflectance spectra showcases that two crystalline materials could be classified among wide optical bandgap semiconductors possessing bandgaps of 5.59 and 5.61 eV for (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4], respectively.(Fig.1) The bandgaps increased slightly with the increase of atomic number for the lanthanide ions.The UV absorption edge of (CH(NH2)2)[Y(HCOO)4] was 222 nm, and there was no absorption peak ranging from 222 to 800 nm.(CH(NH2)2) [Er(HCOO)4] exhibited sharp absorption bands at 257, 380, 525, and 654 nm.Thef-ford-ftypical transitions of the respective lanthanide(Ⅲ)ions lead to these absorption peaks[43].

    Fig.1 UV-Vis-NIR diffuse reflectance spectra and the corresponding crystal morphologies (Inset)for(CH(NH2)2)[Y(HCOO)4](a)and(CH(NH2)2)[Er(HCOO)4](c);Bandgaps for(CH(NH2)2)[Y(HCOO)4](b)and(CH(NH2)2)[Er(HCOO)4](d)

    2.3 Powder SHG response

    Based on the chiral structure with a space group ofC2221, the powder SHG response was measured by the Kurtz-Perry method.The SHG intensities increased with the increasing of particle size in a range of 26-280μm (Fig.2a), indicating both (CH(NH2)2)[Y(HCOO)4]and (CH(NH2)2)[Er(HCOO)4] are phase-matchable crystals at the 1 064 nm laser.As shown in Fig.2b,compounds (CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] showed the SHG intensity of about 0.32 and 0.37 times that of KDP in a particle size range of 105-150 μm.Because (CH(NH2)2)[RE(HCOO)4] (RE=Y, Er) crystallizes in theC2221space group, both crystals have one non-zero independent SHG coefficient(d14) under the restriction of Kleinman symmetry.The corresponding calculated SHG values of (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] were 0.71 and 0.29 pm·V-1, respectively.To quantify the specific SHG contributions from all units, a real-space atomcutting method was employed.As shown in Table S6,the (CH(NH2)2)+units made the dominant contributions to the SHG coefficientd14(58.9% and 48.7%) with the HCOO-anions accounting for 25.0% and 28.2% for(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4],respectively.We conclude that (CH(NH2)2)+and HCOO-groups play a decisive role in the SHG response,and the contributions of Y3+and Er3+to the SHG response should not be ignored.

    Fig.2 (a)Phase-matching curves of(CH(NH2)2)[Y(HCOO)4],(CH(NH2)2)[Er(HCOO)4],and KDP with 1 064 nm laser radiation;(b)Oscilloscope traces of the SHG signals for polycrystalline(CH(NH2)2)[Y(HCOO)4],(CH(NH2)2)[Er(HCOO)4],and KDP in a particle size range of 105-150μm at λ=1 064 nm

    2.4 Birefringence

    The birefringence of (CH(NH2)2)[RE(HCOO)4](RE=Y,Er)single crystal was measured on a polarizing microscope (ZEISS Axio A1), which can achieve complete extinction (Fig.3).The optical path difference of(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4]with thicknesses of 158.1 and 167.3 μm were measured to be 2.055 and 2.510μm,respectively.Birefringence occurs and causes the polarized light to decompose into two kinds of polarized light, which are fast polarized light and slow polarized light when polarized light enters an anisotropic single crystal.The generation of optical path difference between the fast polarized light and the slow polarized light is inevitable in this process.The optical path difference ΔRcan be obtained by the Eq.: ΔR=|Ne-No|δ=δΔn, where ΔRdenotes the optical path difference, Δnrepresents the birefringence, andδis the thickness of the crystal.The derived birefringences were 0.013 and 0.015 for(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4],respectively,at the wavelength of 546 nm.

    Fig.3 Original crystals(a,d),crystal diagrams to achieve complete extinction(b,e),and thickness diagrams(c,f)of compounds(CH(NH2)2)[Y(HCOO)4](a-c)and(CH(NH2)2)[Er(HCOO)4](d-f)

    2.5 Crystal structures and their relationships with optical properties

    Both (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] are isostructural, and we take (CH(NH2)2)[Y(HCOO)4]asrepresentative.In(CH(NH2)2)[Y(HCOO)4],one Y3+cation, two HCOO-groups, and one formamidinium cation form the asymmetric units.All of the Y atoms in the unit cell are equivalent and located at the origin.The central Y3+is coordinated with the surrounding eight oxygen atoms to compose a YO813-polyhedron with four different Y—O bond lengths.As shown in Fig.4a, the lengths of the Y—O bond are 0.228 6, 0.233 8, 0.239 9, and 0.241 0 nm, respectively.The 1Dchainstructure is composedof YO813-octahedra andπ-conjugated HCOO-planar groups(Fig.4b).The orientation of the C—H bonds in formic acid ligands is diverse, but the alignment in the same direction is consistent when forming 2D and 3D frames.This arrangement can be conducive to the NLO properties of the crystal.Each Y3+ion links to eight neighboring Y3+ions via formate bridges, to form the rhombohedral units′ network, and the unit has the two neighboring grids diagonally crossed by one anti-anti HCOO-.The 2D [Y(HCOO)n]∞layers contain 12-membered rings (MRs) and 16-MRs viewed along the crystallographicc-axis (Fig.4c).The 3D (CH(NH2)2)[Y(HCOO)4]framework possesses perovskite-like structure.The center of the polyhedron is occupied by the Y atom, and (CH(NH2)2+cationsinsituproduced from formamide lie in a cage surrounded by a YO813-polyhedron.(Fig.4d) The (CH(NH2)2)+cations connect the adjacent [Y(HCOO)n]∞layers through N—H…O hydrogen bonds, and the adjacent (CH(NH2)2)+cations are arranged in opposite directions.It is beneficial to break the symmetry of the structure.However, the parallel and consistent orientation of(CH(NH2)2)+in the diagonal rhombohedral cell cavity promotes its SHG response,and the strong covalent bonds of theπ-conjugated cation (CH(NH2)2)+can facilitate a relatively wide UV transparency.The combination ofπ-conjugated formate and formamidine groups can not only enhance the nonlinear optical properties of the compounds but also expand the bandgap.In light of anionic group theory,π-conjugated (CH(NH2)2)+and HCOO-groups are suggested as possibilities to generate the SHG responses while also retaining the short UV absorption edge.

    Fig.4 (a)Coordination environment of Y3+in(CH(NH2)2)[Y(HCOO)4],HCOO-ligand group and(CH(NH2)2)+group;(b)1D chain of[Y(HCOO)n]∞;(c)2D[Y(HCOO)n]∞layers containing 12-MRs and 16-MRs viewed from the c-axis direction;(d)3D structure of the cavity-template units in a(CH(NH2)2)[Y(HCOO)4]crystal

    2.6 Theoretical calculations

    Linear and nonlinear optical properties are closely related to the characteristics of band structure,including bandgap and density of state (DOS).To further comprehend the relationships between electronic structure and optical properties, theoretical calculations using pseudopotential DFT methods were carried out to calculate the bandgap and DOS of (CH(NH2)2)[Er(HCOO)4].As shown in Fig.5a, the calculated band structure of (CH(NH2)2)[Er(HCOO)4] indicates that it possesses a direct bandgap of 4.52 eV with both the conduction band minimum (CBM) and the valence band maximum (VBM) located at the G point.These calculated values were smaller than the experimental value due to the underestimation of the bandgap with the DFT method.Fig.5b shows the total and partial densities of states (TDOS and PDOS) of (CH(NH2)2)[Er(HCOO)4].The VBs are mainly occupied by N2p,C2p, O2pand Er4fstates.The CBs are primarily assigned to C2pand O2pstates, with slight contributions from the Er4dorbital, which indicates that the electron transition is mainly contributed by inside excitation of(CH(NH2)2)+and HCOO-groups, and slight contributions from ErO813-polyhedra.These results indicate that optical performance (bandgap, SHG response, and birefringence) of (CH(NH2)2) [Er(HCOO)4] determined by electronic transitions are mostly governed by the interaction of(CH(NH2)2)+and HCOO-groups.

    Fig.5 (a)Energy band structures,(b)TDOS and PDOS of compound(CH(NH2)2)[Er(HCOO)4]

    3 Conclusions

    In summary, two isomeric rare-earth formate nonlinear optical materials (CH(NH2)2)[RE(HCOO)4] (RE=Y, Er) were successfully synthesized through an in situ solvothermal method and comprehensively determined by various types of spectroscopic techniques.They exhibit perovskite-like structures where the negatively charged cavity of the [RE(HCOO)4]-anionic framework is occupied by the(CH(NH2)2)+cations.The powder SHG measurements indicated that (CH(NH2)2)[RE(HCOO)4](RE=Y, Er) possess phase-matchable SHG responses in the visible regions.Linear optical studies show that(CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4]exhibited optical bandgaps of 5.59 and 5.61 eV, and birefringences of 0.013 and 0.015, respectively.DFT calculations show that the optical characteristics are mainly attributed to the synergistic effects of twoπconjugated (CH(NH2)2)+and HCOO-groups.This work highlights that the introduction ofπ-conjugated formamidine cations into formate systems may be an effective approach for the development of excellent NLO materials.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    同濟(jì)大學(xué)鈣鈦礦工程學(xué)院
    福建工程學(xué)院
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    福建工程學(xué)院
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    《同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿啟事
    福建工程學(xué)院
    同濟(jì)大學(xué)醫(yī)學(xué)院介紹
    福建工程學(xué)院
    當(dāng)鈣鈦礦八面體成為孤寡老人
    幾種新型鈣鈦礦太陽電池的概述
    日韩精品有码人妻一区| 中文乱码字字幕精品一区二区三区| 免费播放大片免费观看视频在线观看| 天美传媒精品一区二区| 久久久精品区二区三区| 久久亚洲国产成人精品v| 伦精品一区二区三区| 久久久亚洲精品成人影院| 日日撸夜夜添| 性色avwww在线观看| 国产精品久久久久久久久免| 熟女av电影| 国产永久视频网站| 亚洲av福利一区| 国产免费视频播放在线视频| 亚洲精品中文字幕在线视频| 国产精品国产av在线观看| 永久免费av网站大全| 我的女老师完整版在线观看| 亚洲精品国产av成人精品| 熟妇人妻不卡中文字幕| 久久精品人人爽人人爽视色| 久久久久久久久大av| 国精品久久久久久国模美| 国产亚洲一区二区精品| 欧美人与善性xxx| 这个男人来自地球电影免费观看 | 精品少妇久久久久久888优播| 少妇人妻精品综合一区二区| 欧美变态另类bdsm刘玥| 黄色配什么色好看| 一区在线观看完整版| 国产一区二区在线观看av| 亚洲情色 制服丝袜| 王馨瑶露胸无遮挡在线观看| 精品人妻一区二区三区麻豆| 老司机影院毛片| 国产 一区精品| 久久人人爽av亚洲精品天堂| 热re99久久精品国产66热6| 亚洲人成网站在线观看播放| 大香蕉久久成人网| xxxhd国产人妻xxx| 亚洲国产成人一精品久久久| 99热全是精品| 欧美97在线视频| av视频免费观看在线观看| 日韩一区二区视频免费看| videos熟女内射| 日本av手机在线免费观看| 国产免费视频播放在线视频| 日韩不卡一区二区三区视频在线| 男女国产视频网站| av在线观看视频网站免费| 日韩av在线免费看完整版不卡| 又大又黄又爽视频免费| 午夜久久久在线观看| 啦啦啦中文免费视频观看日本| 在现免费观看毛片| 三上悠亚av全集在线观看| 午夜免费观看性视频| 五月开心婷婷网| 亚洲三级黄色毛片| 18禁在线播放成人免费| 天堂中文最新版在线下载| 成年人午夜在线观看视频| 日本wwww免费看| 国产一区有黄有色的免费视频| 国产精品一区www在线观看| 国产精品久久久久成人av| 国产男女内射视频| 亚洲精品色激情综合| 亚洲一区二区三区欧美精品| 国产成人精品一,二区| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧洲日产国产| 桃花免费在线播放| 97超视频在线观看视频| 久久青草综合色| 免费日韩欧美在线观看| 妹子高潮喷水视频| 黄色欧美视频在线观看| 九九在线视频观看精品| 亚洲精品自拍成人| 国产一区二区在线观看av| 美女xxoo啪啪120秒动态图| 中文字幕精品免费在线观看视频 | 欧美bdsm另类| 亚洲欧洲日产国产| 18禁在线无遮挡免费观看视频| 亚洲精品日本国产第一区| 香蕉精品网在线| av专区在线播放| 久久久久久久久久久免费av| 天天操日日干夜夜撸| 这个男人来自地球电影免费观看 | 国产亚洲欧美精品永久| 男男h啪啪无遮挡| 久久久久久久亚洲中文字幕| 观看av在线不卡| 国产成人精品婷婷| 黄色毛片三级朝国网站| 在线 av 中文字幕| 久久精品熟女亚洲av麻豆精品| 国产熟女欧美一区二区| 国产精品久久久久久久电影| 国产精品成人在线| 99热网站在线观看| 好男人视频免费观看在线| 亚洲av免费高清在线观看| 色视频在线一区二区三区| 好男人视频免费观看在线| 日韩av免费高清视频| 日韩熟女老妇一区二区性免费视频| 欧美最新免费一区二区三区| 极品人妻少妇av视频| 久久韩国三级中文字幕| 三上悠亚av全集在线观看| 国产精品.久久久| 人人妻人人澡人人爽人人夜夜| 久久久久久久久久久免费av| 欧美97在线视频| 老司机影院毛片| 婷婷色麻豆天堂久久| 日韩三级伦理在线观看| 最新中文字幕久久久久| 久久人人爽av亚洲精品天堂| 亚洲av综合色区一区| 在线播放无遮挡| 亚洲av欧美aⅴ国产| 一级毛片 在线播放| 国产日韩一区二区三区精品不卡 | 精品国产国语对白av| 国产亚洲一区二区精品| 99久久精品一区二区三区| 亚洲av欧美aⅴ国产| 中文精品一卡2卡3卡4更新| 精品少妇久久久久久888优播| 97精品久久久久久久久久精品| 一个人免费看片子| 看十八女毛片水多多多| 日本av免费视频播放| 97在线视频观看| 亚洲四区av| 亚洲国产精品国产精品| 看免费成人av毛片| 欧美精品一区二区免费开放| 精品一区在线观看国产| 老司机影院成人| 免费黄频网站在线观看国产| 欧美激情极品国产一区二区三区 | 亚洲国产精品专区欧美| 最近中文字幕高清免费大全6| 一级黄片播放器| 日韩精品免费视频一区二区三区 | 大香蕉久久网| 黄片无遮挡物在线观看| 中文精品一卡2卡3卡4更新| 午夜91福利影院| 久久久久久久大尺度免费视频| 成年女人在线观看亚洲视频| 精品国产露脸久久av麻豆| 亚洲欧洲国产日韩| 天美传媒精品一区二区| 国产精品国产三级国产专区5o| 亚洲三级黄色毛片| 亚洲第一区二区三区不卡| 国产精品偷伦视频观看了| a级毛片在线看网站| 又大又黄又爽视频免费| 一本色道久久久久久精品综合| 在线观看国产h片| 黑人欧美特级aaaaaa片| 在线观看三级黄色| 最黄视频免费看| 中国国产av一级| 最近中文字幕高清免费大全6| 三级国产精品片| 热99久久久久精品小说推荐| 美女大奶头黄色视频| 中国三级夫妇交换| 春色校园在线视频观看| 久久久精品区二区三区| 蜜桃在线观看..| 伊人亚洲综合成人网| 亚洲精品乱久久久久久| 99九九在线精品视频| 久久久久久久大尺度免费视频| 高清视频免费观看一区二区| 男女啪啪激烈高潮av片| 一级片'在线观看视频| 婷婷色综合www| 亚洲av在线观看美女高潮| 大香蕉久久网| 精品国产乱码久久久久久小说| 黄片播放在线免费| 亚洲五月色婷婷综合| 亚洲人成网站在线观看播放| 日韩人妻高清精品专区| 国产亚洲最大av| 麻豆精品久久久久久蜜桃| 极品少妇高潮喷水抽搐| 高清av免费在线| 丰满乱子伦码专区| 天堂俺去俺来也www色官网| 精品一区二区三卡| 午夜福利视频在线观看免费| 亚洲精品av麻豆狂野| 亚洲熟女精品中文字幕| 天天操日日干夜夜撸| 亚洲人成77777在线视频| 男的添女的下面高潮视频| 肉色欧美久久久久久久蜜桃| 人人妻人人澡人人爽人人夜夜| 日本黄色日本黄色录像| 国产不卡av网站在线观看| videosex国产| 国产深夜福利视频在线观看| 女人精品久久久久毛片| a级毛片免费高清观看在线播放| 天堂8中文在线网| 又粗又硬又长又爽又黄的视频| 好男人视频免费观看在线| 成年av动漫网址| www.av在线官网国产| 国产欧美日韩综合在线一区二区| 91在线精品国自产拍蜜月| 国产精品久久久久久久久免| 欧美激情 高清一区二区三区| 91国产中文字幕| 18禁在线播放成人免费| 成人二区视频| 不卡视频在线观看欧美| 久久精品国产自在天天线| 久久 成人 亚洲| 18禁观看日本| 国产成人freesex在线| 日本-黄色视频高清免费观看| 国产黄频视频在线观看| 人人澡人人妻人| 丰满饥渴人妻一区二区三| 欧美激情 高清一区二区三区| 国产黄频视频在线观看| 久久99热这里只频精品6学生| 亚洲国产欧美日韩在线播放| 亚洲国产日韩一区二区| 国产欧美日韩综合在线一区二区| 在线观看免费高清a一片| 久久久久久久久久久丰满| 最近中文字幕2019免费版| 女人精品久久久久毛片| 热99国产精品久久久久久7| 一级毛片aaaaaa免费看小| 亚洲av中文av极速乱| 狂野欧美激情性xxxx在线观看| 少妇熟女欧美另类| 久久av网站| 26uuu在线亚洲综合色| 日韩欧美精品免费久久| 考比视频在线观看| 亚洲精品日韩在线中文字幕| 国产日韩一区二区三区精品不卡 | 免费少妇av软件| 在线看a的网站| 精品久久国产蜜桃| 亚洲精品成人av观看孕妇| 久久久久久久久久成人| 免费播放大片免费观看视频在线观看| 精品少妇内射三级| 日本91视频免费播放| 欧美精品一区二区大全| 久久午夜综合久久蜜桃| 欧美3d第一页| 色94色欧美一区二区| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品日本国产第一区| 国产又色又爽无遮挡免| 欧美日韩在线观看h| 午夜福利视频精品| 少妇精品久久久久久久| 久久热精品热| 美女xxoo啪啪120秒动态图| 欧美日韩亚洲高清精品| 成人亚洲精品一区在线观看| av免费在线看不卡| 老司机影院成人| 日韩在线高清观看一区二区三区| 观看av在线不卡| 最后的刺客免费高清国语| 成人综合一区亚洲| 亚洲一区二区三区欧美精品| 久久99热这里只频精品6学生| 亚洲精品一区蜜桃| 大话2 男鬼变身卡| 在线观看国产h片| 内地一区二区视频在线| 国产精品久久久久久久电影| 国产视频首页在线观看| 欧美成人午夜免费资源| 亚洲av日韩在线播放| 丰满乱子伦码专区| 国产精品蜜桃在线观看| 免费高清在线观看日韩| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 久久精品人人爽人人爽视色| 国产一区亚洲一区在线观看| 九色亚洲精品在线播放| 欧美老熟妇乱子伦牲交| 亚洲av成人精品一二三区| 日韩亚洲欧美综合| 亚洲精华国产精华液的使用体验| 日本色播在线视频| 亚洲国产最新在线播放| 国产色婷婷99| 只有这里有精品99| 王馨瑶露胸无遮挡在线观看| 日韩精品免费视频一区二区三区 | 我的老师免费观看完整版| 国产高清国产精品国产三级| 特大巨黑吊av在线直播| 亚洲中文av在线| 黑人高潮一二区| 国产视频内射| 人人妻人人澡人人爽人人夜夜| 高清av免费在线| 999精品在线视频| 亚洲国产精品一区二区三区在线| 亚洲精品国产色婷婷电影| 国产精品久久久久久久久免| 成人毛片60女人毛片免费| 色视频在线一区二区三区| 欧美精品高潮呻吟av久久| 免费人妻精品一区二区三区视频| 美女内射精品一级片tv| 久久久精品免费免费高清| 免费播放大片免费观看视频在线观看| 九色亚洲精品在线播放| 女人久久www免费人成看片| 免费日韩欧美在线观看| 一个人看视频在线观看www免费| 爱豆传媒免费全集在线观看| 一边摸一边做爽爽视频免费| 18禁动态无遮挡网站| 丝袜美足系列| 考比视频在线观看| 天天影视国产精品| 婷婷色综合大香蕉| 国产免费一区二区三区四区乱码| 香蕉精品网在线| av视频免费观看在线观看| 各种免费的搞黄视频| 嘟嘟电影网在线观看| 黑丝袜美女国产一区| 成人影院久久| 精品久久蜜臀av无| 一级二级三级毛片免费看| 大片免费播放器 马上看| 久久久久人妻精品一区果冻| 黄片播放在线免费| 黄色欧美视频在线观看| 久久免费观看电影| 啦啦啦视频在线资源免费观看| 日本欧美视频一区| 日本av免费视频播放| 欧美 亚洲 国产 日韩一| 亚洲在久久综合| 国产成人精品婷婷| 纯流量卡能插随身wifi吗| 三级国产精品欧美在线观看| 国产高清有码在线观看视频| 精品久久久噜噜| 国产一区二区在线观看日韩| 午夜激情av网站| 久久女婷五月综合色啪小说| 成人影院久久| 免费少妇av软件| 国产精品成人在线| 婷婷色综合www| 91精品三级在线观看| 各种免费的搞黄视频| 飞空精品影院首页| 母亲3免费完整高清在线观看 | 一级爰片在线观看| 午夜av观看不卡| 久久久久精品性色| 伦理电影大哥的女人| 91久久精品国产一区二区三区| 欧美成人午夜免费资源| 久久久午夜欧美精品| 高清欧美精品videossex| 日本黄色日本黄色录像| 精品久久久久久久久av| 久久久久久久大尺度免费视频| 天天躁夜夜躁狠狠久久av| 精品少妇内射三级| 中国美白少妇内射xxxbb| xxx大片免费视频| 亚洲人成网站在线播| 这个男人来自地球电影免费观看 | 亚洲精品av麻豆狂野| 晚上一个人看的免费电影| 午夜福利网站1000一区二区三区| 日韩av免费高清视频| 日韩成人av中文字幕在线观看| 少妇精品久久久久久久| 少妇被粗大猛烈的视频| 水蜜桃什么品种好| 一级毛片黄色毛片免费观看视频| 在线观看美女被高潮喷水网站| 免费人成在线观看视频色| 精品国产一区二区久久| 大香蕉97超碰在线| 免费看不卡的av| 777米奇影视久久| 18禁观看日本| 免费人妻精品一区二区三区视频| 老司机亚洲免费影院| 国产成人一区二区在线| 五月玫瑰六月丁香| 国产深夜福利视频在线观看| 日本av免费视频播放| 精品人妻熟女av久视频| 狠狠婷婷综合久久久久久88av| 观看美女的网站| 热99久久久久精品小说推荐| 国产男人的电影天堂91| 亚洲少妇的诱惑av| 男人操女人黄网站| 三级国产精品片| 久久热精品热| 免费日韩欧美在线观看| 国产高清不卡午夜福利| 免费观看性生交大片5| 免费看不卡的av| 一级片'在线观看视频| 国产日韩欧美亚洲二区| 26uuu在线亚洲综合色| 纯流量卡能插随身wifi吗| 国产又色又爽无遮挡免| 精品国产乱码久久久久久小说| 青春草国产在线视频| 母亲3免费完整高清在线观看 | 国产精品不卡视频一区二区| 国产一区亚洲一区在线观看| 国产深夜福利视频在线观看| 男人操女人黄网站| 国产日韩欧美视频二区| 欧美精品一区二区大全| 国产亚洲精品久久久com| 亚洲国产日韩一区二区| 免费大片18禁| 80岁老熟妇乱子伦牲交| 男人添女人高潮全过程视频| 欧美日韩视频精品一区| 少妇熟女欧美另类| 伊人亚洲综合成人网| 日本欧美国产在线视频| 欧美日韩综合久久久久久| 国产成人av激情在线播放 | 国产精品成人在线| 亚洲欧美日韩另类电影网站| 久久久国产精品麻豆| av国产精品久久久久影院| 在线播放无遮挡| 一级毛片电影观看| 亚洲精品久久成人aⅴ小说 | 午夜激情av网站| 人妻夜夜爽99麻豆av| 高清欧美精品videossex| 大陆偷拍与自拍| 日本av手机在线免费观看| 成人午夜精彩视频在线观看| 街头女战士在线观看网站| 国产成人91sexporn| 久久精品夜色国产| 99精国产麻豆久久婷婷| 美女福利国产在线| 在线 av 中文字幕| 岛国毛片在线播放| 天美传媒精品一区二区| 亚洲,欧美,日韩| 久久久久人妻精品一区果冻| 热99久久久久精品小说推荐| 欧美少妇被猛烈插入视频| 国产乱人偷精品视频| 又大又黄又爽视频免费| 三上悠亚av全集在线观看| 日韩中字成人| 成人二区视频| 如日韩欧美国产精品一区二区三区 | 国产日韩欧美亚洲二区| 亚洲国产日韩一区二区| 国产成人av激情在线播放 | 久久精品国产自在天天线| 丝袜在线中文字幕| 日本午夜av视频| 婷婷成人精品国产| 如日韩欧美国产精品一区二区三区 | 午夜精品国产一区二区电影| 最黄视频免费看| 狠狠精品人妻久久久久久综合| 最新中文字幕久久久久| 亚洲美女搞黄在线观看| 国产国语露脸激情在线看| 亚洲av不卡在线观看| 亚洲色图 男人天堂 中文字幕 | av女优亚洲男人天堂| 亚洲精品aⅴ在线观看| 日韩 亚洲 欧美在线| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品古装| 黄片无遮挡物在线观看| 亚洲精品456在线播放app| 国产熟女午夜一区二区三区 | 五月伊人婷婷丁香| 中文字幕制服av| 日韩不卡一区二区三区视频在线| 高清毛片免费看| 精品国产一区二区久久| 亚洲精品一区蜜桃| av免费在线看不卡| 欧美精品高潮呻吟av久久| 在线观看三级黄色| 亚洲丝袜综合中文字幕| 多毛熟女@视频| 日韩在线高清观看一区二区三区| 国产精品一区二区在线不卡| 亚洲精品一二三| 国产日韩一区二区三区精品不卡 | 搡女人真爽免费视频火全软件| 国产爽快片一区二区三区| 精品国产乱码久久久久久小说| 自线自在国产av| 亚洲av.av天堂| 午夜影院在线不卡| 有码 亚洲区| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 亚洲精品一二三| 国产成人av激情在线播放 | 一级毛片 在线播放| 国产高清三级在线| 高清av免费在线| 另类亚洲欧美激情| 18禁在线播放成人免费| 久久鲁丝午夜福利片| 丝袜美足系列| 欧美三级亚洲精品| 午夜激情av网站| 欧美亚洲 丝袜 人妻 在线| 成人二区视频| 日韩不卡一区二区三区视频在线| 久久精品国产a三级三级三级| 日本vs欧美在线观看视频| 亚洲国产毛片av蜜桃av| 精品国产乱码久久久久久小说| 男女边吃奶边做爰视频| 日韩一区二区视频免费看| 狂野欧美激情性xxxx在线观看| 国产成人午夜福利电影在线观看| 又粗又硬又长又爽又黄的视频| 色5月婷婷丁香| 国产精品一国产av| 一区二区av电影网| 大片电影免费在线观看免费| 日韩视频在线欧美| 2018国产大陆天天弄谢| 欧美激情 高清一区二区三区| 色视频在线一区二区三区| 久久av网站| 久久国产亚洲av麻豆专区| 丝袜喷水一区| 国产一区二区三区综合在线观看 | 成年人午夜在线观看视频| 久久久精品区二区三区| 久久久午夜欧美精品| 国产69精品久久久久777片| 欧美人与性动交α欧美精品济南到 | 全区人妻精品视频| 激情五月婷婷亚洲| 免费看光身美女| 男男h啪啪无遮挡| 岛国毛片在线播放| 99热国产这里只有精品6| 色婷婷久久久亚洲欧美| 91aial.com中文字幕在线观看| 亚洲图色成人| 久久久国产一区二区| 人妻一区二区av| 国产成人a∨麻豆精品| 成年美女黄网站色视频大全免费 | 大话2 男鬼变身卡| 免费看av在线观看网站| 极品人妻少妇av视频| 国产免费又黄又爽又色| 激情五月婷婷亚洲| 人妻制服诱惑在线中文字幕| 色吧在线观看| 下体分泌物呈黄色| 亚洲激情五月婷婷啪啪| 国产精品久久久久久精品古装| 精品国产乱码久久久久久小说| 91成人精品电影| 精品久久国产蜜桃| 亚洲精品美女久久av网站| 免费久久久久久久精品成人欧美视频 | 国产一区二区三区av在线| 丁香六月天网| 精品久久久久久久久亚洲| 在线观看www视频免费| 菩萨蛮人人尽说江南好唐韦庄| 99久久精品一区二区三区| 国产成人免费无遮挡视频| 91久久精品电影网|