• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于非對稱泰勒綜合的平面陣列低副瓣設計

    2024-01-12 02:27:46鵬,王琰,劉
    艦船電子對抗 2023年6期
    關鍵詞:陣面副瓣空域

    趙 鵬,王 琰,劉 成

    (中國電子科技集團公司第十三研究所,河北 石家莊 050200)

    0 引 言

    陣列綜合是相控陣天線設計中的重要一環(huán),目的是通過確定陣元的激勵幅度、相位、陣元數(shù)量和位置等參數(shù),使天線陣的遠區(qū)輻射方向圖滿足一定的要求,如控制副瓣電平、在某處形成一定深度的零點、主瓣滿足特定形狀要求等[1]。理論上,進行天線陣的綜合可以通過調整上述4個參數(shù)來實現(xiàn),但對于一個確定的天線陣,其天線陣元數(shù)、分布形式和單元間距是確定的。本文就是考慮在確定天線陣列的情況下,通過調整陣元激勵達到期望的低副瓣方向圖要求。

    副瓣電平成為天線性能的重要指標之一。陣元激勵方法主要分為三大類:唯相位加權[2]、唯幅度加權[3]和幅度相位加權[4]。以上3種加權方法,適用于不同的應用場景。本文選擇幅度相位加權,因為其比唯相位和唯幅度加權具有更大的加權自由度,但是只能工程應用于電磁波接收場景。現(xiàn)存主流的實現(xiàn)算法分為迭代算法[2]和非迭代算法[3-4]。由于迭代算法的計算時間長,本文選用非迭代的泰勒加權算法。

    關于陣面的泰勒綜合的研究具有悠久的歷史[5]?,F(xiàn)存的泰勒綜合法有以下缺陷:應用領域限制于線陣和均勻排布的面陣[6];加權后對整個空域方向圖均有影響,不能對部分空域方向圖賦形;在降低副瓣的同時沒有對主瓣增益下降進行約束。本文對以上問題進行了解決,并給出了明確的適用于非均勻平面陣的非對稱泰勒加權公式。

    1 陣列天線模型

    建立側射陣模型:

    圖1中平面陣列在yoz平面,陣元不一定均勻排布。其中θ是俯仰角(空域方向矢量和xoy平面的夾角),φ為方位角。

    圖1 側射陣模型

    根據(jù)直角坐標和極坐標轉換公式:

    (1)

    第i個陣元和原點的光程差為:

    Di=(0,yi,zi)·a

    (2)

    a=(x,y,z)=(cosθcosφ,cosθsinφ,sinθ)

    (3)

    式中:a為歸一化空域方向矢量。

    因此相位差為:

    (4)

    如果天線已經做了波束形成,并且波束指向(θ0,φ0),則該陣元得到的相位補償為:

    (5)

    因此真實的相位差為:

    (yicosθ0sinφ0+zisinθ0)]

    (6)

    因此側射陣方向圖公式為:

    (7)

    式中:N為陣元數(shù);wi為陣元的加權值。

    2 基于平面陣的泰勒加權方法

    泰勒綜合法包括幅度加權和相位加權。幅度加權由各陣元的電流激勵控制,相位加權由各陣元的移相器控制。泰勒加權的核心思想是:構造一個方向圖函數(shù),使得線陣上的陣元按該函數(shù)采樣后的值加權后形成的輻射方向圖8和該函數(shù)相同。為線陣加權后能控制其輻射方向圖的主副瓣比,該方向圖函數(shù)的特性為主副瓣比可控。在計算泰勒加權值之前,先引入泰勒方向圖函數(shù)。

    2.1 一維對稱泰勒方向圖函數(shù)

    根據(jù)文獻[7],一維對稱的泰勒方向圖函數(shù)可表示為:

    (8)

    (9)

    (10)

    cosh(πA)=R0

    (11)

    (12)

    式中:(x,A,N)為用戶輸入,x為函數(shù)自變量,A為該函數(shù)的主副瓣比因子,N為該函數(shù)主瓣附近等幅旁瓣個數(shù);R0為真實主副瓣比;xn為函數(shù)所有的零點位置;ls為副瓣電平(SLL);σ為波瓣展寬因子:

    (13)

    考察輸入對泰勒方向圖函數(shù)的影響,則取對數(shù)后的泰勒方向圖函數(shù)為:

    F(x,A,N)=20lg(S(x,A,N))

    (14)

    函數(shù)特性如圖2、圖3所示。

    圖2 目標主副瓣比對方向圖函數(shù)的影響

    圖3 等幅旁瓣個數(shù)對方向圖函數(shù)的影響

    函數(shù)特性滿足預期的主瓣高可控、第一副瓣高為零。在工程上,幅度加權值不能超過1,并且加權值的分母不能為0,因此式(8)歸一化后可以寫成如下等價形式:

    (15)

    2.2 一維非對稱泰勒方向圖函數(shù)

    式(8)認為方向圖函數(shù)是對稱的,即主瓣左右兩邊的副瓣高度相同,等幅副瓣個數(shù)相同,所以可以用A和N來表示主瓣兩邊的特征。

    將式(8)推廣為非對稱的泰勒加權函數(shù):

    S(x,Al,Ar,Nl,Nr)=

    (16)

    式中:連乘不包括n=0因子;x為函數(shù)自變量;Al為該函數(shù)主瓣左側的主副瓣比因子;Ar為該函數(shù)主瓣右側的主副瓣比因子;Nl為主瓣左側等幅旁瓣個數(shù);Nr為主瓣右側等幅旁瓣個數(shù)。

    (17)

    考察輸入對泰勒方向圖函數(shù)的影響,泰勒方向圖函數(shù)取對數(shù)后為:

    (18)

    由圖4和圖5可以看出,主瓣已經發(fā)生了微小的偏移,該函數(shù)已經存在虛部。

    圖4 非均勻泰勒方向圖函數(shù)對輸入的響應

    圖5 非均勻泰勒方向圖函數(shù)虛部

    2.3 二維泰勒加權值

    對于非對稱的泰勒方向圖函數(shù),任意線陣的陣元泰勒加權值為:

    (19)

    其中連加不包括x=0因子。L為單元分布的總長度,di是第i個單元的坐標值。

    顯然,當Al=Ar,Nl=Nr時,式(19)退化為對稱的泰勒方向圖對應的陣元泰勒加權值:

    (20)

    為方便書寫,用S表示方向圖函數(shù)。式(19)和式(20)的加權值具有以下性質:在給每個陣元按照式(19)加權后,產生的天線方向圖可以類似于泰勒方向圖函數(shù)S,即:

    (21)

    式中:θ為空域某角度;θ0為波束指向;F(i,θ,θ0)為第i個陣元在空域角度θ處的能量幅值函數(shù);w(i)為該陣元的加權值。

    由圖3和圖4可知,通過控制SLL可控制泰勒方向圖函數(shù)的主副瓣比。由式(9)、(10)、(21)可知,通過控制S的主副瓣比可控制線陣方向圖的主副瓣比。

    對于平面陣,泰勒加權值需要對式(19)進行推廣。如圖1所示,對于平面陣上第i個陣元,其坐標值di包括陣面2個維度上的坐標分量yi和zi。每個分量上的加權值為:

    (22)

    (23)

    則面陣上的陣元加權值可定義為:

    wi=wiy·wiz

    (24)

    3 仿真實例

    3.1 三角排布相控陣

    陣面定義:橢圓形口徑平面陣,y向寬170 mm,z向寬140 mm,共228個陣元,三角柵格排布。波束指向方位3°,俯仰5°。天線綜合要求:在方位角[0°,90°]和俯仰角[-90°,0°]范圍內降低副瓣,主瓣增益下降3 dB以內。圖6(a)和圖7(a)顯示了陣面未加權時空域方向圖。此時整個三維方向圖主副瓣比為16.4 dBc,峰值47.16 dB。

    圖6 陣面方向圖極坐標顯示

    圖7 陣面方向圖方位和俯仰切面圖顯示

    對整個陣面進行泰勒非對稱加權,目的是在方位角[0°,90°]和俯仰角[-90°,0°]范圍內降低副瓣。設置對應部分的ls=-33.8 dB(該數(shù)據(jù)由電腦依據(jù)主瓣下降限制窮舉得到),其他部分的ls=-8 dB。加權后的空域方向圖見圖6(b)和圖7(b)。加權后峰值44.17 dB,主瓣下降2.99 dB。

    由圖6和圖7可以看到加權后方向圖在方位角[0°,90°]和俯仰角[-90°,0°]范圍內副瓣有明顯的降低。方位切面主瓣左側主副瓣比18 dBc,主瓣右側主副瓣比29 dBc;俯仰切面主瓣左側主副瓣比27.9 dBc,主瓣右側主副瓣比7.8 dBc;整個陣面的空域方向圖主副瓣比為16.6 dBc。波束指向角度有微小偏移,方位角由3°偏移到5°,俯仰角由5°偏移到3°,均向副瓣下降更多的一側偏移。

    3.2 圓形排布相控陣

    陣面定義:橢圓形口徑平面陣,y向寬170 mm,z向寬140 mm,共218個陣元,圓形柵格排布。波束指向方位7°,俯仰-10°。天線綜合要求:在方位角[0°,90°]和俯仰角[0°,90°]范圍內降低副瓣,主瓣增益下降3 dB以內。圖8(a)和圖9(a)顯示了陣面未加權時空域方向圖。此時整個三維方向圖主副瓣比為16.5 dBc,峰值46.77 dB。

    圖8 陣面方向圖極坐標顯示

    圖9 陣面方向圖方位和俯仰切面圖顯示

    對整個陣面進行泰勒非對稱加權,目的是在方位角[0°,90°]和俯仰角[-90°,0°]范圍內降低副瓣。設置對應部分的ls=-33.1 dB(該數(shù)據(jù)由電腦依據(jù)主瓣下降限制窮舉得到),其他部分的ls=-8 dB。加權后的空域方向圖見圖8(b)和圖9(b)。加權后峰值43.79 dB,主瓣下降2.98 dB。

    由圖8和圖9可以看到:方向圖在方位角[0°,90°]和俯仰角[0°,90°]范圍內副瓣明顯降低。方位切面主瓣左側主副瓣比18.4 dBc,主瓣右側主副瓣比26.6 dBc;俯仰切面主瓣左側主副瓣比16.8 dBc,主瓣右側主副瓣比31 dBc;整個陣面的空域方向圖主副瓣比15.7 dBc。值得注意的是,整個陣面的主副瓣比相比于加權之前的16.5 dBc變小了。指向角度有微小偏移,方位角由7°偏移到9°,俯仰角由-10°偏移到-8°,均向副瓣下降更多的一側偏移。

    4 結束語

    本文給出了一種基于非對稱泰勒綜合的平面陣列加權方法,通過理論分析和仿真實驗討論了該方法在方向圖降副瓣方面的性能。該方法具有如下優(yōu)點:

    (1) 適用于任意排布的平面陣列;

    (2) 可對陣面方向圖進行非對稱的副瓣控制;

    (3) 具有較小的增益損失;

    (4) 加權包括幅度和相位加權,具有更大的靈活性;

    (5) 算法為非迭代算法,時間成本更低。

    猜你喜歡
    陣面副瓣空域
    C波段高增益低副瓣微帶陣列天線設計
    大型柔性陣面陣架動力學分析*
    非均勻間距的低副瓣寬帶微帶陣列天線設計
    基于相鄰一維線陣干涉儀陣面的測向補償算法研究
    我國全空域防空體系精彩亮相珠海航展
    雷達副瓣跟蹤機理分析
    陣面分布不均勻的相控陣天線維修優(yōu)化模型
    基于貝葉斯估計的短時空域扇區(qū)交通流量預測
    淺談我國低空空域運行管理現(xiàn)狀及發(fā)展
    基于能量空域調控的射頻加熱花生醬均勻性研究
    阿城市| 伊通| 孟州市| 容城县| 深泽县| 阿尔山市| 长治县| 灵璧县| 吉首市| 乌审旗| 静乐县| 山东省| 中牟县| 类乌齐县| 祁东县| 庆阳市| 叶城县| 区。| 马龙县| 灵川县| 靖边县| 马山县| 措勤县| 防城港市| 灵山县| 湟源县| 渝北区| 万年县| 丹寨县| 荆州市| 开封市| 通海县| 东海县| 平安县| 英山县| 芜湖县| 长寿区| 呼伦贝尔市| 东乌珠穆沁旗| 达孜县| 卓资县|