熊鑫,寧洪龍,方志強,蘇國平,黎振超,劉賢哲,姚日暉*,彭俊彪
先進材料
納米纖維素基材料在柔性電子器件中的應用
熊鑫1a,b,寧洪龍1a,b,方志強1c,d,蘇國平1a,b,黎振超2,劉賢哲3,姚日暉1a,b*,彭俊彪1a,b
(1.華南理工大學 a.材料科學與工程學院 b.發(fā)光材料與器件國家重點實驗室 c.輕工科學與工程學院 d.制漿造紙工程國家重點實驗室,廣州 510641;2.廣東風華高新科技股份有限公司 新型電子元器件關鍵材料與工藝國家重點實驗室,廣東 肇慶 526060;3.五邑大學應用物理與材料學院 柔性傳感材料與器件研究開發(fā)中心,廣東 江門 529020)
由于納米纖維素基材料良好的柔韌性、熱力學性能和高透明度,近年來在柔性電子產(chǎn)品中引起越來越多的關注。通過綜述該領域的研究進展,將有助于研究人員更高效地開展研究。綜述3類納米纖維素的制備方法及將納米纖維素基材料應用在柔性電子產(chǎn)品中的研究進展。分別闡述納米纖維素基材料應用于器件柔性襯底及絕緣材料的研究實例,并討論納米纖維素在各種應用方向中的優(yōu)勢以及存在的問題,最后對材料的未來應用前景進行展望。納米纖維素是天然纖維素與納米技術結合的產(chǎn)物,可主要劃分為纖維素納米纖絲、纖維素納米晶以及細菌纖維素3類。近年來,納米纖維素基材料作為電子器件柔性襯底、絕緣材料等研究均有許多成果問世。雖然納米纖維素基電子器件的開發(fā)還主要停留在實驗室階段,但是與傳統(tǒng)的石油化工產(chǎn)品相比,納米纖維素具有原材料豐富、環(huán)??山到獾葍?yōu)點。對納米纖維素基新型材料的開發(fā)利用,有助于解決人類社會中日益嚴重的電子垃圾問題。
納米纖維素;柔性電子;可再生;絕緣層
高分子材料由于具有絕緣性好、種類多樣、易加工等特點,目前應用已經(jīng)十分廣泛,塑料、纖維、橡膠等高分子材料在生活中隨處可見。但是,各類高分子材料大量使用的同時,也產(chǎn)生了許多一系列相應的副作用有待解決。比如,某些高分子材料的原材料本身或加工過程中的添加劑存在毒性,可能會危害人體健康;某些高分子材料廢棄后難以降解,造成“白色污染”[1]。隨著人類社會信息化、電子化的發(fā)展,社會中每年產(chǎn)生的電子垃圾急劇增長,對保護生態(tài)環(huán)境提出了巨大挑戰(zhàn)[2]。為了從根本上解決這一問題,開發(fā)出可大規(guī)模應用于各類電子產(chǎn)品中的環(huán)境友好型高分子材料是非常必要的[3]?;谶@樣的背景下,納米纖維素基材料逐漸進入了研究人員的視野。
作為世界上儲量最豐富的生物聚合物之一,纖維素具有清潔無毒、可生物降解且生物相容性好等優(yōu)點[4]。天然纖維素基材料于造紙、服裝等行業(yè)已經(jīng)應用了數(shù)千年,而納米纖維素是一種傳統(tǒng)纖維素材料與納米技術結合而誕生的新型材料[5-6]。納米纖維素繼承了天然纖維素的基本結構以及良好的生物相容性,同時由于其納米級的尺寸,納米纖維素還兼具了納米粒子的特性,如強度高、比表面積大、穩(wěn)定性好、光學透明性好且易交織成網(wǎng)狀結構等。因此,許多研究人員嘗試將納米纖維素基材料應用于電子器件中,開發(fā)出符合環(huán)保理念的新型綠色電子產(chǎn)品。
鑒于納米纖維素良好的應用前景,通過完成本篇論文,可以幫助新入門的研究人員簡單、快速地了解有關納米纖維素的研究進展,并制定研究路線。本文主要分為2部分,第1部分主要綜述3類納米纖維素的制備工藝以及主要性能參數(shù),第2部分綜述納米纖維素基材料應用于器件柔性襯底以及絕緣材料的研究實例,并展望材料未來的應用前景。
纖維素(C6H10O5)是一種由D-葡萄糖單元由β-(1→4)糖苷鍵連接而成的高分子量的同聚糖。纖維素分子鏈通過氫鍵和范德華力結合構成具有結晶區(qū)和無定型區(qū)的纖維素原纖絲,進而聚集成纖維素微纖束,并最終形成纖維素纖維,如圖1a所示。每個葡萄糖單元在C2、C3和C6上有羥基,能夠在纖維素大分子的分子內(nèi)部和分子間形成氫鍵,其重復片段的分子結構如圖1b所示,這種結構通常被認為是葡萄糖的二聚體,稱為纖維二糖[7]。
納米纖維素指至少一個維度為納米尺度的天然纖維素納米材料。目前,納米纖維素可以通過多種方法從植物或細菌等來源進行提取,常用于提取納米纖維素的方法包括物理方法,化學方法以及生物方法,也可以使用物理化學結合法。根據(jù)纖維素來源及形態(tài)參數(shù)的差異,納米纖維素可劃分為3種類別:纖維素納米纖絲、納米微晶纖維素以及細菌納米纖維素,如表1所示。其中,纖維素納米纖絲和納米微晶纖維素來源于植物,可通過不同的工藝從植物纖維中提取得到。細菌納米纖維素則由細菌產(chǎn)生。
纖維素納米纖絲(Cellulose Nanofibril, CNF)的結構由原始纖維素纖維的無定形區(qū)和結晶區(qū)組成,呈微纖絲狀,具有網(wǎng)絡或網(wǎng)狀結構,極易形成氫鍵,具有長徑比大,比表面積大,強度高,熱穩(wěn)定性好等特點。
目前,CNF主要采用物理機械法進行制備,即對纖維素原料進行物理作用,減小其尺寸到納米尺度。物理機械法主要包括高壓均質(zhì)法[22],高速攪拌法、熱壓法、研磨[23]、冷凍粉碎[24]、超聲波處理[25]等。其中高壓均質(zhì)法由于效率高、易控制且工藝中不涉及有機溶劑,是CNF制備中最常用的一種物理機械法。其工作過程中,首先將纖維素原料導入高壓均質(zhì)閥中,使物料在高壓環(huán)境下反復與碰撞環(huán)發(fā)生高速碰撞,利用由此產(chǎn)生的剪切作用力實現(xiàn)纖維素的細化和均質(zhì)。物理機械法制備的CNF在纖維高度微細化后比表面積增大,表面裸露出大量的羥基,因此表現(xiàn)出較好的吸水性和黏結力。
圖1 纖維素結構示意圖[8-10]
表1 納米纖維素的分類
Tab.1 Classification of nanocellulose
然而,通過以高壓均質(zhì)法為代表的物理機械法制備CNF,存在制備時間長、能耗高、設備易受損害等缺點。因此,實際制備過程中,往往需要先對纖維素原料進行預處理,以大大降低制備所需時長及能耗。常見的預處理方法包括酶解法[26]、羧甲基化法[27-28]、TEMPO氧化法[29-30]、磷酸化法等[31-32]。在一些研究中,通過預處理手段可將纖維素表面的醇羥基轉化為帶負電的羧基或羧甲基,使得纖維素原纖之間產(chǎn)生靜電斥力,氫鍵作用點減少,氫鍵更難形成,纖維素原纖直接的結合力減弱,更容易分解細化。
納米微晶纖維素(Cellulose Nanocrystal, CNC)由纖維素原料經(jīng)過化學處理后剩下的高結晶度剛性棒狀顆粒組成,其力學性能優(yōu)異,具有高結晶度、高彈性模量、高拉伸強度等特點。從纖維素纖維中分離CNC的主流方法是基于無機酸水解法的化學處理,這是由于纖維素的非晶區(qū)抗酸性較差,而纖維素的結晶區(qū)具有更致密的物理化學結構,具有較好的抗酸性。通過酸處理過程可將纖維素的非晶區(qū)水解除去,而結晶區(qū)能抵抗酸溶液侵蝕,則會被保留下來。包括硫酸[33]、鹽酸[34]、磷酸[35]和氫溴酸[36]在內(nèi)的多種酸均可用于提取CNC,其中硫酸水解目前應用最為廣泛。硫酸可將纖維素表面的羥基置換為帶負電的硫酸根基團,硫酸根基團之間產(chǎn)生的靜電排斥力使CNC的分散穩(wěn)定性更好[37],然而硫酸的使用存在一些缺點,如CNC的熱穩(wěn)定性低、設備易腐蝕、用水量大以及環(huán)境不友好等[38]。因此,一些研究人員著眼于探索硫酸的替代品,如離子液體[39-40]、馬來酸、草酸[41]、甲苯磺酸、富馬酸和檸檬酸水解[42]等。
細菌納米纖維素(Bacterial Nanocellulose, BNC)是由細菌(如木醋桿菌)在含有糖源的水培養(yǎng)基中合成的一種由帶狀納米纖維組成的網(wǎng)狀納米纖維素。一般來說,BNC的結構隨培養(yǎng)條件和菌株種類的差異而有所不同[43-46]。BNC的化學結構單元與前文所述的2種植物納米纖維素相同,但BNC更薄,且具有純度高(約100%)、結晶度高、熱穩(wěn)定性強等優(yōu)勢。木材或植物纖維素在純化過程中通常會引入多種官能團,如羧基或羰基,而BNC中不含除醇以外的其他官能團,同時也不含其他聚合物,如木質(zhì)素、半纖維素或果膠等,這有助于BNC在生物醫(yī)學中的應用。BNC合成的生化過程包括3個主要步驟:葡萄糖殘基聚合成β-1,4葡聚糖、細胞外分泌線狀鏈、葡聚糖鏈通過氫鍵和范德華力在細胞外空間排列而結晶[47]。目前,主要有2種方法用于培養(yǎng)菌株生產(chǎn)BNC:靜態(tài)培養(yǎng)法[48]和攪拌培養(yǎng)法[49],培養(yǎng)時間一般從幾天到2周不等[50]。
近年來,越來越多研發(fā)人員將目光投向柔性電子器件的開發(fā),如太陽能電池、有機發(fā)光二極管、薄膜晶體管[51]、超級電容器等。基于納米纖維素制備的薄膜具有優(yōu)異的柔韌性、納米級的表面粗糙度、超高的透明度及優(yōu)異的力學性能和熱性能,可以直接作為襯底材料應用于透明柔性電子器件中,也可以通過與其他功能材料復合的方式改善其性能。同時,納米纖維素薄膜也被證明具有優(yōu)異的介電性能,可以作為一種綠色絕緣材料應用于下一代環(huán)保電子產(chǎn)品中。
襯底是電子器件的重要組成部分,它獨立支撐電子器件的運行與工作,襯底薄膜的光學、機械和熱性能是決定電子器件性能的關鍵因素[52]。目前常見的襯底材料多為玻璃或塑料。玻璃襯底高密度及高剛性的特點使其不適用于柔性電子器件中。塑料襯底(PET、PEN、PI、PC等)具有高透明度、高柔韌性及輕便的優(yōu)勢[53-54],可應用于柔性電子器件。但是塑料襯底普遍存在低熱耐久性和高熱膨脹系數(shù)(CTE)的缺點,襯底與器件其他層之間熱膨脹系數(shù)的巨大差異會在界面處造成不良應力,從而導致整個器件在制造過程中彎曲或變形[55],這一定程度上限制了塑料襯底在柔性電子器件中的應用。
以CNF制成的納米紙具有優(yōu)異的熱穩(wěn)定性(>180 ℃)、化學耐久性,以及較低的熱膨脹系數(shù)(CTE:5×10?6~10×10?6K),是一種很有前途的柔性襯底,有望廣泛應用于柔性電子器件中[56-66]。2012年,Hu等[67]展示了一種由CNF制成的新型柔性透明納米紙,并作為光電器件的襯底制備了太陽能電池。然而,器件表現(xiàn)出較差的性能(最大光能轉化效率(PCE)為0.4%)和較差的整流,主要是因為CNF襯底的表面相對粗糙(表面高度變化為 40 nm)。2013年,Zhou等[68]在相對CNF襯底表面粗糙度低得多的獨立透明CNC襯底上制造了聚合物太陽能電池,具有以下結構:CNC/Ag(20 nm)/聚乙烯亞胺乙氧基化(PEIE)/活性層/MoO3/Ag,如圖2a所示。圖2b顯示了太陽能電池在黑暗和95 mW/cm2的AM1.5照明下的J-V特性曲線。太陽能電池的PCE(2.7%)高于其他可再生襯底上制造的聚合物太陽能電池,但相較于玻璃/氧化銦錫(ITO)襯底上制造的類似結構器件的(PCE值約為6%)低,這歸因于半透明Ag(20 nm)底部電極的低透射率。同年,Zhou等[69]又在CNC襯底上報告了新的太陽能電池器件結構,使用半透明PEDOT:PSS作為頂部空穴收集電極,同時使用反射性Ag/聚乙烯亞胺(PEI)作為底部電子收集電極,器件結構如圖4c所示,新的器件顯示出(0.64±0.02)的高填充因子(FF)和(3.8±0.2)%的高平均PCE。
圖2 2種基于CNC襯底的太陽能電池結構
2013年,Hu等[70]制備了TEMPO氧化CNF納米紙,發(fā)現(xiàn)CNF直徑與納米紙的光學性能存在聯(lián)系。如圖3所示,直徑越大,成紙透明度越低,而霧度越高。實際應用中,高霧度高透明度的紙比較適用于太陽能電池等戶外電子設備[31, 71-73],而高透明度低霧度的紙更適用于顯示器等領域。研究團隊通過調(diào)整紙張內(nèi)纖維素微米纖維與納米纖維素的比例可制備光學性能可調(diào)的納米紙?;诩{米纖維素紙的優(yōu)異光學性能與力學性能,制備了一系列透明納米紙基電子器件,如透明發(fā)光二極管[58]、透明晶體管[74]、觸摸屏[62]、太陽能電池[75]。
在以往的研究中,基于薄透明CNF納米紙襯底制備的OTFT具有良好的柔韌性[55]。但是由于納米紙襯底無法耐受較高的退火溫度,器件性能和熱退火之間的矛盾然是實現(xiàn)高性能納米紙TFT應用的障礙。2017年,Ning等[77]使用IGZO/Al2O3雙層薄膜作為溝道有源層,通過傳統(tǒng)的物理氣相沉積方法在光學性能優(yōu)異(92%透明度,0.85%透射霧度)和超光滑(在5×5 μm掃描區(qū)域中面粗糙度為1.8 nm)的CNF納米紙基板上制造了高性能TFT,器件結構如圖4a所示,制備過程無需進一步熱退火處理。如圖4b所示,器件表現(xiàn)出優(yōu)異的工作特性:飽和遷移率為15.8 cm2/(V·s),開關比為4.4×105,閾值電壓為?0.42 V,亞閾值擺幅為0.66 V/dec。室溫下,納米紙基高性能IGZO/Al2O3TFT的成功制備,有助于研發(fā)廉價綠色、柔性輕質(zhì)的顯示器件。
2023年,Zhong等[78]以寬度為3~5 nm的CNF為原料,通過旋涂法在玻璃基板上制備了表面粗糙度為3.49 nm的納米紙作為器件襯底,并在透明納米紙上通過室溫物理氣相沉積制備了具有底柵結構的雙層溝道(IGZO/Al2O3)TFT,如圖5所示。旋涂制備的納米紙具有超光滑表面,且室溫制備工藝可以防止TFT沉積過程中納米紙發(fā)生分解或形變。因此,納米紙TFT的每個功能層截面都沒有觀察到明顯的皺紋,平坦的IGZO/Al2O3層可以減少TFT的內(nèi)部缺陷,同時提高器件的穩(wěn)定性。所制備的納米紙TFT不僅表現(xiàn)出高達21.98 cm2/(V·s)的飽和遷移率、5.07×106的on/Ioff開關比和0.75 V/dec的亞閾值擺幅,而且表現(xiàn)出良好的偏置穩(wěn)定性。這項研究對開發(fā)綠色、可持續(xù)且廉價的透明紙電子產(chǎn)品具有重要意義。
圖3 CNF直徑對納米紙光學性能的影響[76]
圖4 基于CNF基板的TFT結構及器件特性[77]
圖5 基于CNF納米紙襯底的TFT[78]
不同于直接將納米纖維素紙作為器件襯底,部分研究人員嘗試將CNF與其他功能材料進行復合以獲得性能優(yōu)勢[79-83]。迄今為止報道的納米復合材料薄膜的整體性能還有較大的提升空間,特別是導熱性和拉伸強度。2023年,Chen等[84]通過使用CCNF1.2(羧基含量為1.2 mmol/g的羧甲基化CNF)同時作為BNNS(氮化硼納米片)的有效分散劑和增強基質(zhì),制備了具有優(yōu)異綜合性能的BNNS-CNF納米復合薄膜,制備過程如圖6a所示。CCNF1.2的高長徑比使其對BNNS具有優(yōu)異的分散能力,提供強大的空間位阻排斥力。同時,CCNF1.2與BNNS表現(xiàn)出最強的疏水-疏水相互作用,其羧基與BNNS的?OH完全通過氫鍵相互作用。因此,如圖6b所示,BNNS-CCNF1.2薄膜(BNNS質(zhì)量分數(shù)為50%)表現(xiàn)出致密的排列結構和優(yōu)異的綜合性能(拉伸強度為125.0 MPa、面內(nèi)導熱率為17.3 W/(m·K)和改善的耐水性),BNNS-CCNF1.2薄膜在1 kHz時的介電常數(shù)為1.06,介電常數(shù)在高頻(10 kHz至1 MHz)下的漂移可以忽略不計。這項工作證明了CCNF在提高BNNS-CNF薄膜整體性能方面的有效性,并為其在下一代電子設備的先進熱管理中的實際應用鋪平了道路。
圖6 BNNS-CCNF1.2復合薄膜[84]
目前距納米紙誕生已經(jīng)過了10年時間,研究人員對納米紙的制備、性能研究以及各種納米紙襯底在柔性電子器件的應用已經(jīng)初步取得了一系列的突破和成果。納米紙作為一種天然可再生的新型襯底,同時兼具優(yōu)異的力學性能、光學性能和熱穩(wěn)定性,被認為在柔性電子器件領域具有光明的應用前景,目前已成功應用于薄膜晶體管、太陽能電池、有機發(fā)光二極管[85]等多種電子器件中。但是,目前有關納米紙及納米紙基襯底材料應用于電子器件領域的研究多處于實驗室階段,實現(xiàn)大規(guī)模商業(yè)化應用的過程還面臨一些科學技術問題和挑戰(zhàn)[86]。在納米紙制備方面,目前通過真空過濾法或鑄涂法制備納米紙的工藝時間成本太高,未來需研發(fā)新的生產(chǎn)工藝和設備實現(xiàn)納米紙的高效率制備;在器件構建方面,基于納米紙基襯底的器件性能與玻璃或塑料基器件還存在差距,未來需進一步優(yōu)化納米紙的光、電、熱穩(wěn)定性及力學性能,深入研究納米紙襯底的結構與各項性能參數(shù)對器件性能的影響,進一步提升納米紙電子器件的性能。
絕緣材料是各種電子器件的重要組成部分之一,目前電子行業(yè)中常用的無機絕緣材料大多不可降解,廢棄后會對環(huán)境造成破壞。由于具有穩(wěn)定的化學結構與致密的物理堆積,納米纖維素薄膜有被用作絕緣材料的潛力。同時,納米纖維素還具有柔韌性好、表面光滑、質(zhì)量輕盈、高透明度、低熱膨脹和生物相容性好等優(yōu)點,基于納米纖維素的絕緣材料有望用于高性能環(huán)保電子器件中。目前,已有一些基于納米纖維素薄膜作絕緣層的晶體管等電子器件的報道[87-94]。
2014年,Gaspar等[93]首次報道了一種基于CNC絕緣薄膜的透明場效應晶體管,制備過程首先采用鑄涂法制備厚度為20 μm的CNC薄膜,隨后將其他器件結構構建在CNC兩側,該器件的制備過程及器件結構如圖7a所示。在該結構中,CNC薄膜同時充當FET器件的基板和絕緣層。FET器件性能如圖7b所示,其溝道飽和遷移率高于7 cm2/(V·s),源漏電流開關比高于105,亞閾值擺幅為2.11 V/dec。Fortunato等[95-99]的一系列研究結果表明基于納米纖維素薄膜絕緣材料制備高性能場效應電子器件具有可行性。
2017年,Cunha等[92]以CNF薄膜單獨作為絕緣層,并以IGZO薄膜作為半導體層制備了TFT器件,器件結構如圖8a所示。CNF薄膜由羧甲基化CNF制備,由于羧甲基化過程會在納米纖維素溶液中引入可移動的離子,因此所得CNF薄膜具有離子膠介電特性。在低頻(~200 Hz)下可獲得較高的有效電容密度(2~6 μF/cm2),IGZO TFT工作電壓小于2 V,開/關電流比高于106,關態(tài)電流約為10–8A,表明CNF絕緣層具有良好的絕緣特性。同年,Shao等[100]在紙襯底/銀電極復合材料上依次沉積CNF薄膜和氧化銦鋅(IZO)薄膜制備了晶體管器件,其結構如圖8b所示。經(jīng)測試,當測試電場設為?3.0~3.0 kV/cm時,CNF薄膜的最大漏電流密度約為10?6A/cm2,與常規(guī)氧化物絕緣材料接近。同時,得益于CNF絕緣薄膜的低漏電流和高電容,所得薄膜晶體管的開啟電壓小于1.5 V,開關比高于107,關態(tài)電流低于10?10A。
圖7 兼具襯底和絕緣層功能的CNC薄膜[93]
圖8 基于CNF絕緣層的電子器件
目前,用作絕緣材料的納米纖維素主要采用鑄涂法制備,先制得大片的薄膜后再進行切割。這樣的工藝不能精確控制薄膜的厚度、尺寸等,不利于器件的小型化以及集成化。噴墨印刷是一種綠色環(huán)保的溶液法薄膜沉積工藝,具有節(jié)約材料、生產(chǎn)速率快、無需光刻以及成本低廉等優(yōu)勢,有望克服傳統(tǒng)鑄涂、過濾工藝的不足,從而促進CNF絕緣薄膜在大規(guī)模集成電路的應用。2020年,Zhou等[101]報道了通過噴墨打印制備均勻的CNF薄膜的研究,并基于CNF絕緣層構建了IGZO TFT,器件結構及性能如圖11所示。該研究中,選用TEMPO氧化處理的CNF作為原材料,加入合適濃度的PVA、EG及FSO作為添加劑調(diào)控墨水的黏度、表面張力及墨水揮發(fā)速率,得到了適用于印刷系統(tǒng)的、具有快速自凝膠特性的CNF墨水。印刷后的CNF薄膜表現(xiàn)出良好的均勻性,同時還兼具高透明度、低漏電流密度和高效率電容等優(yōu)異性能。以噴墨打印CNF薄膜為絕緣層的高性能薄膜晶體管,其遷移率大于10 cm2/(V·s),電流開關比超過5×104。該項研究證明了CNF絕緣薄膜具有大規(guī)模應用于電子元器件的潛力。
圖9 基于噴墨打印CNF絕緣薄膜的IGZO TFT[101]
隨著對納米纖維素基材料的研究和認識不斷深入,其用途不局限于作為電子器件的襯底材料,還有望作為電子器件的功能組件,提升電子器件的性能。納米纖維素薄膜具有極高的光學透過率、良好的電學絕緣性以及獨特的離子膠電容特性,有望作為絕緣層廣泛應用于透明電子器件、低功耗電子器件以及環(huán)保電子器件中,從而減緩電子廢棄物帶來的環(huán)境問題。然而,目前納米纖維素絕緣薄膜的應用仍存在不少問題。納米纖維素薄膜主要采用鑄涂工藝制備,往往只能先得到大片的薄膜,之后再根據(jù)需求進行切割,制備流程需要額外的剝離、轉移以及切割過程,難以兼容大規(guī)模的工業(yè)生產(chǎn)。進一步地,通過鑄涂法不能精確控制薄膜的厚度、尺寸等,所得薄膜的厚度、尺寸過大,不利于器件的小型化以及集成化。此外,由于薄膜不能精細圖形化,多個器件集成時需要共用一片薄膜作為絕緣層,因此相互之間存在耦合串擾現(xiàn)象,不利于集成電路的穩(wěn)定工作。噴墨印刷技術具有定位準確、尺寸可控以及圖形化精度高等優(yōu)點,基于噴墨印刷技術開發(fā)納米纖維素薄膜制備工藝,有望克服傳統(tǒng)鑄涂、過濾工藝的不足,從而促進CNF絕緣薄膜在大規(guī)模集成電路的應用。
納米纖維素基材料擁有柔韌性好、透明度高、質(zhì)量輕盈以及環(huán)境友好等優(yōu)點。近年來,許多關于納米纖維素基材料應用于電子器件中作為柔性襯底或其他功能材料的研究被報道。本文介紹了納米纖維素的制備工藝以及納米纖維素基材料在電子器件中的應用。雖然已經(jīng)取得了許多成果和突破,但目前對納米纖維素基電子器件的開發(fā)還主要停留在實驗室階段,目前常用的納米紙制備方法,如真空過濾法或鑄涂法,制備流程較為復雜,且所制備的薄膜厚度往往較大,無法實現(xiàn)薄膜尺寸的精確控制,納米纖維素想要在未來柔性電子產(chǎn)品中取得大范圍應用,還需要解決納米紙低成本、大面積制備的問題,未來需研發(fā)新的生產(chǎn)工藝和設備實現(xiàn)納米紙的高效率制備。在器件構建方面,基于納米紙基襯底的器件性能與玻璃或塑料基器件還存在差距,納米紙基材料無法耐受較高的工藝溫度,一定程度上限制了其在高性能電子器件中的應用,未來需進一步優(yōu)化納米紙的光、電、熱穩(wěn)定性及力學性能,深入研究納米紙襯底的結構與各項性能參數(shù)對器件性能的影響,進一步提升納米紙電子器件的性能。為了實現(xiàn)商業(yè)化應用,必須加強與其他學科之間的交叉融合,找到納米纖維素材料及器件制備的新理論與新工藝,在高效率制備及優(yōu)異器件性能等方向?qū)で笸黄?。納米纖維素可從自然界中儲量豐富的植物纖維素中獲取,同時具有環(huán)保無毒且可生物降解等優(yōu)點,符合當今世界對環(huán)境保護的理念,未來與傳統(tǒng)的石油化工產(chǎn)品進行競爭將是大勢所趨??梢韵嘈?,納米紙襯底將會成為主流的新型綠色柔性襯底,推動下一代電子器件朝著柔性、質(zhì)輕、低成本、可降解的方向發(fā)展,促進人類社會的可持續(xù)發(fā)展。
[1] QIN M, CHEN C Y, SONG B, et al. A Review of Biodegradable Plastics to Biodegradable Microplastics: Another Ecological Threat to Soil Environments?[J]. Journal of Cleaner Production, 2021, 312: 127816.
[2] LIU Q, CAO J, LI K Q, et al. Chromosomal Aberrations and DNA Damage in Human Populations Exposed to the Processing of Electronics Waste[J]. Environmental Science and Pollution Research, 2009, 16(3): 329-338.
[3] ZHANG T M, ZHANG Y, WANG X Y, et al. Characterization of the Nano-Cellulose Aerogel from Mixing CNF and CNC with Different Ratio[J]. Materials Letters, 2018, 229: 329-338.
[4] KUMAR R, SHARMA R K, SINGH A P. Grafted Cellulose: A Bio-Based Polymer for Durable Applications[J]. Polymer Bulletin, 2018, 75(5): 2213-2242.
[5] FANG Z Q, ZHANG H L, QIU S Y, et al. Versatile Wood Cellulose for Biodegradable Electronics[J]. Advanced Materials Technologies, 2021, 6(2): 2000928.
[6] FANG Z Q, HOU G Y, CHEN C J, et al. Nanocellulose-Based Films and Their Emerging Applications[J]. Current Opinion in Solid State and Materials Science, 2019, 23(4): 100764.
[7] EICHHORN S J. Cellulose Nanowhiskers: Promising Materials for Advanced Applications[J]. Soft Matter, 2011, 7(2): 303-315.
[8] ZHU H L, JIA Z, CHEN Y C, et al. Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir[J]. Nano Letters, 2013, 13(7): 3093-3100.
[9] KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses: A New Family of Nature-Based Materials[J]. Angewandte Chemie (International Ed in English), 2011, 50(24): 5438-5466.
[10] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications[J]. Chemical Reviews, 2010, 110(6): 3479-3500.
[11] IFUKU S, YANO H. Effect of a Silane Coupling Agent on the Mechanical Properties of a Microfibrillated Cellulose Composite[J]. International Journal of Biological Macromolecules, 2015, 74: 428-432.
[12] LAVOINE N, DESLOGES I, DUFRESNE A, et al. Microfibrillated Cellulose - Its Barrier Properties and Applications in Cellulosic Materials: A Review[J]. Carbohydrate Polymers, 2012, 90(2): 735-764.
[13] WEI P, LI G H, GAO S, et al. Effectively Reinforcing Rolled Reconstituted Tobacco with Carboxymethylated Cellulose Fibers[J]. Cellulose, 2023, 30(11): 7129-7140.
[14] ZHOU J, FANG Z Q, CHEN K H, et al. Improving the Degree of Polymerization of Cellulose Nanofibers by Largely Preserving Native Structure of Wood Fibers[J]. Carbohydrate Polymers, 2022, 296: 119919.
[15] CHEN K H, QIN F M, FANG Z Q, et al. Mechanically Stable Core-Shell Cellulose Nanofibril/Sodium Alginate Hydrogel Beads with Superior Cu(II) Removal Capacity[J]. International Journal of Biological Macromolecules, 2022, 222: 1353-1363.
[16] ZHANG D J, LI G H, LIU Y, et al. Favorable Combination of Foldability and Toughness of Transparent Cellulose Nanofibril Films by a PET Fiber-Reinforced Strategy[J]. International Journal of Biological Macromolecules, 2020, 164: 3268-3274.
[17] ZHOU J, FANG Z Q, CUI J Y, et al. Wood-Inspired Strategy to Toughen Transparent Cellulose Nanofibril Films[J]. Carbohydrate Polymers, 2021, 259: 117759.
[18] TRACHE D, HUSSIN M H, MOHAMAD HAAFIZ M K, et al. Recent Progress in Cellulose Nanocrystals: Sources and Production[J]. Nanoscale, 2017, 9(5): 1763-1786.
[19] MOON R J, MARTINI A, NAIRN J, et al. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites[J]. Chemical Society Reviews, 2011, 40(7): 3941-3994.
[20] SANI A, DAHMAN Y. Improvements in the Production of Bacterial Synthesized Biocellulose Nanofibres Using Different Culture Methods[J]. Journal of Chemical Technology & Biotechnology, 2009, 85(2): 151-164.
[21] HUANG Y, ZHU C L, YANG J Z, et al. Recent Advances in Bacterial Cellulose[J]. Cellulose, 2014, 21(1): 1-30.
[22] ZIMMERMANN T, BORDEANU N, STRUB E. Properties of Nanofibrillated Cellulose from Different Raw Materials and Its Reinforcement Potential[J]. Carbohydrate Polymers, 2010, 79(4): 1086-1093.
[23] 顧俐慧, 金永燦. 木質(zhì)纖維素納米纖絲的制備與表征[J]. 纖維素科學與技術, 2018, 26(2): 31-37.
GU L H, JIN Y C. Preparation and Characterization of Lignocellulose Nanofibril (LCNF)[J]. Journal of Cellulose Science and Technology, 2018, 26(2): 31-37.
[24] ALEMDAR A, SAIN M. Biocomposites from Wheat Straw Nanofibers: Morphology, Thermal and Mechanical Properties[J]. Composites Science and Technology, 2008, 68(2): 557-565.
[25] CHENG Q, WANG S, RIALS T G J C P A A S, et al. Poly(Vinyl Alcohol) Nanocomposites Reinforced with Cellulose Fibrils Isolated by High Intensity Ultrasonication[J]. Composites Part A Applied Science & Manufacturing, 2009, 40(2): 218-224.
[26] CARVALHO A F, DE OLIVA NETO P, SILVA D, et al. Xylo-Oligosaccharides from Lignocellulosic Materials: Chemical Structure, Health Benefits and Production by Chemical and Enzymatic Hydrolysis[J]. Food Research International, 2013, 51(1): 75-85.
[27] W?GBERG L, DECHER G, NORGREN M, et al. The Build-up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes[J]. Langmuir, 2008, 24(3): 784-795.
[28] EYHOLZER C, BORDEANU N, LOPEZ-SUEVOS F, et al. Preparation and Characterization of Water-Redispersible Nanofibrillated Cellulose in Powder Form[J]. Cellulose, 2010, 17(1): 19-30.
[29] ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-Oxidized Cellulose Nanofibers[J]. Nanoscale, 2011, 3(1): 71-85.
[30] SAITO T, NISHIYAMA Y, PUTAUX J L, et al. Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose[J]. Biomacromolecules, 2006, 7(6): 1687-1691.
[31] HOU G Y, ZHAO S S, LI Y J, et al. Mechanically Robust, Flame-Retardant Phosphorylated Cellulose Films with Tunable Optical Properties for Light Management in LEDs[J]. Carbohydrate Polymers, 2022, 298: 120129.
[32] HOU G Y, ZHAO S S, PENG L Y, et al. A Systematic Study for the Structures and Properties of Phosphorylated Pulp Fibers Prepared under Various Conditions[J]. Cellulose, 2022, 29(13): 7365-7376.
[33] BONDESON D, MATHEW A, OKSMAN K. Optimization of the Isolation of Nanocrystals from Microcrystalline Celluloseby Acid Hydrolysis[J]. Cellulose, 2006, 13(2): 171-180.
[34] YU H Y, QIN Z Y, LIANG B L, et al. Facile Extraction of Thermally Stable Cellulose Nanocrystals with a High Yield of 93% through Hydrochloric Acidhydrolysis under Hydrothermal Conditions[J]. Journal of Materials Chemistry A, 2013, 1(12): 3938-3944.
[35] CAMARERO E S, KUHNT T, FOSTER E J, et al. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis[J]. Biomacromolecules, 2013, 14(4): 1223-1230.
[36] SADEGHIFAR H, FILPPONEN I, CLARKE S P, et al. Production of Cellulose Nanocrystals Using Hydrobromic Acid and Click Reactions on Their Surface[J]. Journal of Materials Science, 2011, 46(22): 7344-7355.
[37] 唐麗榮, 黃彪, 戴達松, 等. 納米纖維素晶體的制備及表征[J]. 林業(yè)科學, 2011, 47(9): 119-122.
[38] LIU Y F, WANG H S, YU G, et al. A Novel Approach for the Preparation of Nanocrystalline Cellulose by Using Phosphotungstic Acid[J]. Carbohydrate Polymers, 2014, 110: 415-422.
[39] TAN X, ABD HAMID S B, LAI C W. Preparation of High Crystallinity Cellulose Nanocrystals (CNCS) by Ionic Liquid Solvolysis[J]. Biomass and Bioenergy, 2015, 81: 584-591.
[40] MAO J, OSORIO-MADRAZO A, LABORIE M P. Preparation of Cellulose I Nanowhiskers with a Mildly Acidic Aqueous Ionic Liquid: Reaction Efficiency and Whiskers Attributes[J]. Cellulose, 2013, 20(4): 1829-1840.
[41] CHEN L H, ZHU J Y, BAEZ C, et al. Highly Thermal-Stable and Functional Cellulose Nanocrystals and Nanofibrils Produced Using Fully Recyclable Organic Acids[J]. Green Chemistry, 2016, 18(13): 3835-3843.
[42] NAGARAJAN K J, BALAJI A N, KASI RAJAN S T, et al. Preparation of Bio-Eco Based Cellulose Nanomaterials from Used Disposal Paper Cups through Citric Acid Hydrolysis[J]. Carbohydrate Polymers, 2020, 235: 115997.
[43] LI S H, HUANG D K, YANG J C, et al. Freestanding Bacterial Cellulose-Polypyrrole Nanofibres Paper Electrodes for Advanced Energy Storage Devices[J]. Nano Energy, 2014, 9: 309-317.
[44] YANO H, SUGIYAMA J, NAKAGAITO A, et al. Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers[J]. Advanced Materials, 2005, 17(2): 153-155.
[45] KONDO T, RYTCZAK P, BIELECKI S. Chapter 4 - Bacterial NanoCellulose Characterization[M]. Bacterial Nanocellulose. Amsterdam; Elsevier. 2016: 59-71.
[46] SHI Z J, PHILLIPS G O, YANG G. Nanocellulose Electroconductive Composites[J]. Nanoscale, 2013, 5(8): 3194-3201.
[47] JR R. Cellulose Structure and Biosynthesis: What is in Store for the 21st Century?[J]. Journal of Polymer Science Part A Polymer Chemistry, 2004, 42(3): 487-495.
[48] BROWN R M, WILLISON J H, RICHARDSON C L. Cellulose Biosynthesis in Acetobacter Xylinum: Visualization of the Site of Synthesis and Direct Measurement of the in Vivo Process[J]. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(12): 4565-4569.
[49] CAMPANO C, BALEA A, BLANCO A, et al. Enhancement of the Fermentation Process and Properties of Bacterial Cellulose: A Review[J]. Cellulose, 2016, 23(1): 57-91.
[50] GATENHOLM P, KLEMM D. Bacterial Nanocellulose as a Renewable Material for Biomedical Applications[J]. MRS Bulletin, 2010, 35(3): 208-213.
[51] LIANG Z H, WU W J, FU X, et al. Flexible High-Entropy Poly(vinyl alcohol) Dielectric Films were Prepared at a Low Temperature and Applied to an Indium Gallium Zinc Oxide Thin-Film Transistor[J]. The Journal of Physical Chemistry Letters, 2023, 14(41): 9245-9249.
[52] 楊曌, 李保昌, 王燁, 等. 基板表面粗糙度對電阻薄膜微觀形貌及電學性能的影響[J]. 材料研究與應用, 2022, 16(4): 505-510.
YANG Z, LI B C, WANG Y, et al. Effect of Substrate Surface Roughness on the Morphology and Electrical Properties of Resistance Films[J]. Materials Research and Application, 2022, 16(4): 505-510.
[53] PARK J S, KIM T W, STRYAKHILEV D, et al. Flexible Full Color Organic Light-Emitting Diode Display on Polyimide Plastic Substrate Driven by Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors[J]. Applied Physics Letters, 2009, 95(1): 013503.
[54] 周廷亮, 朱偉剛, 胡鳳鳴, 等. 基于碳纖維漿料的柔性薄膜彎曲傳感器制備與研究[J]. 材料研究與應用, 2023, 17(2): 323-328.
ZHOU T L, ZHU W G, HU F M, et al. Preparation and Study of Flexible Thin Film Bending Sensors Based on Carbon Fiber Slurry[J]. Materials Research and Application, 2023, 17(2): 323-328.
[55] FUJISAKI Y, KOGA H, NAKAJIMA Y, et al. Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array[J]. Advanced Functional Materials, 2014, 24(12): 323-328.
[56] HENRIKSSON M, BERGLUND L. Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde[J]. Journal of Applied Polymer Science, 2007, 106(4): 2817-2824.
[57] FUKUZUMI H, SAITO T, IWATA T, et al. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation[J]. Biomacromolecules, 2009, 10(1): 162-165.
[58] ZHU H L, XIAO Z G, LIU D T, et al. Biodegradable Transparent Substrates for Flexible Organic-Light-Emitting Diodes[J]. Energy & Environmental Science, 2013, 6(7): 2105-2111.
[59] YAO R H, LI X Q, LI Z H, et al. Fabrication and Properties of Silver Nanowire Flexible Transparent Electrode; Proceedings of the 19th International Conference on Electronic Packaging Technology (ICEPT)[C]// Inst Microelectron Chinese Acad Sci, Shanghai, Ieee: New York, 2018: 454-456.
[60] MING S Y, CHEN G, HE J H, et al. Highly Transparent and Self-Extinguishing Nanofibrillated Cellulose-Monolayer Clay Nanoplatelet Hybrid Films[J]. Langmuir, 2017, 33(34): 8455-8462.
[61] TAO J S, FANG Z Q, ZHANG Q, et al. Super-Clear Nanopaper from Agro-Industrial Waste for Green Electronics[J]. Advanced Electronic Materials, 2017, 3(5): 1600539.
[62] FANG Z Q, ZHU H L, PRESTON C, et al. Highly Transparent and Writable Wood All-Cellulose Hybrid Nanostructured Paper[J]. Journal of Materials Chemistry C, 2013, 1(39): 6191-6197.
[63] GUO Y C, FANG Z Q, DU M D, et al. Flexible and Biocompatible Nanopaper-Based Electrode Arrays for Neural Activity Recording[J]. Nano Research, 2018, 11(10): 5604-5614.
[64] LI Y Y, ZHU H L, GU H B, et al. Strong Transparent Magnetic Nanopaper Prepared by Immobilization of Fe3O4Nanoparticles in a Nanofibrillated Cellulose Network[J]. Journal of Materials Chemistry A, 2013, 1(48): 15278-15283.
[65] FANG Z Q, LI B, LIU Y, et al. Critical Role of Degree of Polymerization of Cellulose in Super-Strong Nanocellulose Films[J]. Matter, 2020, 2(4): 1000-1014.
[66] SHUOYANG Q, HUILONG Z, QIANGU Y, et al. Flexible Lumped Microwave Passive Components and Filters on Cellulose Nanofibril Substrates[J]. IEEE Journal of Microwaves, 2023: 96-101.
[67] HU L B, ZHENG G Y, YAO J, et al. Transparent and Conductive Paper from Nanocellulose Fibers[J]. Energy & Environmental Science, 2013, 6(2): 513-518.
[68] ZHOU Y H, FUENTES-HERNANDEZ C, KHAN T M, et al. Recyclable Organic Solar Cells on Cellulose Nanocrystal Substrates[J]. Scientific Reports, 2013, 3: 1536.
[69] ZHOU Y H, KHAN T, LIU J C, et al. Efficient Recyclable Organic Solar Cells on Cellulose Nanocrystal Substrates with a Conducting Polymer Top Electrode Deposited by Film-Transfer Lamination[J]. Organic Electronics, 2014, 15(3): 661-666.
[70] 胡招湘, 侯高遠, 李冠輝, 等. 單根木質(zhì)纖維尺寸對高透光率纖維素復合薄膜霧度的影響[J]. 中國造紙, 2022, 41(10): 16-23.
HU Z X, HOU G Y, LI G H, et al. Effect of Individual Wood Fiber Dimension on Haze for High Transmittance Cellulose Composite Film[J]. China Pulp & Paper, 2022, 41(10): 16-23.
[71] HOU G Y, LIU Y, ZHANG D J, et al. Approaching Theoretical Haze of Highly Transparent All-Cellulose Composite Films[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31998-32005.
[72] HOU G Y, LI G H, CHEN H, et al. Rapid Preparation of Highly Transparent Paper with High Built-in Haze by an Ion Exchange Approach[J]. SSRN Electronic Journal, 2022, 439: 135776.
[73] HU W, FANG Z Q, LIU Y, et al. A Protonation Process to Enhance the Water Resistance of Transparent and Hazy Paper[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12385-12392.
[74] HUANG J, ZHU H L, CHEN Y C, et al. Highly Transparent and Flexible Nanopaper Transistors[J]. ACS Nano, 2013, 7(3): 2106-2113.
[75] FANG Z Q, ZHU H L, YUAN Y B, et al. Novel Nanostructured Paper with Ultrahigh Transparency and Ultrahigh Haze for Solar Cells[J]. Nano Letters, 2014, 14(2): 765-773.
[76] ZHU H L, PARVINIAN S, PRESTON C, et al. Transparent Nanopaper with Tailored Optical Properties[J]. Nanoscale, 2013, 5(9): 3787-3792.
[77] NING H L, ZENG Y, KUANG Y D, et al. Room-Temperature Fabrication of High-Performance Amorphous In-Ga-Zn-O/Al(2)O(3)Thin-Film Transistors on Ultrasmooth and Clear Nanopaper[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27792-27800.
[78] ZHONG J Y, LI G H, GUO R P, et al. Bilayer Metal Oxide Channel Thin Film Transistor with Flat Interface Based on Smooth Transparent Nanopaper Substrate[J]. IEEE Electron Device Letters, 2022, 43(12): 2113-2116.
[79] TANG S W, WU Z G, FENG G X, et al. Multifunctional Sandwich-Like Composite Film Based on Superhydrophobic MXene for Self-Cleaning, Photodynamic and Antimicrobial Applications[J]. Chemical Engineering Journal, 2022, 454(9): 140457.
[80] WEI L S, WU Z G, TANG S W, et al. Tracheid-Inspired Nanoarchitectured Carbon-Based Aerogels with Ultra-Compressibility for Wearable Piezoresistive Sensors[J]. Carbon, 2022, 203(12): 386-396.
[81] TANG S W, WU Z G, LI X Y, et al. Nacre-Inspired Biodegradable Nanocellulose/MXene/AgNPs Films with High Strength and Superior Gas Barrier Properties[J]. Carbohydrate Polymers, 2023, 299: 120204.
[82] ZHOU W, FANG J W, TANG S W, et al. 3D-Printed Nanocellulose-Based Cushioning-Antibacterial Dual- Function Food Packaging Aerogel[J]. Molecules, 2021, 26(12): 3543.
[83] ZHOU W, WU Z G, XIE F W, et al. 3D Printed Nanocellulose-Based Label for Fruit Freshness Keeping and Visual Monitoring[J]. Carbohydrate Polymers, 2021, 273: 118545.
[84] CHEN K H, PENG L Y, FANG Z Q, et al. Dispersing Boron Nitride Nanosheets with Carboxymethylated Cellulose Nanofibrils for Strong and Thermally Conductive Nanocomposite Films with Improved Water-Resistance[J]. Carbohydrate Polymers, 2023, 321: 121250.
[85] NAJAFABADI E, ZHOU Y H, KNAUER K A, et al. Efficient Organic Light-Emitting Diodes Fabricated on Cellulose Nanocrystal Substrates[J]. Applied Physics Letters, 2014, 105(6): 1-4.
[86] 陳港, 彭從星, 況宇迪, 等. 納米紙襯底的制備、性能及其在柔性電子器件中的應用[J]. 材料工程, 2018, 46(6): 1-10.
CHEN G, PENG C X, KUANG Y D, et al. Preparation, Properties and Applications of Nanopaper Substrates for Flexible Electronics[J]. Journal of Materials Engineering, 2018, 46(6): 1-10.
[87] LIU Z H, NIE S, LUO J, et al. Flexible Indium- Tin-Oxide Homojunction Thin-Film Transistors with Two In-Plane Gates on Cellulose-Nanofiber-Soaked Papers[J]. Advanced Electronic Materials, 2019, 5(7): 1900235.
[88] DAI S L, WANG Y, ZHANG J Y, et al. Wood-Derived Nanopaper Dielectrics for Organic Synaptic Transistors[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39983-39991.
[89] DAI S L, CHU Y L, LIU D P, et al. Intrinsically Ionic Conductive Cellulose Nanopapers Applied as all Solid Dielectrics for Low Voltage Organic Transistors[J]. Nature Communications, 2018, 9: 2737.
[90] HUANG J W, ZHOU Y X, ZHANG L, et al. Study on the Electrical Properties of Nanopaper Made from Nanofibrillated Cellulose for Application in Power Equipment[J]. Cellulose, 2018, 25(6): 3449-3458.
[91] TAO J, CAO S N. Flexible High Dielectric Thin Films Based on Cellulose Nanofibrils and Acid Oxidized Multi-Walled Carbon Nanotubes[J]. RSC Advances, 2020, 10(18): 10799-10805.
[92] CUNHA I, BARRAS R, GREY P, et al. Reusable Cellulose-Based Hydrogel Sticker Film Applied as Gate Dielectric in Paper Electrolyte-Gated Transistors[J]. Advanced Functional Materials, 2017, 27(16): 1606755.
[93] GASPAR D, FERNANDES S N, DE OLIVEIRA A G, et al. Nanocrystalline Cellulose Applied Simultaneously as the Gate Dielectric and the Substrate in Flexible Field Effect Transistors[J]. Nanotechnology, 2014, 25(9): 094008.
[94] GASPAR D, PEREIRA L, DELATTRE A, et al. Engineered cellulose fibers as dielectric for oxide field effect transistors; proceedings of the E-MRS Spring Meeting/Symposium H/Symposium I/Symposium BB/Symposium FF/Symosium D, Lille, FRANCE, F May 11-15, 2015[C]// Wiley-V C H Verlag Gmbh: Weinheim, 2015: 1421-1426.
[95] FORTUNATO E, CORREIA N, BARQUINHA P, et al. High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper[J]. IEEE Electron Device Letters, 2008, 29(9): 988-990.
[96] MARTINS R, BARQUINHA P, PEREIRA L, et al. Write-Erase and Read Paper Memory Transistor[J]. Applied Physics Letters, 2008, 93(20): 203501.
[97] MARTINS R, NATHAN A, BARROS R, et al. Complementary Metal Oxide Semiconductor Technology with and on Paper[J]. Advanced Materials, 2011, 23(39): 4491-4496.
[98] MARTINS R F P, AHNOOD A, CORREIA N, et al. Recyclable, Flexible, Low-Power Oxide Electronics[J]. Advanced Functional Materials, 2013, 23(17): 2153-2161.
[99] MARTINS R, FERREIRA I, FORTUNATO E. Electronics with and on Paper[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2011, 5(9): 332-335.
[100]SHAO F, FENG P, WAN C J, et al. Multifunctional Logic Demonstrated in a Flexible Multigate Oxide- Based Electric-Double-Layer Transistor on Paper Substrate[J]. Advanced Electronic Materials, 2017, 3(3): 1600509.
[101]ZHOU S X, XU Z H, FANG Z Q, et al. Invited Paper: Inkjet Printing of Homogeneous and Green Cellulose Nanofibrils Dielectric for High Performance IGZO TFTS[J]. SID Symposium Digest of Technical Papers, 2021, 52(S2): 580-581.
Application of Nanocellulose-based Materials in Flexible Electronic Devices
XIONG Xin1a,b, NING Honglong1a,b, FANG Zhiqiang1c,d, SU Guoping1a,b, LI Zhenchao2, LIU Xianzhe3, YAO Rihui1a,b*, PENG Junbiao1a,b
(1. a. School of Materials Science and Engineering, b. State Key Laboratory of Luminescent Materials and Devices, c. School of Light Industry and Engineering, d. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; 2. State Key Laboratory of Advanced Materials and Electronic Components, Guangdong Fenghua Advanced Technology Holding Co., Ltd., Guangdong Zhaoqing 526060, China; 3. Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Guangdong Jiangmen 529020, China)
Nanocellulose-based materials have attracted more and more attention in flexible electronic products in recent years due to their good flexibility, thermodynamic properties and high transparency. The review of the research progress in this field will help researchers to carry out research more efficiently. Three types of nanocellulose preparation methods and the research progress of applying nanocellulose-based materials in flexible electronic products were reviewed. The research examples of nanocellulose-based materials applied to flexible substrates of devices and insulating materials were described, and the advantages of nanocellulose in various directions of application as well as the existing problems were discussed, and finally, the future prospects of the material application were proposed. Nanocellulose is a product of the combination of natural cellulose and nanotechnology, which can be mainly divided into cellulose nanofibrils, cellulose nanocrystal and bacterial nanocellulose. In recent years, many achievements have been made in the research of nanocellulose-based materials as flexible substrates and insulating materials for electronic devices. Although the development of nanocellulose-based electronic devices is still mainly in the laboratory stage, compared with traditional petrochemical products, nanocellulose has the advantages of abundant raw materials and environmental degradation. The development and utilization of new nanocellulose-based materials can help to solve the increasingly serious problem of electronic waste in human society.
nanocellulose; flexible; renewable; insulating layer
TS206.4
A
1001-3563(2024)01-0040-14
10.19554/j.cnki.1001-3563.2024.01.006
2023-09-16
國家重點研發(fā)計劃資助(2021YFB3600604);國家自然科學基金(62174057,62074059,22090024,21978103);廣東省自然科學基金(2023A1515011026);廣東省教育廳廣東省普通高校重點領域?qū)m棧ㄐ乱淮娮有畔ⅲ?022ZDZX1002);廣東省基礎與應用基礎研究基金(2020B1515020021,2023B1515040013);季華實驗室自主立項項目(X190221TF191)