• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A High-Temperature Superconducting Wideband Bandpass Filter at the L Band for Radio Astronomy

    2024-01-06 06:39:36XinyuZhuJianbinLiBoyuLuBinWeiYifanJiangLinanJiangandChaoHu
    Research in Astronomy and Astrophysics 2023年11期

    Xinyu Zhu, Jianbin Li, Boyu Lu, Bin Wei, Yifan Jiang, Linan Jiang, and Chao Hu

    1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China; lijb@bao.ac.cn

    2 University of Chinese Academy of Sciences, Beijing 100049, China

    3 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China

    Abstract In order to ensure the normal operation of radio astronomy observations, an extremely sensitive receiver system needs to be equipped in front of the large radio telescope.An 8-pole wideband high-temperature superconducting(HTS) filter using a Coplanar Spiral Resonator Structure with a passband of 1160~1670 MHz is developed to suppress strong radio interference.The filter is fabricated on a 36 mm×14 mm YBCO HTS film, which is deposited on a 0.5 mm thick MgO substrate.The minimum insertion loss measured in the liquid nitrogen temperature region is 0.03 dB, and the first parasitic passband appears at 2600 MHz.The measured results are in good agreement with the simulations.The filter can be used in radio telescope receivers for the observation of neutral hydrogen and pulsars, as well as in high-sensitivity satellite navigation instruments.

    Key words: instrumentation: detectors – techniques: radar astronomy – telescopes

    1.Introduction

    The L-band is an essential frequency band for satellite navigation, satellite communications, and radio astronomy observations.It covers various active radio services, including the radio satellite navigation and positioning service allocated by the International Telecommunication Union (ITU)(ITU 2020), the emission spectrum of neutral hydrogen, the molecular spectrum of hydroxyl groups in radio astronomy,etc.

    However, there exists strong radio interference from Distance Measuring Equipment (DME) and terrestrial services signals, such as mobile communication on both sides of the band.The signals from satellite and astronomical observation are much weaker than the interference,resulting in undesirable nonlinear intermodulation distortion.Besides, the distortion products in the useful band, which cannot be filtered out, will significantly raise the noise floor of the system and drown out the useful signal.Therefore, the filter is one of the essential components in high-sensitivity receiver systems.It is necessary to insert a filter before the first-stage LNA to prevent receivers from saturation.

    Since the discovery of yttrium-barium-copper-oxygen (Y–Ba–Cu–O) oxide superconductor materials, the superconducting transition temperature has been raised to the liquid nitrogen temperature region (70 K), which is easier to achieve.The surface resistance of the high-temperature superconducting(HTS)film at RF is 2–3 mag orders lower than that of copper,so the losses are negligible.Consequently, it can be used to make HTS filters with extremely low insertion loss,steep skirt slope, and high out-of-band rejection required by highsensitivity receivers.

    Narrowband HTS filters have been extensively used in mobile communications, radar detection, and radio astronomy observation(Zhang et al.2004,2005;Zhou et al.2005).At the beginning of the 21st century, an eight-pole narrowband HTS filter with an insertion loss of 0.3 dB, is developed to improve the observation of pulsars at the Jodrell Bank Observatory(JBO), UK by suppressing the substantial signal interference from TV on both sides of the Ultra High Frequency(UHF)?band (Zhou et al.2005).

    In recent years, the demand for wideband bandpass filters has also been increasing (Li et al.2003; Huang 2005; Zhang et al.2007,2006).In traditional theory,a wideband filter means the resonator coupling strength is required to be strong.The coupling coefficients will appear inevitable deviation based on the design theory of the Chebyshev prototype over the bandwidth of 20%, which brings a huge challenge to the design.A set of design approaches for wideband filters are proposed to solve the problem, consisting of Multilayer liquid crystal polymer technology (Hao & Hong 2009), Stepped Impedance Resonator (SIR) structure, parallel-coupled microstrip lines,and Defected Ground Structure(DGS),but there are limitations on the fabrication and application.

    Figure 1.The configuration of the Coplanar Spiral Resonator Structure.

    In addition, various novel configurations of resonators are developed to construct wideband filters by using Inter-digital Capacitor (IDC) Structure (Yu et al.2009), Double-Surface Coplanar Waveguide (CPW) Structure (Xu et al.2013), Coplanar Spiral Resonator Structure (CSRS) (Shang et al.2019), etc.In 2009,a 12-pole wideband HTS filter with a bandwidth of 38%was proposed for the Miyun 50 m radio astronomy telescope to provide a reliable guarantee for the regular operation of astronomical observation and deep space exploration.The resonators using a configuration of IDC combined with a hairpin-like structure can generate strong coupling and push its second harmonic upwards(Yu et al.2009).A novel CSRS with a compact grounded quarterwavelength spiral resonator is developed based on the CPW structure (Shang et al.2019).It can generate strong internal coupling between adjacent resonators,and the undesirable resonant mode is far away from the center frequency,providing a solution to the compact wideband filter at a low frequency.

    In this paper, an 8-pole HTS filter with a passband of 1160~1670 MHz is developed based on the CSRS.The measured responses show that the filter has a 0.03 dB minimum insertion loss with a bandwidth of 36%, and the return loss is better than ?17 dB.The measurements show excellent performance, basically consistent with the simulations.

    2.Resonator Design

    2.1.Resonant Modes Analysis and Structure Design

    Refrigeration units,which carry filter and Low Noise Amplifier(LNA)?cascade systems, are widely applied in large radio telescope receivers to reduce the noise figure (Liu et al.2021).The miniaturization of the filter contributes to more space margins.Using spiral or folded resonators is helpful for miniaturization,but the coupling coefficient is not strong enough to construct wideband filters(Ma et al.2006).The CSRS proposes a solution.Figure 1 shows the configuration of the resonator pair designed by the CSRS.The electric field is densely distributed on both sides of the transmission line, similar to the CPW structure.Whereas,the grounded stub between the adjacent resonators in the CSRS is removed, which means a more muscular coupling strength.The metal strips bend into a spiral circuit, whose ends extend to the ground,forming quarter-wavelength resonators.No undesirable resonant modes appear during the simulation.

    Figure 2.The layers of the Coplanar Spiral Resonator Structure.

    By using the full-wave electromagnetic simulation software Sonnet (Sonnet Software 2009), we can determine the detailed structures of a single resonator.The resonant frequency will decrease with the increasing length of the circuit.For a compact filter that works in low frequency, we optimize the resonator structure by balancing the spiral turns with the width of the entire resonator until the resonant peak is equal to the filter center frequency (f=fc).One end of the circuit extends to the surrounding ground plane with a length of 1.5 mm,the other is adjustable to compensate for the frequency offset.

    2.2.Structure Layers

    Figure 2 illustrates the layers of the CSRS structure.The circuit is etched on the HTS thin film deposited on the MgO substrate.Based on the electromagnetic resonant mode mentioned above, there exist two air layers on both sides of the dielectric substrate.H1represents the height of the air layer upon the substrate, and H2denotes the distance from the substrate to the ground.Simulation results indicate that the thickness of the air layers has an impact on the resonant frequency and coupling strength.As shown in Figure 3, the resonant frequency rises with increasing any two height parameters.When we keep H1constant, the growth rates decrease with the increase of H2, and vice versa.Besides, H2has a more significant impact on the frequency offset than H1,and the growth rates decrease when H2is over 2 mm.The coupling coefficient shows the same tendency.

    Considering the heat dissipation combined with the entire size and the effect of H2is relatively weak, we choose 5 and 2 mm for H1and H2, respectively.The ultimate length of h is 2.2 mm.Every resonator is set to have the same linewidth of 0.1 mm due to processing and manufacturing convenience.Eventually, the single resonator is 2.2 mm×8.5 mm.

    3.Filter Design

    3.1.Resonator Coupling Design

    One of the requirements for designing a wideband filter is realizing strong adjacent coupling (Hong 2011).The coupling coefficient M as a function of the width S between resonators,is defined as (1)

    Figure 3.Left: The resonant frequency with different thicknesses of air.Right: Coupling coefficients of adjacent resonators with different thicknesses of air.

    where f1and f2correspond to the lower and upper resonance peak frequencies, respectively.As the first step of our design,the ideal coupling coefficients of the filter pairs suitable for Chebyshev polynomials are calculated through the simulation software.Then we adjust the width S until the value of simulation M is equal to the ideal one.Considering the requirements of miniaturization and low insertion loss, an 8-pole filter with a return loss greater than 20 dB is derived.The coupling matrix is

    where mi,j(i=1, 2,3, 4,5, 6,7;j=i+1)denotes the adjacent coupling.The external coupling coefficient qe,which is defined as the coupling strength of the input/output ports to the first resonator, can be conducted by (2)

    where FBW is the fractional bandwidth,Qedenotes the external quality factor,which can be obtained by the center frequency fcand the corresponding group delay τ0as (3)

    3.2.External Coupling Design

    Figure 4.The configuration of the external coupling.

    In traditional theory, there are two common structures for external coupling.Open-circuit coupled lines are widely applied in narrowband filters as a result of weak coupling strength.The tapped feed line structure proposed in Hong(2011), provides a strong coupling strength that can be employed in this design.The configuration of the external coupling is shown in Figure 4 (only one side).The input/output feed line is placed at the center of the substrate width for processing and manufacturing convenience.To realize 50 Ω impedance matching, the length and width of the feed line are selected as 2 mm and 0.48 mm, respectively.The input and output feed lines are directly connected to the end of the first resonator.In order to strengthen the external coupling and suppress undesirable resonance,an additional grounded stub is implemented in the first resonator.The external coupling can be adjusted by three parameters in this design:the width of the grounded stub W,the length of the vertical feed line to the edge of the ground plane L, and H.

    Figure 5.The configuration of the entire filter (not to scale).(L12=0.44 mm, L23=0.8 mm, L34=1.02 mm, L45=0.92 mm).

    Figure 5 depicts the layout of the entire filter.Every resonator has the same winding direction, which means adjacent resonator pairs have different coupling modes.Both of the two modes can realize strong coupling strength that reaches up to 0.55 and 0.65, respectively (dashed box in Figure 5).We combine resonator pairs with the external coupling part to form a complete filter.However, the simulation response seems not as expected.It is speculated that the extraction of narrowband coupling coefficients based on Chebyshev is not suitable for wideband filters.The optimization consists of narrowing the width of the first resonator pair (L12) and tuning the external coupling parameters.H0is adjusted to compensate for the frequency offset.Eventually,simulation results show excellent performance with 0.03 dB minimum insertion loss and better than ?20 dB return loss.The first parasitic passband appears at 2700 MHz,approximately 1.9 times the center frequency.

    4.Fabrication and Measurement

    The filter is fabricated on a 500 nm thick YBCO thin film deposited on a 0.5 mm thick MgO substrate, of which the relative dielectric constant is taken to be 9.7.After standard photolithography and ion beam etching, the 36 mm×14 mm filter circuit is formed.Then we package it into a metal box to reduce radiation loss.Different from the traditional microstrip line structure, the substrate of CSRS does not directly contact the ground.As a result,we hollow out the bottom of the metal box and preserve a slot to support the substrate, as shown in Figure 2.The input and output feed lines are connected to the sub-miniature A (SMA) connector through the gold wire.The gold wire is combined with the circuit feed lines by Ultrasonic Molecular Bonding Machine.

    As shown in Figure 6,the sealed metal box is mounted on a platform inside the Stirling cooler,with an associated computer that can be used to adjust the cooling temperature.After setting the cooling temperature to 65 K, the cooling system begins to create a vacuum and cool down, a process that takes approximately one hour.Prior to testing, we select the Agilent N5230C vector network analyzer (VNA) for this task and calibrate it.The first step involves connecting the calibration device with the VNA, the calibrator’s input port(Port A)links to Port 1 of the VNA, and the output port(Port B)connects to Port 2.When the calibrator’s red light illuminates, we wait for it to turn green, indicating a successful connection.The start and end frequencies can be set through the“Freq”button on the dashboard.In accordance with the test frequency requirements,the frequency range of the VNA is set from 300 MHz to 2 GHz.Afterward,press the“Cal”button on the VNA,select the E-Cal mode on the screen, choose the “2-Port Cal,” and initiate calibration.The calibrator can be disconnected after waiting for the system to auto-calibrate.

    After the calibration,we connect the VNA with the reserved ports of the cryogenic cooling platform via the transmission line,with the input power set at ?10dBm.The S-parameters of the filter can then be read from the screen.No tuning is implemented during the measurement.As depicted in Figure 7,the measured passband ranges from 1160 to 1674 MHz,corresponding to a bandwidth of 36%.The filter has a 0.03 dB minimum insertion loss and the return loss is better than?17 dB.The first spurious passband starts from 2600 MHz,which is a lower frequency range than that predicted by the simulation results.Figure 8 compares measured and simulated curves with different types of lines representing specific parameters.There is no obvious offset in the passband of the overall curve.The measured results show good agreement with the simulations.

    In order to test the power stability and temperature variability of the filter, the S-parameters under different input power and refrigeration temperatures are measured shown in Figure 9.Input power changes have little impact on the filter in Figure 9 Left.However,as shown in Figure 9 Right,the rise in temperature will cause the deterioration of insertion loss and the deviation of the passband.The optimal response curve is reached when the temperature drops below 62k.Table 1 shows the comparison with other reported wideband filters.It can be seen that the filter using the CSRS offers a wider passband and minimal insertion loss.

    Figure 6.The low-temperature test device and the fabricated filter circuit.

    Figure 7.The measured S-parameters of the filter at 65 K.

    Figure 8.Comparison of measured and simulated results at 65 K.

    5.Conclusions

    In this paper, a Coplanar Spiral Resonator Structure is applied to design a wideband filter at the L band for radio astronomy.The filter is fabricated on a 36 mm×14 mm YBCO HTS film deposited on a 0.5 mm MgO substrate and shows excellent performance at 65 K.The filter has the advantage of compact configuration and high power handling capacity that can not only be applied in radio astronomical telescope receivers, but also in high-demand satellite navigation communication, radio signals monitoring, and other services.

    Figure 9.Left: The comparison of different input power.Right: The comparison of different temperatures.

    Table 1 Comparison with Other HTS Filters

    Acknowledgments

    This work was supported by the Science and Technology Project of Tibet Autonomous under grant XZ201901-GB-21,the National Natural Science Foundation of China under grant 11073027, and the Science and Technology Research and Development Program Project of China National Railway Group under grant P2021G011.

    内地一区二区视频在线| 国内久久婷婷六月综合欲色啪| 三级国产精品欧美在线观看| 国产精品久久久久久精品电影| 久久久久久九九精品二区国产| 亚洲中文字幕一区二区三区有码在线看| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区人妻视频| 99国产极品粉嫩在线观看| 日韩一本色道免费dvd| 亚洲中文字幕一区二区三区有码在线看| 国产极品精品免费视频能看的| 一个人看的www免费观看视频| 免费无遮挡裸体视频| 免费无遮挡裸体视频| 婷婷精品国产亚洲av| 免费av不卡在线播放| 国产精品国产高清国产av| 成年版毛片免费区| 不卡一级毛片| 嫩草影视91久久| 在线观看一区二区三区| а√天堂www在线а√下载| 国产精品一二三区在线看| 亚洲av中文字字幕乱码综合| 免费在线观看影片大全网站| 亚洲内射少妇av| 亚洲四区av| 观看免费一级毛片| 1000部很黄的大片| 男女边吃奶边做爰视频| 亚洲欧美清纯卡通| 国产探花在线观看一区二区| 日韩av不卡免费在线播放| 国产亚洲91精品色在线| 熟女人妻精品中文字幕| 在线播放无遮挡| 久久精品人妻少妇| 欧美性猛交╳xxx乱大交人| 99热全是精品| 国产在线男女| 欧美又色又爽又黄视频| 美女xxoo啪啪120秒动态图| 非洲黑人性xxxx精品又粗又长| 欧美潮喷喷水| 午夜福利高清视频| 久久久久久久午夜电影| 最新在线观看一区二区三区| 尾随美女入室| 国产一区二区三区av在线 | 国产黄色小视频在线观看| 97超级碰碰碰精品色视频在线观看| 成人欧美大片| 国产爱豆传媒在线观看| 淫秽高清视频在线观看| 中出人妻视频一区二区| av天堂中文字幕网| 最新中文字幕久久久久| 久久天躁狠狠躁夜夜2o2o| 色尼玛亚洲综合影院| 波野结衣二区三区在线| 高清日韩中文字幕在线| 国产片特级美女逼逼视频| 啦啦啦观看免费观看视频高清| 三级国产精品欧美在线观看| 女生性感内裤真人,穿戴方法视频| 国产人妻一区二区三区在| 国产欧美日韩精品一区二区| 男女啪啪激烈高潮av片| 亚洲av一区综合| 干丝袜人妻中文字幕| 国产免费男女视频| 国产精品av视频在线免费观看| 一个人观看的视频www高清免费观看| 亚洲av电影不卡..在线观看| 在线观看66精品国产| 久久99热这里只有精品18| 成人无遮挡网站| 级片在线观看| 身体一侧抽搐| 色哟哟·www| 最近的中文字幕免费完整| 成人精品一区二区免费| 国产精品福利在线免费观看| 久久韩国三级中文字幕| 亚洲天堂国产精品一区在线| 国产乱人视频| 欧美性感艳星| 99热这里只有精品一区| 亚洲第一区二区三区不卡| 亚洲国产欧洲综合997久久,| 国产人妻一区二区三区在| 人人妻人人看人人澡| 日本五十路高清| 人人妻,人人澡人人爽秒播| 久久久久久大精品| 特大巨黑吊av在线直播| 在线天堂最新版资源| 亚洲精品色激情综合| 亚洲国产色片| 在线国产一区二区在线| 久久精品国产自在天天线| 天天躁日日操中文字幕| 欧美最黄视频在线播放免费| 欧美日韩在线观看h| 欧美zozozo另类| 欧洲精品卡2卡3卡4卡5卡区| 1000部很黄的大片| 成人漫画全彩无遮挡| 中出人妻视频一区二区| 亚洲第一区二区三区不卡| 在线免费观看的www视频| 观看美女的网站| 亚洲最大成人av| 性插视频无遮挡在线免费观看| 插阴视频在线观看视频| 老司机影院成人| 少妇熟女欧美另类| 全区人妻精品视频| av在线观看视频网站免费| 亚洲18禁久久av| 最后的刺客免费高清国语| 亚洲av电影不卡..在线观看| 精品少妇黑人巨大在线播放 | 直男gayav资源| 看免费成人av毛片| 身体一侧抽搐| 一区福利在线观看| 久久精品影院6| 亚洲七黄色美女视频| 可以在线观看的亚洲视频| 精品99又大又爽又粗少妇毛片| av专区在线播放| 亚洲色图av天堂| av在线观看视频网站免费| 日韩三级伦理在线观看| 亚洲av第一区精品v没综合| 最近2019中文字幕mv第一页| 亚洲第一电影网av| 国产伦一二天堂av在线观看| 内射极品少妇av片p| 国产精品99久久久久久久久| 99热网站在线观看| 99热6这里只有精品| 午夜精品一区二区三区免费看| 成人高潮视频无遮挡免费网站| avwww免费| 久久久久久久午夜电影| 又爽又黄无遮挡网站| 欧美最新免费一区二区三区| 日韩强制内射视频| 国产在视频线在精品| 悠悠久久av| 久久久精品欧美日韩精品| 成人亚洲精品av一区二区| 亚洲中文字幕日韩| av在线天堂中文字幕| 久久精品国产99精品国产亚洲性色| 女的被弄到高潮叫床怎么办| 观看美女的网站| 卡戴珊不雅视频在线播放| 内地一区二区视频在线| 特级一级黄色大片| 自拍偷自拍亚洲精品老妇| 噜噜噜噜噜久久久久久91| 最近的中文字幕免费完整| 免费av观看视频| 婷婷精品国产亚洲av在线| 久久久久久大精品| 99热6这里只有精品| 久久久久久久久中文| 久久欧美精品欧美久久欧美| 亚洲精品国产成人久久av| 国产精品美女特级片免费视频播放器| 精品一区二区三区av网在线观看| 国产精品久久久久久久电影| 亚洲成人中文字幕在线播放| 嫩草影院精品99| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人精品一区久久| 国产精品99久久久久久久久| 欧美又色又爽又黄视频| 亚洲国产欧美人成| 国产精品一区www在线观看| 老女人水多毛片| 免费无遮挡裸体视频| 日本 av在线| 丝袜美腿在线中文| 国产精品伦人一区二区| 伦理电影大哥的女人| 久久亚洲精品不卡| 亚洲高清免费不卡视频| 国产91av在线免费观看| 三级经典国产精品| 日本 av在线| 一夜夜www| 狂野欧美白嫩少妇大欣赏| 国产在线男女| 日本黄色视频三级网站网址| 国产精品免费一区二区三区在线| 亚洲七黄色美女视频| 亚洲成人久久爱视频| 日本三级黄在线观看| 国产探花极品一区二区| 久久欧美精品欧美久久欧美| 亚洲熟妇熟女久久| 美女cb高潮喷水在线观看| av黄色大香蕉| 欧美区成人在线视频| 无遮挡黄片免费观看| av视频在线观看入口| 成熟少妇高潮喷水视频| 久久久久久久久久成人| 国产免费一级a男人的天堂| 美女大奶头视频| 综合色av麻豆| 国产精品一二三区在线看| 可以在线观看毛片的网站| 国内精品美女久久久久久| 直男gayav资源| 国内精品久久久久精免费| 国产成人精品久久久久久| 日韩欧美三级三区| 亚洲国产精品成人久久小说 | 国内精品宾馆在线| 欧美高清性xxxxhd video| 国产在线精品亚洲第一网站| 免费无遮挡裸体视频| 国产男靠女视频免费网站| 99九九线精品视频在线观看视频| 99在线视频只有这里精品首页| 啦啦啦观看免费观看视频高清| 悠悠久久av| 日本精品一区二区三区蜜桃| 久久久久国内视频| 又黄又爽又刺激的免费视频.| 亚洲,欧美,日韩| 此物有八面人人有两片| 变态另类丝袜制服| 禁无遮挡网站| 亚洲天堂国产精品一区在线| 亚洲电影在线观看av| 免费高清视频大片| 欧美xxxx性猛交bbbb| 国产激情偷乱视频一区二区| 国产精品乱码一区二三区的特点| 亚洲乱码一区二区免费版| 日本免费a在线| 免费看日本二区| 国产成人一区二区在线| 午夜福利在线在线| 亚洲性夜色夜夜综合| 欧美xxxx性猛交bbbb| 久久久欧美国产精品| 久久久久久九九精品二区国产| 丰满人妻一区二区三区视频av| 亚洲五月天丁香| 日本在线视频免费播放| 黄色一级大片看看| 国产不卡一卡二| 久久久久久大精品| 欧美色视频一区免费| 国产成人a区在线观看| 亚洲成人av在线免费| 精品人妻视频免费看| 观看美女的网站| av在线播放精品| 狂野欧美激情性xxxx在线观看| 欧美精品国产亚洲| 国产真实乱freesex| 久久久a久久爽久久v久久| 亚洲成人av在线免费| 国产私拍福利视频在线观看| 日本a在线网址| 亚洲精品456在线播放app| 在线播放无遮挡| 亚洲成人av在线免费| 久久久久久久久久黄片| 色哟哟·www| 少妇熟女欧美另类| 欧美最黄视频在线播放免费| 精品福利观看| 亚洲国产精品sss在线观看| 少妇裸体淫交视频免费看高清| a级毛色黄片| 欧美绝顶高潮抽搐喷水| 婷婷色综合大香蕉| 国产黄色小视频在线观看| 亚洲美女搞黄在线观看 | 久久久国产成人精品二区| 人妻丰满熟妇av一区二区三区| 欧美一区二区精品小视频在线| 狠狠狠狠99中文字幕| 日本三级黄在线观看| 欧美一区二区精品小视频在线| 久久综合国产亚洲精品| 男女那种视频在线观看| 午夜福利在线在线| 99riav亚洲国产免费| 欧美+日韩+精品| 婷婷六月久久综合丁香| 我要搜黄色片| 又爽又黄a免费视频| 一区二区三区高清视频在线| 精品免费久久久久久久清纯| 乱码一卡2卡4卡精品| 精品人妻偷拍中文字幕| 亚洲熟妇中文字幕五十中出| 精品99又大又爽又粗少妇毛片| 22中文网久久字幕| 一区二区三区四区激情视频 | 精品一区二区三区av网在线观看| 人妻夜夜爽99麻豆av| 成人特级av手机在线观看| 欧美高清性xxxxhd video| 精品人妻偷拍中文字幕| 亚洲欧美日韩卡通动漫| 女人被狂操c到高潮| 午夜福利在线观看免费完整高清在 | 亚洲中文字幕日韩| 超碰av人人做人人爽久久| 乱码一卡2卡4卡精品| 亚洲精品日韩在线中文字幕 | 国产片特级美女逼逼视频| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美三级三区| 亚洲av不卡在线观看| 色哟哟哟哟哟哟| 天美传媒精品一区二区| 天堂网av新在线| 成人国产麻豆网| 精品一区二区三区视频在线| 中国美白少妇内射xxxbb| 色吧在线观看| 国产亚洲精品久久久com| 色5月婷婷丁香| 高清日韩中文字幕在线| 亚洲成人久久爱视频| 亚洲专区国产一区二区| 亚洲精品粉嫩美女一区| 麻豆精品久久久久久蜜桃| 国内精品一区二区在线观看| 99久久精品热视频| 秋霞在线观看毛片| 欧美日韩一区二区视频在线观看视频在线 | 日韩大尺度精品在线看网址| 国产男靠女视频免费网站| 午夜免费激情av| 尾随美女入室| 国产亚洲91精品色在线| 国产精品久久久久久久久免| 亚洲成人av在线免费| 嫩草影院新地址| 国产大屁股一区二区在线视频| 日本与韩国留学比较| 免费观看的影片在线观看| 久久久欧美国产精品| 国产高清激情床上av| 熟女人妻精品中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 国产精品人妻久久久影院| 免费看日本二区| 午夜福利在线观看免费完整高清在 | 人妻夜夜爽99麻豆av| 嫩草影院新地址| 国产aⅴ精品一区二区三区波| 亚洲一区二区三区色噜噜| 国产精品爽爽va在线观看网站| 晚上一个人看的免费电影| 国产精品亚洲一级av第二区| 亚洲无线在线观看| 校园春色视频在线观看| 人妻夜夜爽99麻豆av| 毛片一级片免费看久久久久| 99热精品在线国产| 男人舔女人下体高潮全视频| 国产成人a∨麻豆精品| 亚洲无线观看免费| 长腿黑丝高跟| 日本三级黄在线观看| 色在线成人网| 久久午夜亚洲精品久久| 色5月婷婷丁香| 91麻豆精品激情在线观看国产| 午夜福利视频1000在线观看| 国产精品99久久久久久久久| 亚洲自偷自拍三级| 精品久久久久久久久久久久久| 国产男靠女视频免费网站| 亚洲国产色片| 人人妻人人澡人人爽人人夜夜 | 国产一区二区三区在线臀色熟女| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品一区av在线观看| 日本一二三区视频观看| 成人高潮视频无遮挡免费网站| 嫩草影院精品99| 老女人水多毛片| 男女下面进入的视频免费午夜| 干丝袜人妻中文字幕| 日本-黄色视频高清免费观看| av在线播放精品| 国产高清三级在线| 五月伊人婷婷丁香| 国产成人aa在线观看| 国内精品美女久久久久久| 91久久精品国产一区二区三区| 精品99又大又爽又粗少妇毛片| 人人妻,人人澡人人爽秒播| 一边摸一边抽搐一进一小说| 国产亚洲精品综合一区在线观看| 国产高清激情床上av| 成人av在线播放网站| 免费看光身美女| 一进一出好大好爽视频| 国产黄色视频一区二区在线观看 | 国产精品爽爽va在线观看网站| 晚上一个人看的免费电影| 免费在线观看影片大全网站| 亚洲av第一区精品v没综合| 丝袜喷水一区| 国产精品无大码| 亚洲av免费高清在线观看| 人人妻人人看人人澡| 亚州av有码| 久久久久精品国产欧美久久久| 村上凉子中文字幕在线| 简卡轻食公司| 亚洲专区国产一区二区| 69人妻影院| 欧美日本视频| 狂野欧美激情性xxxx在线观看| 成人精品一区二区免费| 波多野结衣高清作品| 亚洲第一电影网av| 最新中文字幕久久久久| 精品午夜福利视频在线观看一区| 日本与韩国留学比较| 久久久久性生活片| 欧美又色又爽又黄视频| 午夜激情欧美在线| 亚洲成人久久性| 毛片女人毛片| 亚洲欧美精品自产自拍| 国产成人影院久久av| 看十八女毛片水多多多| 天美传媒精品一区二区| 国产成人一区二区在线| 激情 狠狠 欧美| 联通29元200g的流量卡| 黑人高潮一二区| 国产又黄又爽又无遮挡在线| 婷婷色综合大香蕉| 蜜桃亚洲精品一区二区三区| 色在线成人网| 午夜激情欧美在线| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区成人| 91狼人影院| 亚洲精品国产成人久久av| 日韩一区二区视频免费看| 国产男人的电影天堂91| 亚洲在线自拍视频| 免费av毛片视频| 欧美成人精品欧美一级黄| 国产真实伦视频高清在线观看| 久久精品国产亚洲网站| 天天躁夜夜躁狠狠久久av| 亚洲五月天丁香| 国产精品乱码一区二三区的特点| 久久草成人影院| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 成年女人毛片免费观看观看9| 国产精品一区二区性色av| 男人的好看免费观看在线视频| 成年版毛片免费区| 久久6这里有精品| 天天一区二区日本电影三级| 黄色视频,在线免费观看| 又爽又黄a免费视频| 国内揄拍国产精品人妻在线| 色av中文字幕| 国产一区二区在线观看日韩| 日本黄色片子视频| 男女啪啪激烈高潮av片| 成人性生交大片免费视频hd| 亚洲第一区二区三区不卡| 性插视频无遮挡在线免费观看| 搞女人的毛片| 综合色av麻豆| 特大巨黑吊av在线直播| 99热全是精品| 日韩欧美 国产精品| 日本一二三区视频观看| 在线a可以看的网站| 天天躁日日操中文字幕| av黄色大香蕉| www日本黄色视频网| 最近的中文字幕免费完整| 97碰自拍视频| 美女 人体艺术 gogo| 91午夜精品亚洲一区二区三区| 成人性生交大片免费视频hd| 99视频精品全部免费 在线| 中国美女看黄片| 网址你懂的国产日韩在线| 亚洲aⅴ乱码一区二区在线播放| 日韩在线高清观看一区二区三区| 精品久久久久久久久av| 国产成人a区在线观看| 亚洲国产欧洲综合997久久,| 又黄又爽又刺激的免费视频.| 国产成人91sexporn| 亚洲av电影不卡..在线观看| 亚洲成人中文字幕在线播放| 欧美xxxx性猛交bbbb| 夜夜看夜夜爽夜夜摸| 99久久无色码亚洲精品果冻| 亚洲精华国产精华液的使用体验 | 国产精品无大码| 成年女人毛片免费观看观看9| 欧美日韩在线观看h| 极品教师在线视频| 国产午夜精品久久久久久一区二区三区 | 六月丁香七月| .国产精品久久| 99久久精品国产国产毛片| 免费观看在线日韩| 国内精品宾馆在线| 三级国产精品欧美在线观看| 亚洲欧美日韩高清专用| 在线观看66精品国产| 日日摸夜夜添夜夜爱| 欧美激情久久久久久爽电影| а√天堂www在线а√下载| 亚洲成av人片在线播放无| 有码 亚洲区| 99久久精品一区二区三区| 亚洲熟妇熟女久久| 青春草视频在线免费观看| 亚洲国产欧美人成| 99久久精品一区二区三区| 露出奶头的视频| 欧美日本视频| 一夜夜www| 国产黄片美女视频| 亚洲五月天丁香| 亚洲成人久久性| 欧美另类亚洲清纯唯美| 久久久久久久午夜电影| .国产精品久久| 久久精品国产亚洲网站| 搡老岳熟女国产| 亚洲国产精品国产精品| 日韩欧美三级三区| 亚洲欧美日韩高清在线视频| 九色成人免费人妻av| 欧美最黄视频在线播放免费| 亚洲av成人av| 亚洲av中文字字幕乱码综合| 亚洲熟妇熟女久久| 可以在线观看毛片的网站| 欧美精品国产亚洲| 成人一区二区视频在线观看| 少妇的逼好多水| 天堂av国产一区二区熟女人妻| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添小说| 成人特级av手机在线观看| 亚洲无线观看免费| 舔av片在线| 精品少妇黑人巨大在线播放 | 看十八女毛片水多多多| 久久午夜福利片| 免费在线观看影片大全网站| 亚洲av免费高清在线观看| 久久久久久九九精品二区国产| 久久99热6这里只有精品| 国产一区二区在线观看日韩| 久久精品国产亚洲av天美| 国产精品av视频在线免费观看| 真实男女啪啪啪动态图| 国产精品三级大全| 国产伦在线观看视频一区| 欧美在线一区亚洲| 女同久久另类99精品国产91| 日韩亚洲欧美综合| 日韩人妻高清精品专区| 免费看av在线观看网站| 亚洲美女视频黄频| 精品久久久噜噜| 久久久久久大精品| 国内精品一区二区在线观看| 国产成人影院久久av| 精品人妻偷拍中文字幕| 久久精品国产99精品国产亚洲性色| 热99在线观看视频| 亚洲av成人精品一区久久| 国产精品三级大全| 日韩国内少妇激情av| 高清毛片免费观看视频网站| 22中文网久久字幕| 又爽又黄无遮挡网站| 国产精品久久久久久精品电影| 国内精品久久久久精免费| 中文字幕熟女人妻在线| 人人妻人人澡人人爽人人夜夜 | 免费在线观看影片大全网站| 欧美国产日韩亚洲一区| 少妇裸体淫交视频免费看高清| 亚洲成人av在线免费| 国产精品久久久久久久久免| 天天躁夜夜躁狠狠久久av| 久久久国产成人精品二区|