• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction for the Multi-band Afterglows of FRB 200428 and its Implication

    2024-01-06 06:40:10MeiDuShuangXiYiCanMinDengandPeiWang
    Research in Astronomy and Astrophysics 2023年11期

    Mei Du, Shuang-Xi Yi, Can-Min Deng, and Pei Wang

    1 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; yisx2015@qfnu.edu.cn

    2 Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China dengcm@gxu.edu.cn

    3 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

    Abstract The physical mechanism of fast radio bursts(FRBs)is still unknown.On 2020 April 28,a special radio burst,FRB 200428,was detected and believed to be associated with the Galactic magnetar SGR 1935+2154.It confirms that at least some of the FRBs were generated by magnetars,although the radiation mechanism continues to be debated.To this end, we study in detail the multiband afterglows of FRB 200428 described by the synchrotron fireball shock model.We find the prediction for the optical and radio afterglows of FRB 200428 is consistent with the observations when considering the post-FRB optical and radio upper limits from the literature.We also show that the follow up detection of the afterglows from fast radio bursts like—FRB 200428 is possible at the radio band,though challenging.Based on our model,one can obtain information about the energy of the fireball,the radiation zone, and the nature of the surrounding medium.That may shed light on the physical mechanism of FRBs.

    Key words: stars: magnetars – (stars:) gamma-ray bursts: general – radiation mechanisms: non-thermal

    1.Introduction

    Fast radio bursts (FRBs) are cosmological radio transient sources whose physical origins are still under debated (e.g.,Cordes & Chatterjee 2019; Petroff et al.2019; Zhang 2020;Xiao et al.2021).On 2020 April 28, a bright radio burst with millisecond duration from the Milky Way magnetar SGR 1935+2154 was detected simultaneously by the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Survey for Transient Astronomical Radio Emission 2 (STARE2; e.g.,Bochenek et al.2020;CHIME/FRB Collaboration et al.2020).With an energy of ~1035erg, it is considered likely to be an extension of the extragalactic FRBs at the lower energy end(e.g.,Lu et al.2020).If this radio burst is indeed an FRB(FRB 200428), it directly confirms that at least some of the FRBs were produced by magnetar flares (e.g., Lyubarsky 2014;Beloborodov 2017; Margalit et al.2018; Metzger et al.2019).

    Due to the more comprehensive data available on repeated FRBs, some theoretical models about the FRB generation mechanism are proposed.Beloborodov (2017) explains the mechanism of repeated FRBs, he suggests that a young magnetar star releases energy from successive flares, the flares are driven by accelerated ambipolar diffusion in the neutron star core,and then power the nebula particles to produce bright millisecond bursts.The energy supply of successive flares and the collision between different flares give rise to a series of repeated FRBs with different intervals.This powerful shock wave can also produce bright optical radiation (e.g., Beloborodov 2020).Yang et al.(2019) studied the brightness and detection prospect of “fast optical bursts” (FOBs) associated with FRBs,indicating that it is possible to detect the associative FOBs in some special inverse Compton scattering processes and with telescopes which with high sensitivity.However, Waxman(2017)put strict constraints on the nature of the persistent source and found that the typical magnetar star wind nebula model is not consistent with the predicted results and a strong synchronous maser emission mechanism adapted to the GHz band is proposed.However,Waxman(2017)found that the typical magnetar wind nebulae model did not agree with the predicted results by placing strict constraints on the properties of the persistent source,so they proposed that the strong synchronous maser emission mechanism could be adapted to the GHz band.Metzger et al.(2019)suggested that the repeated FRBs might be formed by the magnetar-powered synchrotron maser shock model, where the central engines released clean ultrarelativistic magnetization shock waves spread outward, and then the shock colliding with the upstream mildly relativistic magnetized ion-electron shell.The shell through the reverse and forward shock wave to decelerate, the latter of which produces the observed FRBs by synchronous maser mechanism.Similar to GRBs afterglow, the forward shock also heats electrons to extremely relativistic temperatures, powering (incoherent) synchrotron X-ray/gammaray emission.Recently, Cooper et al.(2022) have predicted the multi-band afterglow of FRB 200428 based on the magnetarpowered synchrotron maser shock model.In particular, the mechanism of FRB 200428 may be consistent with the previously predicted model, but due to its lower luminosity, the energy distribution may be slightly different (e.g., Wang et al.2020).

    Another breakthrough in the observation of FRB 200428 was that the X-ray burst associated with it was simultaneously detected, with an energy ratio of the radio burst to the X-ray bursts ~10?5(e.g., Mereghetti et al.2020; Li et al.2021;Ridnaia et al.2021; Tavani et al.2021).Incredibly, the faraway model has predicted the occurrence of X-ray burst associated with the FRB,as well as the low radiation efficiency of the FRB (~10?5), which was well verified in the case of FRB 200428(e.g.,Margalit et al.2020).However,recently Wu et al.(2020) found that the ejected baryon matter of the magenta mainly provided by the crust,is higher than the typical mass of a magnetar outer crust.This finding indicates that the outer crust of the magnetar predicted in their model cannot eject enough baryonic mass.We note that the physical mechanism and the rate of the baryonic mass ejection remain uncertain.Thus we suggest that further investigations in observation and theory are required.The close-in model can also account for the low radiative efficiency of FRB 200428 and its associated X-ray bursts, although they were not predicted by the model (e.g., Lu et al.2020).

    Surprisingly, despite numerous X-ray bursts during the SGR 1935+2154 active period,no other FRB event has been detected so far,except for FRB 200428(e.g.,Lin et al.2020;Bailes et al.2021; Kirsten et al.2021).One noticed that the spectrum of the X-ray burst associated with FRB 200428 seems to be much harder than other bursts,with a peak energy ~85 keV(e.g.,Ridnaia et al.2021).This may imply that the X-ray burst associated with FRB 200428 was an unusual burst, and FRBs were produced only in this kind of bursts.It thus leads to speculation that this may be the underlying reason why other X-ray bursts do not have FRB associations.As suggested by Ioka(2020),the usual X-ray bursts could come from the fireballs trapped in the closed field lines of the magnetar, in analogy to the standard model for soft gammaray repeaters (SGRs; e.g., Thompson & Duncan 1995, 2001;Kaspi&Beloborodov 2017).However,the X-ray burst associated with the FRB 200428 may come from the trapped-expanding fireball located in the open field line region of the magnetar(e.g.,Ioka 2020).The observed temperature of such the expanding fireball remains constant due to relativistic effects, which is consistent with the burst having a larger Ep~85 keV than the usual bursts.

    As one can see in the physical picture above, the X-ray bursts associated with FRB could be accompanied by energetic ejecta(the expanding fireballs),while the usual X-ray bursts are not.According to the standard fireball model, a pair of shocks will be generated when the fireball sweeps the surrounding medium, including the reverse shock that propagates through the ejecta and the forward shock that propagates through the surrounding medium.Similar to the case of gamma-ray bursts(GRBs), these shocks would produce multiband afterglows(e.g., Yi et al.2014).The evolution of the afterglows are closely related to the energy of the fireball and the nature of the surrounding environment (e.g., Yi et al.2014; Zhang 2014).Therefore, when FRB 200428 repeats again in the future, if its multiband afterglows are observed,it will provide new insights into the physical mechanism of FRBs.

    In this work, we study in detail the multiband afterglows of FRB 200428,and its detectability.It can be seen that there are many models that attempt to explain the origin of FRBs.It is too early to say which is correct, given the observational evidence so far.Therefore, this work does not attempt to discuss the framework of any specific FRB model.We refer to the afterglow model of GRB and use a memoryless fireball to calculate the afterglow of fast radio bursts.Based on such a model-independent afterglow model, on the one hand,one can predict the timescale and brightness of the afterglow of FRB 200428 that may occur again in the future according to several limited parameters, so as to provide a theoretical basis for afterglow observation.On the other hand, future afterglow observations can be based on our model to make modelindependent constraints on the surrounding environment of FRB 200428, which is critical for revealing the physical mechanism of FRB 200428.

    This work is organized as follows.The standard afterglow external shock model is described in Section 2 and the results of multifrequency afterglows for FRB 200428 are shown in Section 3.The discussion and conclusion are listed in Section 4.

    2.The Model

    Following the previous study of Yi et al.(2014),we applied the standard afterglow external shock synchrotron emission model of GRBs(e.g.,Mészáros&Rees 1997;Sari et al.1998;Gao et al.2013;Yi et al.2014)to FRBs.This model describes the interaction between the outflow and the ambient medium,and it has several free parameters:the total kinetic energy E,the number density of the ambient medium n0, the initial Lorentz factor Γ, the shock energy equipartition parameters εeand εBfor electrons and magnetic fields,respectively,and the electron injection spectral index p.If the forward and reverse shocks are both considered, the equipartition parameters εeand εBand p may be different, so there will be nine parameters.

    We mainly consider the forward shock (FS) emission.However, an uncertain phenomenon is whether the reverse shock(RS)emission appeared,which depends on a magnetization parameter of the outflow σ, and the parameter is the ratio between the Poynting flux and the matter flux (e.g., Zhang &Kobayashi 2005; Mimica et al.2009; Mizuno et al.2009).Considering FRB 200428 originates from SGR J1935+2154,the outflow may be magnetized.As the study of the previous(e.g., Komissarov et al.2009; Granot et al.2011), the outflow is accelerated by a magnetic pressure gradient, and σ is decreased with the radius, lead to the parameter Γ is increased with the radius.Additionally,there is also an obvious magnetic dissipation in the phase of the FRB emission.Therefore, the value of σ has a lot of uncertainty.If it is already below unity,the RS emission must be expected (e.g., Zhang et al.2003;Zhang & Kobayashi 2005; Yi et al.2014).

    For the sake of simplicity, we simply considered the standard synchrotron emission, which is mainly decided by the bulk Lorentz factor Γ and the total kinetic energy E, and neglected other complication factors.Under this model, the light curves evolution are associated with three characteristic frequencies: the minimum synchrotron frequency νm,the cooling frequency νc,the self-absorption frequency νa, and the peak flux of the spectrumFν,max(e.g., Gao et al.2013; Yi et al.2014).The deceleration timescale of the thin shell case can be represented as,

    Although the surface dipolar magnetic field strength of the magnetar SGR J1935+2154 is around Bp~1014G, the radiation efficiency of FRBs in radio band is lower,and the isotropic energy of FRB may be about 5–6 orders of magnitude less than the total energy.According to the observations, the isotropic energy of FRB 200428 is about ~1035erg, therefore we apply the total kinetic energy E to be 1040and 1041erg in this work.Additionally, the bulk Lorentz factor of FRB 200428 is adopted as a conservative value 50.Even if we set the Lorentz factor to 100, the brightness of the multi-band afterglows almost has no change (e.g., Falcke & Rezzolla 2014; Katz 2014).The deceleration time is much shorter than the general GRBs,applying the parameters of E=1041erg, n0=1 cm?3, Γ=50,the deceleration time of FRB 200428 is approximately ~0.1 s.

    Based on the standard assumption(e.g.,Sari et al.1998;Wu et al.2003;Gao et al.2013;Yi et al.2013,2014,2020),we can calculate the FRB afterglow emissions.As FRB 200428 is a Galactic transient with the luminosity distance of ~10 kpc(e.g., Zhong et al.2020), the FS emission of FRB 200428 can be represented at the shock crossing time t×as,

    2.1.Results

    As the model prediction calculated, the theoretical multiwavelength afterglows of FRB 200428 are shown in Figures 1 and 2, respectively.Figure 1 shows the FS afterglow light curves of FRB 200428 in the X-ray (2 keV, panel (a)), optical(R-band, panel (b)), and radio (1 GHz, panel (c)) bands,respectively.Considering different emission efficiencies, we take two different kinetic energy values, i.e., E=1040erg(black) and 1041erg (blue).The other parameters are taken as the typical values: Γ=50, n0=1 cm?3, εe,f=0.1, εB,f=0.01,and p=2.5.Then, we also plotted the sensitivity lines of four different detectors in different energy bands, as mentioned in our previous study (e.g., Yi et al.2014).The rad dash line in panel (a) is the detector sensitivity line of Swift/XRT, which is ∝t?1early on and breaks to ∝t?1/2when Fν=2.0×10?15erg cm?2s?1at t=105s (e.g., Moretti et al.2009; Yi et al.2014).The green dashed line in panel (a) is the sensitivity line of the Insight-HXMT,which scales as ∝t?1for arbitrarily long exposure times.The red dashed line in panel(b) is the sensitivity line of the Large Synoptic Survey Telescope (LSST) Array.In the survey model, LSST reaches 24.5 mag in 30 s.The red dashed line in panel (c) is the sensitivity line of the Expanded Very Large Array (EVLA),which scales as ∝t?1/2for arbitrarily long exposure times.

    Figure 1.Example forward shock afterglow light curves of FRB 200428.The model parameters: ?B,f=0.01,?e=0.1,n0=1,p=2.5,and η=50.Three values of the energy E=1040(black),1041(blue)and 1043(green,only in the optical band)have been adopted.(a)The X-ray light curves at 2 keV.The red dashed line is the detector sensitivity line of Swift/XRT,and the green dashed line is the detector sensitivity line of Insight-HXMT.(b)R-band light curves.The red dashed line is the detector sensitivity line of LSST.The orange line is the optical upper limits taken from Cooper et al.(2022),and the blue(R-band)and orange(z-band)triangle points are the optical upper limits from LCOGT and BOOTES-2(Lin et al.2020),respectively.(c)Radio light curves at 1 GHz.The red dashed line is the detector sensitivity line of VLA.The green (1.36 GHz) and red (6 GHz) points are the radio upper limits by Effelsberg and VLA (Bailes et al.2021), respectively.

    Figure 2.Example reverse shock afterglow light curves of FRB 200428.The model parameters: ?B,r=0.16, ?e=0.1, n0=1, p=2.5, and η=50.The energy E=1041 (blue solid line) has been applied.The different detector sensitivity lines are the same as shown in Figure 1.

    As shown in Figure 1 panel(a),the X-ray afterglow of FRB 200428 is too faint, theoretically neither the Swift/XRT nor Insight-HXMT can detect its X-ray afterglow.Considering the first X-ray counterpart of FRB 200428 was observed, Insight-HXMT implemented a long time observation of SGR J1935+2154 since then.Still, no X-ray counterparts from FRB 200428 were detected, only hundreds of short X-ray bursts triggered by Insight-HXMT and a series of other astronomical satellites were obtained (e.g.,?Cai et al.2022).In the optical R band (panel (b)), the peak magnitude is about 16 and 13.6 for the energies E=1040and 1041erg, respectively.We can see the sensitivity line of LSSA is below the peak magnitude.However,due to the very early peak time of ~0.2–0.4 s,which lead the LSSA cannot follow up quickly.For optical bands,it is still possible to detect the counterpart emission if follow-up observations are performed within a few hundred seconds after FRB occurs.In the 1 GHz radio band(panel(c)),the peak flux density is about 1.46×10?3and 1.46×10?2Jy,the peak time is about ~5.7×102and 1.2×103s for two different kinetic energies, respectively.This might be caught by EVLA if followed up early.Regrettably, the EVLA did not detect this source during this period.As reported by Bailes et al.(2021),after about 4×104s of FRB 200428 triggered, the radio telescope MeerKAT started to point to the source.However,they did not detect any signals, due to the flux of the FS emission declining rapidly or the diffuse emission around the magnetar.Compared with other energy bands, the radio afterglows from FRBs are the most promising to be detected,mainly because the radio afterglows last a very long time.Therefore, if we are lucky enough to detect a bonafide FRB like-FRB 200428 again,rapid radio observations on minutes to several hours timescales will be the best opportunity to observe the afterglows.

    Figure 3.Contour of optical peak flux in the E–n0 plane.Different colors mean different optical peak flux,and the solid line represents peak flux for 0.1 Jy which is the BOOTES-3 upper limit.The black line represents the limitation on the model parameter space imposed by the observation upper limit of BOOTES-3.

    The RS emission for FRB 200428 is also shown in Figure 2.Fixing other parameters,we allow the total energy E=1041erg and εB,r=0.16.In general,the RS afterglow of FRB 200428 is more difficult to be detected by current detectors.Either the afterglow emission is too faint,or it peaks too early.As shown in Figure 2, like the FS emission, the RS X-ray afterglow(panel(a))is too faint,however the peak time of the optical Rband (panel (b)) is so early (tp~0.1 s) for the LSST.Additionally, the 1 GHz radio band of FRB 200428 (panel(c)) can reach the peak flux early (~33 s) but rapidly declines.

    According to Cooper et al.(2022), who have provided optical lightcurves using the method from Margalit et al.(2020), and applied the BOOTES-3 upper limits to constrain the FRB afterglow significantly.They supposed that the optical flux limit scales as Flimit∝t?1/2and started with early observations (the orange line).We also used the same energy E=1×1043erg in our afterglow model, the estimated results(the green line in panel(b)of Figure 1)almost reach the optical upper limits.Our optical results are also consistent with the prediction from Cooper et al.(2022).To better show how optical peak flux depends on E and n0, we give the contour of optical peak flux in the E–n0space in Figure 3.We set?B,f=0.01, ?e=0.1, p=2.5 and η=50, but the energy with a range of 1040–1043erg and n0with a range of 10?3–103cm?3.The reasonable parameter space of FRB 200428 may be reflected by the optical observation upper limits from the contour of peak flux.As shown in the figure, the black line represents the limitation on the model parameter space imposed by the observation upper limit of BOOTES-3.It is easy to see from the contour that only when the environment around FRB 200428 is dense enough, it is possible to produce sufficiently bright radio afterglows.

    3.Summary and Discussion

    In this work, we applied the standard afterglow external shock synchrotron emission model of GRBs to the peculiar case of FRB 200428, and calculated its multi-wavelength afterglows.As a result,we found that owing to its low energy,the broad-band afterglows of FRB 200428 are very faint.Even so, current detectors may be able to follow up and detect its broad-band afterglows, especially at radio wavelengths.

    The X-ray afterglow emitted from FS is so weak and decays rapidly after the peak that it is hard for current detectors to catch.This may require a wide-field XRT(such as the Einstein Probe or Lobster), and it may have a chance of capturing the X-ray afterglow of FRB 200428 in the future, when FRB 200428 repeats.For the optical afterglow,the current detectors can only pick it up theoretically,because it is difficult to follow up quickly due to the early peak and the fast decay.The most optimistic afterglow of FRB 200428 was found in the radio band, although the radio afterglow flux only reached the mJy level.Thanks to the relatively late peaking time of the radio afterglow (~103s), if the radio telescopes can move to the source position within an hour, there is a good chance of catching it.In general, follow up detection of the afterglow from the FS of FRB 200428 is plausible, though challenging.In contrast, the afterglow from RS is almost impossible to be detected by current detectors,either the emission is too weak or it peaks too early.Given the difficulty of follow-up observation, the strategy of long-term observation when SGR 1935+2154 enters the active phase may be adopted.In this way,the chance of catching the afterglow is much greater, but much more observation time is required.

    Cooper et al.(2022) also estimated the multi-wavelength afterglows of FRB 200428, based on the model of Metzger et al.(2019).They provided results from LOFAR imaging observations of SGR 1935+2154.Due to its low luminosity,the predicted multi-band afterglows from FRB 200428 are still too faint to be detected, and placing some radio and optical upper limits in the afterglow emissions (also see the upper limits in our results).Considering the similarity of the early afterglow models, our results are very consistent with the predictions of Cooper et al.(2022), especially considering the same parameters for this burst.In any case, one can imagine that once the afterglow of fast radio bursts like-FRB 200428 is observed in the future,based on the early afterglow model,one can obtain information about the energy of the fireball, the radiation zone and the nature of the surrounding medium.That may shed light on the physical mechanism of FRBs.

    Note: Interestingly, since 2022 October 10, SGR J1935+2154 is active again(e.g.,Ryder et al.2022)and a radio burst was detected from it associated with an X-ray burst(e.g.,Dong& CHIME/FRB Collaboration 2022; Wang et al.2022),proving another case that magnetars can drive FRBs.In order to search for additional FRB-magnetar burst associated cases and search for radio pulsations (e.g., Zhu et al.2020), four FAST observations have been done on SGR J1935+2154, but no pulses are detected.We also propose four NICER observations on SGR J1935+2154 simultaneous with FAST,to cover a possible magnetar burst in soft X-ray,and search for possible correlated radio/X-ray pulsation, still no pulses are detected.On 2022 October 22,a radio burst was detected(e.g.,Huang et al.2022)from S-band 40 m Yunnan telescope,CAS.Time of S-band burst (MJD): 59873.417891687764495, 2020-10-21 18:01:45 (UT+8), this arrival time of the radio burst is well consistent with an HXMT X-ray outburst (e.g., Li et al.2022), the arrival time delay between radio and X-ray can be ignored within the error.There is no counterpart detected at this stage,and the follow up detection of the multi-band afterglows from FRBs is challenging.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (grant No.U2038106), and China Manned Spaced Project (CMS-CSST-2021-A12).C.M.D.is supported by the National Natural Science Foundation of China(grant No.12203013), and the Guangxi Science Foundation(grant Nos.AD22035171 and 2023GXNSFBA026030).

    亚洲国产精品一区二区三区在线| 免费在线观看完整版高清| 国产午夜精品一二区理论片| kizo精华| 在线精品无人区一区二区三| 国产成人精品福利久久| 亚洲欧美一区二区三区黑人| 黄片无遮挡物在线观看| 最黄视频免费看| 99久久精品国产亚洲精品| 欧美中文综合在线视频| 一区二区三区四区激情视频| 99久国产av精品国产电影| 国产精品99久久99久久久不卡 | 国产一区二区激情短视频 | 亚洲av成人不卡在线观看播放网 | 国产精品熟女久久久久浪| 99热全是精品| 观看美女的网站| 国产亚洲最大av| 制服人妻中文乱码| 一二三四中文在线观看免费高清| 国产精品嫩草影院av在线观看| 建设人人有责人人尽责人人享有的| 亚洲图色成人| 午夜免费观看性视频| 国产欧美亚洲国产| 成人毛片60女人毛片免费| 亚洲人成电影观看| 亚洲av男天堂| 黑人欧美特级aaaaaa片| 欧美乱码精品一区二区三区| 久热爱精品视频在线9| 亚洲国产欧美日韩在线播放| 极品少妇高潮喷水抽搐| 午夜免费观看性视频| 久久女婷五月综合色啪小说| 大话2 男鬼变身卡| 亚洲精品日韩在线中文字幕| 亚洲人成77777在线视频| 欧美日韩亚洲综合一区二区三区_| 街头女战士在线观看网站| 日本vs欧美在线观看视频| 高清av免费在线| 天堂8中文在线网| 国产精品 欧美亚洲| a级毛片在线看网站| 亚洲天堂av无毛| 国产国语露脸激情在线看| 制服诱惑二区| 欧美人与性动交α欧美精品济南到| 久久精品亚洲av国产电影网| 女人精品久久久久毛片| 亚洲情色 制服丝袜| 午夜福利影视在线免费观看| 另类精品久久| 国产日韩欧美在线精品| 久久鲁丝午夜福利片| 男女下面插进去视频免费观看| 久久久久精品久久久久真实原创| 黑人猛操日本美女一级片| 99久久99久久久精品蜜桃| 麻豆精品久久久久久蜜桃| 国产精品麻豆人妻色哟哟久久| 国产伦理片在线播放av一区| 人人妻人人澡人人爽人人夜夜| 亚洲av国产av综合av卡| 亚洲免费av在线视频| 黄色怎么调成土黄色| 欧美日韩av久久| av线在线观看网站| 亚洲成人国产一区在线观看 | 夫妻性生交免费视频一级片| 免费高清在线观看视频在线观看| 一本—道久久a久久精品蜜桃钙片| 青青草视频在线视频观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲人成网站在线观看播放| videosex国产| 91国产中文字幕| 国产男人的电影天堂91| 久久久久久久久免费视频了| a级毛片黄视频| 新久久久久国产一级毛片| 男女床上黄色一级片免费看| 久久99一区二区三区| 精品久久久久久电影网| 久久综合国产亚洲精品| 久久久久网色| 极品少妇高潮喷水抽搐| 九草在线视频观看| 18在线观看网站| 成人国产av品久久久| 欧美国产精品va在线观看不卡| 国产精品蜜桃在线观看| 80岁老熟妇乱子伦牲交| 欧美激情高清一区二区三区 | 老熟女久久久| 老汉色av国产亚洲站长工具| 亚洲激情五月婷婷啪啪| 国产男人的电影天堂91| 亚洲欧美一区二区三区久久| 国产精品久久久久久久久免| 亚洲精华国产精华液的使用体验| 亚洲国产精品一区二区三区在线| 99久久精品国产亚洲精品| 久久97久久精品| 亚洲熟女毛片儿| 日韩精品免费视频一区二区三区| 精品国产一区二区三区久久久樱花| 在线观看免费日韩欧美大片| 一级片'在线观看视频| 精品卡一卡二卡四卡免费| 蜜桃国产av成人99| 蜜桃在线观看..| 国产成人精品久久二区二区91 | 欧美日韩精品网址| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利在线免费观看网站| 亚洲天堂av无毛| 亚洲av电影在线观看一区二区三区| 欧美人与性动交α欧美软件| 亚洲av在线观看美女高潮| 国产在线视频一区二区| 汤姆久久久久久久影院中文字幕| 国产激情久久老熟女| 飞空精品影院首页| 中文字幕亚洲精品专区| 在线亚洲精品国产二区图片欧美| 久久久国产欧美日韩av| 秋霞在线观看毛片| 午夜福利乱码中文字幕| 久久人妻熟女aⅴ| 日日撸夜夜添| 黄色毛片三级朝国网站| 国产精品免费视频内射| 秋霞在线观看毛片| 汤姆久久久久久久影院中文字幕| 一本色道久久久久久精品综合| 在线观看免费高清a一片| 欧美成人午夜精品| 免费少妇av软件| 看免费成人av毛片| 国产毛片在线视频| 国产免费又黄又爽又色| 成人亚洲欧美一区二区av| 中文字幕人妻熟女乱码| 青青草视频在线视频观看| 欧美成人午夜精品| 国产成人午夜福利电影在线观看| 欧美精品人与动牲交sv欧美| av又黄又爽大尺度在线免费看| 99九九在线精品视频| 亚洲美女搞黄在线观看| 欧美激情极品国产一区二区三区| 欧美精品一区二区免费开放| 搡老乐熟女国产| 狂野欧美激情性bbbbbb| 国产淫语在线视频| 肉色欧美久久久久久久蜜桃| 街头女战士在线观看网站| 久久久精品国产亚洲av高清涩受| 久久久国产一区二区| 又黄又粗又硬又大视频| 丝袜喷水一区| 精品视频人人做人人爽| 免费高清在线观看日韩| 日韩人妻精品一区2区三区| 亚洲欧洲国产日韩| 啦啦啦在线免费观看视频4| 另类精品久久| 亚洲成av片中文字幕在线观看| 最新的欧美精品一区二区| 伦理电影免费视频| 一二三四在线观看免费中文在| 午夜免费观看性视频| 欧美精品人与动牲交sv欧美| 国产成人啪精品午夜网站| 下体分泌物呈黄色| 午夜免费观看性视频| 母亲3免费完整高清在线观看| 中文精品一卡2卡3卡4更新| 午夜福利影视在线免费观看| 一个人免费看片子| 国产av码专区亚洲av| 日韩精品有码人妻一区| 校园人妻丝袜中文字幕| 亚洲国产欧美日韩在线播放| 亚洲国产日韩一区二区| 观看av在线不卡| 欧美激情高清一区二区三区 | 久热爱精品视频在线9| 午夜福利一区二区在线看| 日韩一本色道免费dvd| 丰满乱子伦码专区| 侵犯人妻中文字幕一二三四区| 日本欧美视频一区| 精品福利永久在线观看| 精品久久蜜臀av无| 99久国产av精品国产电影| 欧美在线黄色| 亚洲av欧美aⅴ国产| 美女扒开内裤让男人捅视频| 国产精品99久久99久久久不卡 | 精品第一国产精品| 天堂俺去俺来也www色官网| 中文字幕人妻丝袜一区二区 | 天天躁夜夜躁狠狠躁躁| 人人妻人人澡人人爽人人夜夜| 日韩一卡2卡3卡4卡2021年| 国语对白做爰xxxⅹ性视频网站| 精品亚洲成a人片在线观看| 丝袜美腿诱惑在线| 少妇的丰满在线观看| www日本在线高清视频| 美女午夜性视频免费| 高清黄色对白视频在线免费看| 丰满迷人的少妇在线观看| 亚洲精品第二区| 午夜福利乱码中文字幕| 最新的欧美精品一区二区| 91老司机精品| 男人舔女人的私密视频| 波野结衣二区三区在线| 亚洲免费av在线视频| 日本欧美国产在线视频| 日韩一区二区视频免费看| 又大又爽又粗| 久久久久久久久免费视频了| 久久久久久人人人人人| 久久鲁丝午夜福利片| 日本wwww免费看| 啦啦啦在线免费观看视频4| 亚洲精品一区蜜桃| 成年美女黄网站色视频大全免费| 亚洲综合色网址| 老司机影院成人| 日韩一区二区视频免费看| 美女大奶头黄色视频| 黑人猛操日本美女一级片| 国产亚洲一区二区精品| 久久鲁丝午夜福利片| 国产麻豆69| 欧美日韩国产mv在线观看视频| 一个人免费看片子| 电影成人av| 青春草亚洲视频在线观看| 在线观看www视频免费| 大香蕉久久网| 亚洲av男天堂| 丝袜脚勾引网站| 另类亚洲欧美激情| 观看av在线不卡| 女人爽到高潮嗷嗷叫在线视频| 巨乳人妻的诱惑在线观看| 1024视频免费在线观看| 国产成人av激情在线播放| 久久久久久久国产电影| 久久国产精品大桥未久av| 狂野欧美激情性xxxx| 国产精品99久久99久久久不卡 | 国精品久久久久久国模美| 免费黄网站久久成人精品| 制服丝袜香蕉在线| 欧美久久黑人一区二区| 黄色 视频免费看| 下体分泌物呈黄色| 看免费av毛片| 色婷婷久久久亚洲欧美| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av日韩在线播放| 中文字幕最新亚洲高清| 国产爽快片一区二区三区| 伊人亚洲综合成人网| 黑人欧美特级aaaaaa片| 亚洲美女搞黄在线观看| 最近最新中文字幕大全免费视频 | 国产一区二区 视频在线| 18禁动态无遮挡网站| 精品国产露脸久久av麻豆| 久久久久精品国产欧美久久久 | xxx大片免费视频| 下体分泌物呈黄色| 老汉色av国产亚洲站长工具| 操美女的视频在线观看| 99久久99久久久精品蜜桃| 久热这里只有精品99| 欧美精品人与动牲交sv欧美| 久久久久久久久免费视频了| 精品亚洲乱码少妇综合久久| a级毛片在线看网站| 精品少妇内射三级| 国产午夜精品一二区理论片| 久久这里只有精品19| 一级毛片我不卡| 久久亚洲国产成人精品v| 国产成人欧美在线观看 | 美国免费a级毛片| 久久精品aⅴ一区二区三区四区| 香蕉国产在线看| 日本爱情动作片www.在线观看| 婷婷成人精品国产| 国产熟女欧美一区二区| av天堂久久9| 亚洲伊人色综图| 日韩大码丰满熟妇| 欧美少妇被猛烈插入视频| 黄网站色视频无遮挡免费观看| 看免费成人av毛片| 精品午夜福利在线看| 久久人人爽人人片av| 亚洲精品美女久久久久99蜜臀 | 日本av手机在线免费观看| 国产精品蜜桃在线观看| 欧美日韩亚洲综合一区二区三区_| 国产精品欧美亚洲77777| 一级a爱视频在线免费观看| 天天躁夜夜躁狠狠躁躁| 制服丝袜香蕉在线| 久久久久精品国产欧美久久久 | 91国产中文字幕| 多毛熟女@视频| 国产精品蜜桃在线观看| 另类亚洲欧美激情| 欧美亚洲 丝袜 人妻 在线| 男女边吃奶边做爰视频| 中文字幕精品免费在线观看视频| 国产伦理片在线播放av一区| 少妇人妻久久综合中文| 美女国产高潮福利片在线看| 精品少妇黑人巨大在线播放| 午夜老司机福利片| 美女国产高潮福利片在线看| 天天添夜夜摸| 母亲3免费完整高清在线观看| 综合色丁香网| 无遮挡黄片免费观看| 久久性视频一级片| 亚洲欧洲日产国产| 伦理电影免费视频| 国产在线一区二区三区精| 男女边摸边吃奶| av国产久精品久网站免费入址| 1024香蕉在线观看| 一本—道久久a久久精品蜜桃钙片| 妹子高潮喷水视频| 狂野欧美激情性bbbbbb| 亚洲精品美女久久av网站| 国产激情久久老熟女| 黑人巨大精品欧美一区二区蜜桃| 亚洲av国产av综合av卡| 无限看片的www在线观看| 精品少妇黑人巨大在线播放| 2018国产大陆天天弄谢| 国产欧美日韩一区二区三区在线| 亚洲国产欧美一区二区综合| 午夜日韩欧美国产| 熟女av电影| 中文精品一卡2卡3卡4更新| 狠狠精品人妻久久久久久综合| 久久久久久免费高清国产稀缺| 不卡视频在线观看欧美| 国产亚洲欧美精品永久| 亚洲专区中文字幕在线 | 99久久99久久久精品蜜桃| 亚洲国产看品久久| 午夜老司机福利片| 韩国高清视频一区二区三区| 亚洲七黄色美女视频| 中文字幕av电影在线播放| 午夜免费观看性视频| 桃花免费在线播放| 晚上一个人看的免费电影| 日韩av在线免费看完整版不卡| 美国免费a级毛片| 啦啦啦 在线观看视频| 久久久精品94久久精品| 日本91视频免费播放| 只有这里有精品99| 亚洲国产精品成人久久小说| 国产欧美亚洲国产| 青春草亚洲视频在线观看| 男人添女人高潮全过程视频| 欧美日韩福利视频一区二区| 日韩一区二区三区影片| 国产成人精品无人区| 毛片一级片免费看久久久久| 亚洲,欧美,日韩| 多毛熟女@视频| 女人高潮潮喷娇喘18禁视频| 如日韩欧美国产精品一区二区三区| 啦啦啦在线免费观看视频4| 亚洲精品一区蜜桃| 一区在线观看完整版| 亚洲国产最新在线播放| 日本欧美视频一区| 极品人妻少妇av视频| 啦啦啦啦在线视频资源| 精品福利永久在线观看| 最近手机中文字幕大全| 国产一区二区激情短视频 | 欧美日韩成人在线一区二区| a级毛片黄视频| 在线天堂最新版资源| 少妇猛男粗大的猛烈进出视频| 人人妻人人爽人人添夜夜欢视频| 日韩av免费高清视频| av在线app专区| 99精品久久久久人妻精品| 国产亚洲av高清不卡| 亚洲精品aⅴ在线观看| 最近手机中文字幕大全| 人人妻人人澡人人爽人人夜夜| 最近中文字幕高清免费大全6| kizo精华| svipshipincom国产片| 亚洲国产毛片av蜜桃av| 日韩一卡2卡3卡4卡2021年| 亚洲国产成人一精品久久久| 两性夫妻黄色片| 秋霞在线观看毛片| 亚洲国产欧美一区二区综合| 国产精品嫩草影院av在线观看| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 国产在线视频一区二区| 久久人人爽av亚洲精品天堂| 欧美变态另类bdsm刘玥| 熟女少妇亚洲综合色aaa.| 午夜影院在线不卡| 国产精品亚洲av一区麻豆 | 亚洲一级一片aⅴ在线观看| 老熟女久久久| 国产国语露脸激情在线看| 晚上一个人看的免费电影| 国产精品无大码| 丰满饥渴人妻一区二区三| 国产黄色免费在线视频| 国产黄色视频一区二区在线观看| 免费观看av网站的网址| 热re99久久国产66热| av天堂久久9| 午夜影院在线不卡| 18禁裸乳无遮挡动漫免费视频| 日日啪夜夜爽| 菩萨蛮人人尽说江南好唐韦庄| 久久人人97超碰香蕉20202| av免费观看日本| 热re99久久精品国产66热6| 欧美日韩成人在线一区二区| 免费黄色在线免费观看| 日韩一本色道免费dvd| 黄色视频在线播放观看不卡| 国产福利在线免费观看视频| 亚洲精品国产av成人精品| 岛国毛片在线播放| av国产精品久久久久影院| 久久精品国产亚洲av涩爱| 观看美女的网站| 中文字幕人妻丝袜一区二区 | 看免费成人av毛片| 久久精品久久精品一区二区三区| 亚洲,欧美,日韩| 91老司机精品| 99国产精品免费福利视频| 我的亚洲天堂| 不卡视频在线观看欧美| 亚洲精品久久午夜乱码| 老汉色av国产亚洲站长工具| 最近中文字幕高清免费大全6| 不卡视频在线观看欧美| 看免费av毛片| 19禁男女啪啪无遮挡网站| 国产99久久九九免费精品| 老汉色av国产亚洲站长工具| 免费观看性生交大片5| 欧美日本中文国产一区发布| 久久青草综合色| 国产在线视频一区二区| av在线播放精品| 亚洲中文av在线| 午夜福利视频精品| 五月开心婷婷网| 丝袜美足系列| 天天添夜夜摸| 日韩免费高清中文字幕av| 肉色欧美久久久久久久蜜桃| 超碰成人久久| 国产伦人伦偷精品视频| 超碰成人久久| 亚洲精品aⅴ在线观看| 黄色视频在线播放观看不卡| 日韩av不卡免费在线播放| 少妇人妻精品综合一区二区| 十八禁人妻一区二区| 黄网站色视频无遮挡免费观看| 街头女战士在线观看网站| 国产成人欧美| 别揉我奶头~嗯~啊~动态视频 | 少妇猛男粗大的猛烈进出视频| www.av在线官网国产| 亚洲自偷自拍图片 自拍| 在线看a的网站| 777久久人妻少妇嫩草av网站| 天天躁夜夜躁狠狠久久av| 97精品久久久久久久久久精品| 国产精品国产三级专区第一集| 妹子高潮喷水视频| 婷婷色综合大香蕉| 日韩制服丝袜自拍偷拍| 色婷婷av一区二区三区视频| 少妇精品久久久久久久| 一边亲一边摸免费视频| 国产精品国产av在线观看| 成人影院久久| 亚洲男人天堂网一区| 啦啦啦中文免费视频观看日本| 性高湖久久久久久久久免费观看| 9191精品国产免费久久| 一级毛片黄色毛片免费观看视频| www日本在线高清视频| 一级片免费观看大全| 国产精品国产三级国产专区5o| 中文欧美无线码| 狠狠精品人妻久久久久久综合| 菩萨蛮人人尽说江南好唐韦庄| 国产精品麻豆人妻色哟哟久久| 亚洲av福利一区| 赤兔流量卡办理| 精品一区二区三区av网在线观看 | av网站免费在线观看视频| 秋霞在线观看毛片| 欧美日韩视频精品一区| 亚洲美女搞黄在线观看| 成人国语在线视频| 青春草视频在线免费观看| 久久ye,这里只有精品| 国产探花极品一区二区| 嫩草影院入口| 国产免费福利视频在线观看| 一级a爱视频在线免费观看| 香蕉国产在线看| 国产深夜福利视频在线观看| 狂野欧美激情性xxxx| 午夜福利一区二区在线看| 国产成人av激情在线播放| 看十八女毛片水多多多| 一本久久精品| 欧美精品人与动牲交sv欧美| 亚洲av在线观看美女高潮| 99精品久久久久人妻精品| videos熟女内射| av网站在线播放免费| 久久亚洲国产成人精品v| 亚洲精品av麻豆狂野| 亚洲成人av在线免费| 国产精品久久久久久精品电影小说| 18在线观看网站| 999久久久国产精品视频| 成人国语在线视频| 欧美变态另类bdsm刘玥| 日本爱情动作片www.在线观看| 国产男女超爽视频在线观看| 热99国产精品久久久久久7| 丝袜人妻中文字幕| 狠狠精品人妻久久久久久综合| 亚洲精品乱久久久久久| 另类亚洲欧美激情| 亚洲精品av麻豆狂野| 国产伦人伦偷精品视频| 精品少妇一区二区三区视频日本电影 | 国产精品偷伦视频观看了| 国产爽快片一区二区三区| 视频区图区小说| 久久久久久久国产电影| 亚洲欧洲国产日韩| 少妇精品久久久久久久| 国产人伦9x9x在线观看| 五月开心婷婷网| 老司机影院成人| 久久免费观看电影| 欧美日韩av久久| 男女下面插进去视频免费观看| 韩国高清视频一区二区三区| av免费观看日本| 亚洲国产欧美日韩在线播放| 国产 一区精品| 在线观看人妻少妇| 亚洲精品国产色婷婷电影| 黄色视频不卡| 超碰成人久久| 国产黄频视频在线观看| 精品亚洲乱码少妇综合久久| 欧美中文综合在线视频| 欧美日本中文国产一区发布| 一本大道久久a久久精品| 亚洲激情五月婷婷啪啪| 国产爽快片一区二区三区| 一级片'在线观看视频| 99国产精品免费福利视频| 午夜福利影视在线免费观看| 又大又爽又粗| 九九爱精品视频在线观看| 美女扒开内裤让男人捅视频| 国产探花极品一区二区| 我要看黄色一级片免费的| 最新的欧美精品一区二区| 久久精品国产a三级三级三级| 国产亚洲欧美精品永久| 不卡视频在线观看欧美| 亚洲四区av| 国产 一区精品| 国产日韩欧美在线精品| 午夜免费鲁丝| 天堂中文最新版在线下载|