• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Injection Spectra of Different Species of Cosmic Rays from AMS-02, ACECRIS and Voyager-1

    2024-01-06 06:39:34XuPanandQiangYuan
    Research in Astronomy and Astrophysics 2023年11期

    Xu Pan and Qiang Yuan

    1 Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China; yuanq@pmo.ac.cn

    2 School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China

    Abstract Precise measurements of energy spectra of different cosmic ray(CR)species have been obtained in recent years,by particularly the AMS-02 experiment on the International Space Station.It has been shown that apparent differences exist in different groups of the primary CRs.However,it is not straightforward to conclude that the source spectra of different particle groups are different since they will experience different propagation processes (e.g., energy losses and fragmentations)either.In this work,we study the injection spectra of different nuclear species using the measurements from Voyager-1 outside the solar system,and ACR-CRIS and AMS-02 on the top of atmosphere,in a physical framework of CR transportation.Two types of injection spectra are assumed, the broken power-law(BPL)form and the non-parametric spline interpolation form.The non-parametric form fits the data better than the BPL form,implying that potential structures beyond the constrained spectral shape of BPL may exist.For different nuclei the injection spectra are overall similar in shape but do show some differences among each other.For the non-parametric spectral form, the helium injection spectrum is the softest at low energies and the hardest at high energies.For both spectral shapes, the low-energy injection spectrum of neon is the hardest among all these species,and the carbon and oxygen spectra have more prominent bumps in 1–10 GV in the R dN dR 2 presentation.Such differences suggest the existence of differences in the sources or acceleration processes of various nuclei of CRs.

    Key words: (ISM:) cosmic rays – acceleration of particles – astroparticle physics

    1.Introduction

    Although the exact origin of cosmic rays (CRs) is not clear yet, it is generally believed that CRs with energies below PeV originate from supernova remnants.Energetic CRs were accelerated by diffusive shocks and then injected into the interstellar space.Theoretically, the accelerated spectrum can be simply described by a power-law formdN dR∝R-n,with R being the particle rigidity and n being the index(Fermi 1949;Bell 1978,2014;Blandford&Ostriker 1978).Extension of the conventional diffusive shock acceleration mechanism with test particle assumption to consider the interaction between accelerated particles and the surrounding fluid results in nonlinear effects and deviation from the simple power-law spectrum (Malkov & Drury 2001; Bell 2004; Caprioli et al.2010).From the observational point of view, complicated spectral structures of CRs were also revealed by many measurements (Panov et al.2009; Ahn et al.2010; Adriani et al.2011, 2019, 2020; Aguilar et al.2015a, 2015b, 2017;Atkin et al.2018;An et al.2019;Alemanno et al.2021,2022).Particularly, apart from the breaks around a few GV, remarkable hardenings around hundreds of GV and subsequent softenings around 10 TV were shown by the data.The spectra also differ among different nuclei.The helium spectrum is found to be clearly harder than that of protons (Adriani et al.2011; Aguilar et al.2015a, 2015b).The AMS-02 measurements further showed that the high-energy spectra of neon(Ne),magnesium(Mg),and silicon(Si)are different from those of helium(He),carbon(C),and oxygen(O),and suggested that different types of primary sources exist (Aguilar et al.2020).These results may indicate that the origin and acceleration of CRs are more complicated.

    It should be noted that after the acceleration,CR particles are injected into the interstellar space, and experience complex propagation processes.The energy losses and fragmentation cross sections of various nuclei differ from each other,making the propagated spectra become diverse even for the same injection spectra.Therefore, the apparent differences of the spectra are not directly reflecting the differences at injection.To properly address this issue needs a thorough consideration of the CR propagation (Yuan et al.2017; Boschini et al.2018, 2020a, 2020b; Derome et al.2019; Wu & Chen 2019;Yuan 2019; Korsmeier & Cuoco 2022; Niu 2022).

    Here we investigate the source injection spectra of different primary nuclei including He, C, O, Ne, Mg, Si, and Fe,based mainly on the AMS-02 data (Aguilar et al.2017, 2020, 2021a, 2021b).At low energies the fluxes will be suppressed due to the solar modulation effect.We use the forcefield approximation to account for the solar modulation (Gleeson& Axford 1967).To break the degeneracy between the injection and the solar modulation effects,the measurements at low energies outside the solar system by Voyager-1 will also be included(Cummings et al.2016).We further use the ACE-CRIS3http://www.srl.caltech.edu/ACE/ASC/level2/lvl2DATA_CRIS.htmlmeasurements at the same time periods of the AMS-02 to better constrain the low-energy spectra.The GALPROP code is employed to calculate the propagation of CRs (Moskalenko &Strong 1998; Strong & Moskalenko 1998).The Markov Chain Monte Carlo (MCMC) method is used to do the fit (Liu et al.2012).

    Compared with previous works along the line of studying the injection spectra of CRs (Yuan 2019; Korsmeier &Cuoco 2022; Niu 2022), this work differs in either more species of nuclei used (e.g., Ne, Mg,Si,Fe) or the low-energy ACE and Voyager data included which better constrain the wide-band spectral shape.

    2.Cosmic Ray Injection and Propagation

    Given more and more complicated structures of the CR spectra were revealed by recent precise measurements, it is expected that simple empirical functions may not be proper enough to describe the injection spectra of CRs in a wide energy range.In this work, we use a non-parametric interpolation (NPI) spectrum determined by a cubic spline interpolation method (Ghelfi et al.2016; Zhu et al.2018),which has more freedom to reveal multiple structures of the spectra.The interpolation is done in the log (R) – log(J)parameter space, where R=pc/Ze is the particle rigidity in unit of MV and J is the flux.Specifically,we set the following rigidity knots in the analysis:

    where γ0, γ1, and γ2are spectral indices in different rigidity ranges, Rbr0and Rbr1are break rigidities.

    Following the distribution of supernova remnants,the source distribution of CRs is parameterized as

    where r⊙=8.5 kpc, zs=0.2 kpc, α=1.25, β=3.56 (Trotta et al.2011).

    The propagation of nuclei in the Milky Way includes mainly the diffusion in the random magnetic field, the energy losses due to ionization and Coulomb collisions, the fragmentation due to inelastic collisions with the interstellar medium, and possible convective transportation and reacceleration (Ginzburg&Syrovatskii 1964;Strong et al.2007).The propagation can be described by a set of differential equations for all species of nuclei, which self-consistently predict the fluxes of both primary and secondary nuclei.The general propagation equations can not be solved analytically, and numerical solutions were developed and widely employed (Moskalenko& Strong 1998; Strong & Moskalenko 1998).

    The propagation parameters we adopt are determined through fitting to the newest measurements of secondary and primary CRs (Yuan et al.2020).We work in the diffusionreacceleration framework, and the convection velocity is set to be 0.The main parameters include: the spatial diffusion coefficient Dxx=D0βη(R/4 GV)δ, with D0=7.69×1028cm2s?1, η=?0.05 which phenomenologically describes the possible resonant interactions of CRs with the magnetohydrodynamic (MHD) waves (Ptuskin et al.2006), δ=0.362,the Alfvénic velocity vA=33.76 km s?1which characterizes the reacceleration of particles during the propagation, and the half height of the propagation halo zh=6.27 kpc.

    After entering the solar system, CRs would be further affected by the magnetic field carried by the solar wind, and experience flux suppression at low energies (below tens GV).This so-called solar modulation results in an anti-correlation of the low-energy CR fluxes with solar activities.Although more sophisticated modulation models were developed (e.g.,Potgieter 2013),the simple force-field approximation(Gleeson& Axford 1967) is employed in this work.Since the particles discussed here are all positively charged with mass-to-charge ratio A/Z ≈2, we expect that their relatively differences are less sensitive to the solar modulation model.

    3.Analysis Method

    In this work we focus on the primary CR nuclei with A/Z ≈2, including He, C, O, Ne, Mg, Si, and Fe.The proton spectrum which shows clear difference from that of He is not discussed(Zhang et al.2017).The CosRayMC code(Liu et al.2012) which combines the CR propagation and the MCMC sampler is used.According to the Bayes’theorem,the posterior probability of a model described by parameters θ can beobtained as

    Table 1 The Parameters of BPL Form of Injection Spectra

    Table 2 The Parameters of NPI Form of Injection Spectra

    where J(Ei;θ) is the model predicted flux, Jiand σiare the observational flux and error of the ith energy bin.

    The AMS-02 and Voyager-1 data can be directly obtained from the publications (Cummings et al.2016; Aguilar et al.2021a).The total uncertainties used are the quadratic sum of the statistical ones and systematic ones.For the ACE-CRIS data, we extract them from the online data server.The systematic uncertainties of ACE-CRIS data include the geometry factor (2%), the scintillating optical fiber trajectory efficiency (2%), and the correction of spallation in the instrument (1%~5% depending on the charge and energy bin) (George et al.2009).For He nuclei, no ACE-CRIS data are available.For Fe nuclei, the ACE-CRIS data are not included in the likelihood calculation due to the possible excess compared with the AMS-02 data (see the discussion in Boschini et al.2021).

    4.Results

    The best-fit parameters and the 1σ uncertainties for the BPL and NPI injection spectra are presented in Tables 1 and 2.For all species,the NPI form shows smaller reduced χ2values compared with those of the BPL form.Figure 1 displays the injection spectra of various nuclei(the 1σ bands)obtained from the fitting.The top panels are for the injection spectra normalized at 10 GV, and the bottom panels display the spectra which are grouped into four groups, He, C–O, Ne–Mg–Si, and Fe, respectively.These injection spectra show a general similarity among each other.Specifically, the injection spectra for all nuclei experience softenings around several GV rigidities and hardenings around a few hundred GV.For the BPL form,our results of C,O,Ne,and Mg are consistent with those given in Niu (2022), despite the methodologies are different.The relative spectral shapes among different nuclei are different for the BPL and NPI forms.Since the NPI form introduces less constraints on the injection spectra,and the fittings are much better than the BPL form,we take the results from the NPI fitting as benchmark.The helium spectrum is the softest at low energies and the hardest at high energies.The Ne spectrum is the hardest in the low-energy range among all species.For C and O,their injection spectra show prominent bumps in the 1–10 GV range compared with other nuclei.The Fe spectrum is similar to that of Si at low energies, but is slightly harder above 10 GV.

    Figure 1.The injection spectra of different nuclei.In the top panels we normalize all spectra at 10 GV, and in the bottom panels they are shown for four different groups.The left panels are for the BPL form, and the right panels are for the NPI form.

    Figure 2.The one-dimensional probability density distributions of the solar modulation potentials, for the BPL form (left) and NPI form (right).

    Thanks to the observations by Voyager-1 outside the solar system and the low-energy fluxes by ACE-CRIS, the degeneracy between the injection spectrum and the solar modulation can be effectively broken.Figure 2 shows the probability distributions of the solar modulation potentials φ for different nuclei.For both the BPL and NPI forms, Fe has the largest φ value.The remaining nuclei exhibit similar modulation potentials within ~2σ uncertainties.The difference of modulation potentials between Fe and the other nuclei may be due to the low-energy structures of the Fe spectrum as revealed by combining the ACE-CRIS and AMS-02 data (see the discussion below).

    Figure 3.Comparison of the best-fit results of the spectra with the measurements(Cummings et al.2016;Aguilar et al.2021a).In each panel the higher line is the LIS and the lower one is the TOA spectrum.The residuals are depicted in the lower sub-panel,defined as χ=(data ?model)/error(stars are for the BPL form and circles are for the NPI form).

    Figure 3 shows the comparisons between the best-fit spectra and the measurements.The higher curve in each panel represents the local interstellar spectrum (LIS) before the solar modulation,and the lower one shows the spectrum at the top of atmosphere(TOA)of the Earth.Good consistency between the fitting results and the data can be seen.We also show that the ACE-CRIS measurement for the fluxes of Fe nuclei cannot connect smoothly with the AMS-02 data, as already being pointed out in Boschini et al.(2021).The combined AMS-02 and ACE-CRIS data may indicate a bump structure at ~2 GV,which may be due to a past supernova explosion in the Local Bubble (Boschini et al.2021).

    5.Conclusion and Discussion

    New measurements of the energy spectra of CRs with presentlevel precision enable us to investigate crucially the acceleration and propagation processes of particles.The measured spectra contain mixed effects of the acceleration and propagation, and thus cannot be directly used to infer the injection spectra of different CR particles.In this work, we thus derive the source injection spectra of a series of primary nuclei under the framework of a physical propagation model.Our results show that,even these nuclei have similar A/Z ≈2, their injection spectra show diverse behaviors.As a test, we assume identical injection spectra for all these nuclei using the NPI form, and find a reduced chi-squared value of χ2/d.o.f.=9424.3/586.If we choose two injection spectra, one is applied to He, C, and O nuclei, and the other is applied to Ne, Mg, and Si nuclei, we obtain χ2/d.o.f.=650.3/275 for the fitting to He, C, and O, and χ2/d.o.f.=223.5/265 for the fitting to Ne, Mg, and Si.The fitting to C and O gives χ2/d.o.f=71.2/165, indicating that the injection spectrum of C and O should be different from that of He.When we add Fe to Ne–Mg–Si group, we obtain χ2/d.o.f.=672.0/319.The injection spectrum of Fe appears to be similar to those of Mg and Si at low energies,but is harder at high energies.The combined fitting of Fe and He–C–O gives χ2/d.o.f.=1164.8/339.These tests show that we can perhaps classify the injection spectra into four groups,He,C–O,Ne–Mg–Si, and Fe as shown in Figure 1.Assuming the same injection spectra for different groups result in poor fittings to the data,indicating the intrinsic difference of their injection spectra.

    The diversity of the derived injection spectra may be related with the acceleration processes.Various acceleration models were proposed to explain the spectral differences of protons and helium nuclei.For example, it was proposed that the reverse shock acceleration of different supernova shocks (e.g.,Type I where hydrogen is absent,and Type II where hydrogen is abundant)could explain the harder spectrum of helium nuclei(Ptuskin et al.2013).Ohira & Ioka (2011) proposed that the acceleration in chemically enriched regions with outwarddecreasing abundance could naturally result in different spectra of different species.Those models may be extended to account for the differences of injection spectra of heavy nuclei as found in this work.In addition, models including different ionization histories of nuclei (Casse & Goret 1978) and condensation of different elements into grains (Ellison et al.1997) could also explain the diversity of the inferred injection spectra.

    Note that we have assumed a single source population in derive the injection spectra.The results may reflect the fact that there are multiple source components of CRs.For example, it has been proposed that a nearby source with element abundance different from that of the average background sources may result in different spectral shapes of various nuclei(Yuan et al.2021).

    Finally, we assume a spatially uniform propagation in this work.However, a number of new observations may suggest a spatially dependent propagation model of CRs (Tomassetti 2012; Guo & Yuan 2018; Liu et al.2018; Zhao et al.2021).Due to the differences of the energy loss rates and fragmentation cross sections of different nuclei, they experience different propagation lengths in the Milky Way.In the spatially dependent propagation model,such an effect results in additional spectral differences on the results based on homogeneous propagation assumption.Whether or not the observed spectral differences can be reproduced in a realistic spatially dependent propagation model needs future studies.

    Acknowledgment s

    We acknowledge the use of the ACE-CRIS data provided by the ACE Science Center.This work is supported by the National Key Research and Development Program of China(No.2021YFA0718404), the National Natural Science Foundation of China(No.12220101003)and the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(No.YSBR-061).

    99国产精品免费福利视频| 亚洲av日韩在线播放| 免费高清在线观看日韩| 在线看a的网站| 伊人亚洲综合成人网| 久久99一区二区三区| 国产成人精品久久久久久| 黄频高清免费视频| 中文欧美无线码| 国产一区二区三区av在线| 欧美bdsm另类| 国产精品亚洲av一区麻豆 | 亚洲国产毛片av蜜桃av| 久久久a久久爽久久v久久| av在线老鸭窝| a级片在线免费高清观看视频| 十八禁网站网址无遮挡| 国产熟女欧美一区二区| 国产精品偷伦视频观看了| 日本色播在线视频| 可以免费在线观看a视频的电影网站 | 国产av一区二区精品久久| 国产精品国产av在线观看| 国产xxxxx性猛交| 亚洲精华国产精华液的使用体验| 女人久久www免费人成看片| 国产精品一区二区在线观看99| 亚洲,欧美,日韩| 另类亚洲欧美激情| 18禁国产床啪视频网站| 黄片小视频在线播放| 久久狼人影院| 久久精品熟女亚洲av麻豆精品| 国产精品不卡视频一区二区| 国产一区二区激情短视频 | 欧美人与善性xxx| 国产野战对白在线观看| 亚洲视频免费观看视频| 久久国产精品大桥未久av| 午夜福利网站1000一区二区三区| 免费观看a级毛片全部| 久久精品久久久久久噜噜老黄| 亚洲综合色惰| 黑人欧美特级aaaaaa片| 日韩欧美精品免费久久| 精品国产超薄肉色丝袜足j| 亚洲少妇的诱惑av| 国产精品国产av在线观看| 久久精品国产亚洲av涩爱| 免费高清在线观看日韩| 国产免费现黄频在线看| 国产精品国产三级专区第一集| 99热国产这里只有精品6| 国产97色在线日韩免费| 国精品久久久久久国模美| 国产在视频线精品| 精品99又大又爽又粗少妇毛片| 欧美av亚洲av综合av国产av | 国产片特级美女逼逼视频| 麻豆乱淫一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 岛国毛片在线播放| 免费高清在线观看视频在线观看| 女人精品久久久久毛片| 午夜免费鲁丝| 亚洲欧美中文字幕日韩二区| 精品亚洲成国产av| 18+在线观看网站| 成人午夜精彩视频在线观看| 久久女婷五月综合色啪小说| 成人毛片60女人毛片免费| 成人黄色视频免费在线看| 日韩一本色道免费dvd| 欧美人与性动交α欧美精品济南到 | 大话2 男鬼变身卡| 国产麻豆69| 亚洲av成人精品一二三区| 日韩中文字幕视频在线看片| 啦啦啦中文免费视频观看日本| 国产精品熟女久久久久浪| 国产无遮挡羞羞视频在线观看| 亚洲美女搞黄在线观看| 国产精品香港三级国产av潘金莲 | 国产精品久久久久久精品电影小说| 亚洲精品第二区| 女的被弄到高潮叫床怎么办| 成年女人在线观看亚洲视频| 国产成人精品在线电影| 91国产中文字幕| 啦啦啦在线观看免费高清www| 最近中文字幕高清免费大全6| 男男h啪啪无遮挡| 一级a爱视频在线免费观看| 超碰97精品在线观看| 免费黄网站久久成人精品| 秋霞伦理黄片| 波野结衣二区三区在线| 久久99蜜桃精品久久| 欧美日韩视频精品一区| 男女边吃奶边做爰视频| 一二三四中文在线观看免费高清| 777久久人妻少妇嫩草av网站| 麻豆精品久久久久久蜜桃| 成年av动漫网址| 久久精品aⅴ一区二区三区四区 | 成年美女黄网站色视频大全免费| 亚洲美女视频黄频| 啦啦啦中文免费视频观看日本| 另类精品久久| 在线观看免费视频网站a站| 人妻 亚洲 视频| 精品视频人人做人人爽| 两个人免费观看高清视频| 午夜精品国产一区二区电影| 日本欧美国产在线视频| 精品久久久久久电影网| 麻豆av在线久日| 看免费成人av毛片| 波多野结衣av一区二区av| 一区二区三区乱码不卡18| 综合色丁香网| 精品久久蜜臀av无| 婷婷色av中文字幕| 水蜜桃什么品种好| 亚洲 欧美一区二区三区| av片东京热男人的天堂| 一级,二级,三级黄色视频| 久久精品亚洲av国产电影网| 国产成人免费观看mmmm| 91精品国产国语对白视频| 一本久久精品| 中文字幕亚洲精品专区| 99国产精品免费福利视频| 男女下面插进去视频免费观看| 久久精品久久久久久噜噜老黄| 国产高清国产精品国产三级| 在现免费观看毛片| 97在线人人人人妻| 国产精品一区二区在线观看99| 免费高清在线观看视频在线观看| 中文精品一卡2卡3卡4更新| 国语对白做爰xxxⅹ性视频网站| 久久久久久免费高清国产稀缺| 国产精品久久久av美女十八| 熟女电影av网| 纵有疾风起免费观看全集完整版| 精品午夜福利在线看| 午夜日韩欧美国产| 在线亚洲精品国产二区图片欧美| 在线精品无人区一区二区三| 99国产综合亚洲精品| 观看av在线不卡| 有码 亚洲区| 男男h啪啪无遮挡| 晚上一个人看的免费电影| 久久久久久人妻| 熟女av电影| 国产av码专区亚洲av| 国产黄频视频在线观看| 精品一区在线观看国产| 丝袜脚勾引网站| 免费黄频网站在线观看国产| 国产一区二区激情短视频 | 在线观看www视频免费| 18+在线观看网站| 亚洲久久久国产精品| 亚洲国产看品久久| 久久久久久久大尺度免费视频| 久久热在线av| 免费不卡的大黄色大毛片视频在线观看| 丝袜美腿诱惑在线| 在线精品无人区一区二区三| 久久精品亚洲av国产电影网| 久久久精品94久久精品| 最近2019中文字幕mv第一页| 亚洲国产看品久久| 你懂的网址亚洲精品在线观看| 美女主播在线视频| 日本av手机在线免费观看| 欧美日韩av久久| 国产在线一区二区三区精| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 狂野欧美激情性bbbbbb| 嫩草影院入口| 热99国产精品久久久久久7| 欧美日韩国产mv在线观看视频| 一区二区av电影网| 电影成人av| 国产熟女午夜一区二区三区| 久久热在线av| 777久久人妻少妇嫩草av网站| 欧美精品高潮呻吟av久久| 天天躁夜夜躁狠狠躁躁| 日韩人妻精品一区2区三区| 91在线精品国自产拍蜜月| 晚上一个人看的免费电影| 国产精品三级大全| 18+在线观看网站| 涩涩av久久男人的天堂| 成人漫画全彩无遮挡| 亚洲一区二区三区欧美精品| 男女无遮挡免费网站观看| 免费黄频网站在线观看国产| 天堂俺去俺来也www色官网| 一级黄片播放器| 人妻系列 视频| a 毛片基地| 国产老妇伦熟女老妇高清| 丰满饥渴人妻一区二区三| 老司机影院成人| 国产1区2区3区精品| 国产成人免费无遮挡视频| 日韩成人av中文字幕在线观看| 青春草亚洲视频在线观看| 男女高潮啪啪啪动态图| av片东京热男人的天堂| 国产免费福利视频在线观看| 街头女战士在线观看网站| 精品福利永久在线观看| 天天影视国产精品| 十八禁高潮呻吟视频| 狂野欧美激情性bbbbbb| 中文字幕精品免费在线观看视频| 啦啦啦中文免费视频观看日本| 一区二区av电影网| 久久久久精品久久久久真实原创| 伊人亚洲综合成人网| 欧美精品高潮呻吟av久久| 美女午夜性视频免费| 一级爰片在线观看| 免费黄网站久久成人精品| 天天躁狠狠躁夜夜躁狠狠躁| 99国产精品免费福利视频| 久久这里有精品视频免费| 亚洲国产精品一区二区三区在线| 国产综合精华液| videos熟女内射| 1024视频免费在线观看| 一本久久精品| 看免费成人av毛片| 91久久精品国产一区二区三区| 狠狠精品人妻久久久久久综合| 制服丝袜香蕉在线| 高清不卡的av网站| 午夜免费男女啪啪视频观看| 中文字幕色久视频| 纯流量卡能插随身wifi吗| 人成视频在线观看免费观看| 天天躁日日躁夜夜躁夜夜| 热99久久久久精品小说推荐| 日韩三级伦理在线观看| 黄色 视频免费看| 国产成人精品久久久久久| 国产综合精华液| tube8黄色片| 91国产中文字幕| 国产精品久久久久久精品古装| 久久久久久久久久久免费av| 久久午夜综合久久蜜桃| 欧美在线黄色| 精品一区二区三区四区五区乱码 | 在线精品无人区一区二区三| 久久久国产一区二区| 国产成人欧美| 一级片免费观看大全| 黄色怎么调成土黄色| 国产亚洲av片在线观看秒播厂| 这个男人来自地球电影免费观看 | 久久久久久人妻| 人成视频在线观看免费观看| 丰满少妇做爰视频| 亚洲精品美女久久久久99蜜臀 | 五月伊人婷婷丁香| 日韩 亚洲 欧美在线| 国产免费现黄频在线看| 777米奇影视久久| 亚洲国产欧美日韩在线播放| 这个男人来自地球电影免费观看 | 黑人巨大精品欧美一区二区蜜桃| 国产黄频视频在线观看| 久久精品夜色国产| 满18在线观看网站| 丝袜美足系列| 国产一区二区激情短视频 | 宅男免费午夜| 亚洲精品国产一区二区精华液| 久热久热在线精品观看| 最新的欧美精品一区二区| 天天躁日日躁夜夜躁夜夜| 国产探花极品一区二区| 欧美精品av麻豆av| 日韩电影二区| 一本—道久久a久久精品蜜桃钙片| 性色av一级| 高清黄色对白视频在线免费看| av国产精品久久久久影院| 久久婷婷青草| 日韩中文字幕视频在线看片| 97在线人人人人妻| 国产极品粉嫩免费观看在线| 国产无遮挡羞羞视频在线观看| 精品福利永久在线观看| www日本在线高清视频| 国产一区二区激情短视频 | 久久国产精品大桥未久av| 久久热在线av| 免费看不卡的av| 一区二区三区精品91| 精品久久久精品久久久| 欧美最新免费一区二区三区| 两个人看的免费小视频| 在线观看一区二区三区激情| 精品一区二区免费观看| 久久久久久久国产电影| 国产熟女午夜一区二区三区| 精品国产超薄肉色丝袜足j| 高清黄色对白视频在线免费看| 午夜日韩欧美国产| 老汉色av国产亚洲站长工具| 制服人妻中文乱码| 80岁老熟妇乱子伦牲交| 一级片'在线观看视频| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 777久久人妻少妇嫩草av网站| av.在线天堂| 亚洲精品av麻豆狂野| 18+在线观看网站| 香蕉精品网在线| 丝袜脚勾引网站| 91aial.com中文字幕在线观看| 两个人看的免费小视频| 日本欧美视频一区| 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| 波多野结衣av一区二区av| 伊人亚洲综合成人网| 久久99热这里只频精品6学生| 精品99又大又爽又粗少妇毛片| freevideosex欧美| 亚洲欧美清纯卡通| 日本黄色日本黄色录像| 国产亚洲欧美精品永久| 超碰97精品在线观看| 亚洲欧美精品自产自拍| av在线播放精品| 精品一品国产午夜福利视频| 26uuu在线亚洲综合色| a级毛片黄视频| 99re6热这里在线精品视频| 大香蕉久久成人网| 久久精品久久精品一区二区三区| 亚洲国产精品国产精品| 亚洲第一区二区三区不卡| 国产亚洲欧美精品永久| 韩国av在线不卡| 深夜精品福利| 亚洲综合色网址| 久久久久久人人人人人| 精品国产乱码久久久久久男人| 中文字幕最新亚洲高清| 久久午夜综合久久蜜桃| 欧美日韩精品网址| 自线自在国产av| 一级毛片黄色毛片免费观看视频| 久久久精品国产亚洲av高清涩受| 精品国产国语对白av| 欧美亚洲日本最大视频资源| 亚洲经典国产精华液单| 国产亚洲欧美精品永久| 国产无遮挡羞羞视频在线观看| videosex国产| 中文字幕最新亚洲高清| 男女午夜视频在线观看| 国产精品 国内视频| 男男h啪啪无遮挡| 久久久欧美国产精品| 日韩精品有码人妻一区| 老司机影院成人| 成人免费观看视频高清| 有码 亚洲区| 国产深夜福利视频在线观看| 伊人亚洲综合成人网| 9191精品国产免费久久| 蜜桃在线观看..| 成人国语在线视频| 香蕉精品网在线| 母亲3免费完整高清在线观看 | 国产亚洲精品第一综合不卡| 国产成人精品婷婷| 少妇被粗大的猛进出69影院| 黑人欧美特级aaaaaa片| 人人妻人人爽人人添夜夜欢视频| 免费观看性生交大片5| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 美女高潮到喷水免费观看| 亚洲成人手机| 成年美女黄网站色视频大全免费| 在线 av 中文字幕| 一级片免费观看大全| 少妇 在线观看| 久久人妻熟女aⅴ| 男人爽女人下面视频在线观看| 边亲边吃奶的免费视频| 久久精品夜色国产| 国产精品一国产av| 精品少妇一区二区三区视频日本电影 | 国产爽快片一区二区三区| 老鸭窝网址在线观看| a 毛片基地| 18在线观看网站| 黄网站色视频无遮挡免费观看| 如日韩欧美国产精品一区二区三区| 欧美 日韩 精品 国产| 精品国产一区二区久久| 在线观看人妻少妇| 高清av免费在线| 午夜免费观看性视频| av天堂久久9| 亚洲在久久综合| 亚洲色图综合在线观看| 国产熟女欧美一区二区| 国产精品99久久99久久久不卡 | 久久人人爽av亚洲精品天堂| 五月开心婷婷网| 亚洲婷婷狠狠爱综合网| 成人毛片60女人毛片免费| 国产成人aa在线观看| av在线观看视频网站免费| 精品国产超薄肉色丝袜足j| 看非洲黑人一级黄片| 高清在线视频一区二区三区| 国产成人精品婷婷| 亚洲国产精品999| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看| 我要看黄色一级片免费的| 中文天堂在线官网| 国产亚洲一区二区精品| 精品国产一区二区久久| 国产成人精品一,二区| xxx大片免费视频| 一区二区日韩欧美中文字幕| 国产精品女同一区二区软件| 人妻系列 视频| 亚洲熟女精品中文字幕| 久久人人97超碰香蕉20202| 性少妇av在线| 日韩欧美一区视频在线观看| 黄片播放在线免费| 黄色配什么色好看| 王馨瑶露胸无遮挡在线观看| 寂寞人妻少妇视频99o| 国产 精品1| 欧美亚洲 丝袜 人妻 在线| 婷婷成人精品国产| 成人国产麻豆网| 日本91视频免费播放| 高清av免费在线| 国产毛片在线视频| 亚洲,一卡二卡三卡| 美女脱内裤让男人舔精品视频| 亚洲一区中文字幕在线| 婷婷色麻豆天堂久久| 亚洲国产成人一精品久久久| 成年女人毛片免费观看观看9 | 国产精品一二三区在线看| 欧美人与性动交α欧美精品济南到 | 一级毛片我不卡| 在线看a的网站| 三级国产精品片| 国产精品国产三级专区第一集| 狂野欧美激情性bbbbbb| 婷婷色综合大香蕉| 伊人久久国产一区二区| 国产成人免费观看mmmm| av在线app专区| 日韩中文字幕视频在线看片| 亚洲国产精品999| 色播在线永久视频| 欧美精品一区二区大全| 精品国产超薄肉色丝袜足j| 久久这里只有精品19| 亚洲三级黄色毛片| 久久午夜综合久久蜜桃| 亚洲经典国产精华液单| 男人爽女人下面视频在线观看| 国产精品偷伦视频观看了| 黑人巨大精品欧美一区二区蜜桃| 亚洲内射少妇av| 亚洲欧美成人精品一区二区| 国精品久久久久久国模美| 免费观看在线日韩| 国产精品国产三级国产专区5o| 一区二区av电影网| 一区福利在线观看| 日本av手机在线免费观看| 国产男女超爽视频在线观看| 少妇 在线观看| 人人妻人人澡人人看| 亚洲第一av免费看| 人人澡人人妻人| 黑丝袜美女国产一区| 国产精品久久久久久精品电影小说| 制服诱惑二区| 午夜影院在线不卡| 人人澡人人妻人| 在线天堂最新版资源| 久久久久国产精品人妻一区二区| 久久精品国产自在天天线| 天天躁狠狠躁夜夜躁狠狠躁| 9色porny在线观看| 久久国产精品大桥未久av| 亚洲欧美精品综合一区二区三区 | 三级国产精品片| 精品一区二区免费观看| 国产av一区二区精品久久| 久久国产亚洲av麻豆专区| 亚洲国产精品一区二区三区在线| 黄色 视频免费看| 大码成人一级视频| 亚洲,欧美精品.| 国产成人a∨麻豆精品| 国产精品.久久久| 欧美 亚洲 国产 日韩一| 中文欧美无线码| 免费黄频网站在线观看国产| 久久人人爽av亚洲精品天堂| 99精国产麻豆久久婷婷| 久久精品夜色国产| 亚洲国产av影院在线观看| 两个人免费观看高清视频| 啦啦啦在线免费观看视频4| 天堂中文最新版在线下载| 婷婷色av中文字幕| 99久久中文字幕三级久久日本| 亚洲人成网站在线观看播放| videossex国产| 女性生殖器流出的白浆| 免费观看无遮挡的男女| 日本黄色日本黄色录像| 国产av国产精品国产| 大香蕉久久网| 青青草视频在线视频观看| 亚洲,欧美精品.| 日本av手机在线免费观看| 美女高潮到喷水免费观看| 大片免费播放器 马上看| 成人亚洲欧美一区二区av| 午夜老司机福利剧场| 久久人妻熟女aⅴ| 国产成人aa在线观看| 只有这里有精品99| 在线亚洲精品国产二区图片欧美| 日韩中字成人| 免费黄网站久久成人精品| 国产国语露脸激情在线看| av在线app专区| 大片电影免费在线观看免费| 午夜免费男女啪啪视频观看| 欧美日韩视频高清一区二区三区二| 国产成人一区二区在线| 高清不卡的av网站| 国产有黄有色有爽视频| 九色亚洲精品在线播放| 黄片无遮挡物在线观看| 三级国产精品片| 免费播放大片免费观看视频在线观看| 涩涩av久久男人的天堂| 一边亲一边摸免费视频| 18+在线观看网站| 啦啦啦在线免费观看视频4| 最近中文字幕2019免费版| 女性被躁到高潮视频| 黄频高清免费视频| 亚洲欧美精品综合一区二区三区 | 亚洲精品国产av成人精品| 国产极品天堂在线| 国产精品久久久久久久久免| 日本wwww免费看| 久热这里只有精品99| 亚洲欧美一区二区三区久久| 欧美日韩成人在线一区二区| 巨乳人妻的诱惑在线观看| 看免费av毛片| 男的添女的下面高潮视频| 成年av动漫网址| 亚洲av电影在线观看一区二区三区| 美女脱内裤让男人舔精品视频| 成人二区视频| 国产精品三级大全| 精品国产一区二区三区久久久樱花| 人妻系列 视频| 中文精品一卡2卡3卡4更新| 黄色配什么色好看| 99热全是精品| 国产男人的电影天堂91| 国产白丝娇喘喷水9色精品| 97人妻天天添夜夜摸| 亚洲av男天堂| 亚洲成av片中文字幕在线观看 | 香蕉丝袜av| 亚洲国产欧美日韩在线播放| 激情五月婷婷亚洲| av.在线天堂| 九九爱精品视频在线观看| 精品一区在线观看国产| 人人妻人人爽人人添夜夜欢视频| 成年人午夜在线观看视频| 亚洲av成人精品一二三区| 亚洲精品一二三| 美国免费a级毛片| 一区在线观看完整版| 国产午夜精品一二区理论片|