• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The complete plastid genome provides insight into maternal plastid inheritance mode of the living fossil plant Ginkgo biloba

    2024-01-06 01:53:24MengxueFengHnghuiKongMeixiuLinRongjingZhngWeiGong
    植物多樣性 2023年6期

    Mengxue Feng ,Hnghui Kong ,Meixiu Lin ,Rongjing Zhng ,** ,Wei Gong ,*

    a College of Life Sciences,South China Agricultural University,Guangzhou 510614,China

    b Key Laboratory of Plant Resources Conservation and Sustainable Utilization,South China Botanical Garden,Chinese Academy of Sciences,Guangzhou 510650,China

    The plastid is widely present in algae and plants with important functions in the process of photosynthesis,carbon fixation,and stress response (Shi et al.,2022).Despite the consistency between plastid genomes in plants,size variation of the plastid genome,gene loss,structure changes,and pseudogenes have been frequently observed (Ivanova et al.,2017).Plastid genome has currently shown a wide application in research of phylogeny,populations and biogeography in combination with nucleus genome (Wang et al.,2021).As is known,the plastid originates from cyanobacteria through two independent secondary endosymbiosis and has its own genetic replication mechanism (Howe et al.,2003).Thus,plastids have been suggested not to be transmitted according to the rules of Mendelian genetics,but generally demonstrate uniparental inheritance mode (Birky,1995).Concerning the uniparental inheritance of plastids,research have been mainly conducted on species of angiosperms,but few on gymnosperms or ferns (Kita et al.,2005;Li et al.,2013).

    Uniparental inheritance potentially evolved from relaxed organelle inheritance patterns because it mitigates the spread of cytoplasmic components.Three possible patterns were suggested for plastid inheritance,including maternally,paternally and biparentally (Reboud and Zeyl,1994;Kormutak et al.,2018).Angiosperms seem to display mainly a maternal transmission of its plastids (Greiner et al.,2015).In most gymnosperms,the plastid transmission is considered to occur exclusively by paternal inheritance.Cryptomeria japonicawas the first gymnosperm known to inherit its plastid genome from its male parent (Ohba et al.,1971).Most conifers exhibit exclusively or predominantly paternal inheritance of both plastids and mitochondrias (Mogensen,1996;Jansen and Ruhlman 2012;Lubna et al.,2021).However,there are a few exceptions.Several gymnosperms,includingGinkgo,are supposed to probably exhibit maternal inheritance of both plastids and mitochondrias.A few of studies have been carried out for plastid inheritance of gymnosperm species,most of which are based on cytological analysis(Mogensen,1996;Guo et al.,2005;Zhong et al.,2011).So far,the information seems to be fragmentary and no strong evidence is available specifically forGinkgo.

    Ginkgo bilobaL.is a sole representative of Ginkgoales-one of the eight extant gymnosperm orders (Yang et al.,2022).This species shows a geographical distribution range in broadleaved forest of both subtropical and temperate zones in Eastern Asia.It is widely cultivated all over the world due to its highly horticultural,medicinal and ecological values.Several glacial refugial ofG.bilobawere identified in subtropical evergreen broad forest in China(Gong et al.,2008;Zhao et al.,2019).This species is a dioecious tree plant,with separate male and female individuals.The characteristics of separate male and female individuals produced by dioecy could rule out the possibility of self-pollination and show advantages in studying plastid genetic research(Zhai and Sun,2015).During genetic crosses,different parents were selected for artificial pollination to produce hybrid offsprings,then genetic similarities and differences between the parents and offsprings were compared to explore their organelle inheritance more distinctively.A few of research have been conducted onG.bilobasince its first plastid genome was assembled and annotated (Lin et al.,2012;Zhou et al.,2020;Yang et al.,2021).However,previous research only focused on structural comparison and gene composition of the plastid genome,which aimed to develop molecular markers,analyze plant phylogeny,or compare genomics.So far,no molecular evidence is available to reveal the inheritance mode of the plastid genome ofG.biloba.

    Traditional methods to investigate organelle inheritance involve hybridization experiment,using electron microscopy or DAPI fluorescence microscopy,as well as molecular markers,such as restriction fragment length polymorphism (RFLPs),and simple sequence repeats (SSRs) (Zhong et al.,2011).Most recently,the development of next-generation sequencing technologies has stimulated a rapid and successful achievement in the database of plastid genomes (Wang et al.,2018).Thus,genomic data demonstrates a strong potentiality to explore the molecular mechanism of organelle inheritance mode(Villanueva-Corrales et al.,2021).In the current study,we conducted artificial pollination for three crosses ofGinkgo biloba.Using next generation sequencing,plastid genomes of all the parents and offsprings were investigated and compared,showing strong genomic evidence on maternal inheritance mode.

    Two female and three male trees ofGinkgo bilobawere selected as candidates for genetic crosses.Artificial pollinations were conducted in the county of Pingtian,Nanxiong,Guangdong Province,in southern China,which is suggested as one of the glacial refugia with a large population ofGinkgotrees (Zhao et al.,2019).Two femaleGinkgotrees over 100 years,showing an average diameter at breast height (DBH) more than 80 cm and an average height of~20 m,are recorded to possess high seed production.Thus,they were chosen as maternal origin.Three old maleGinkgotrees,estimated to be over 100 years,showing an average DBH more than 80 cm and an average height of~20 m,were selected as paternal origin.In April,2016,the branches of the female trees were wrapped with parchment paper and the male flowers from the nearby male trees were all removed before flowering in order to avoid any pollen pollution.Artificial pollinations were conducted for three crosses.For each cross,seeds were collected and germinated.The accession information for each cross and the corresponding offsprings in the current study were listed in Table S1.

    Fresh leaves were collected from the seedlings in the spring.Leaf tissue was ground in tubes with glass beads with the tissue homogenizer Tissuelyser-96 (Shanghai Jingxin Industrial Development Co.,Ltd).Total genomic DNA was extracted with modified cetyl trimethyl ammonium bromide (CTAB) method (Doyle and Doyle,1987).An Illumina HiSeq2000 sequencer was used to sequence paired-end(PE)sequencing libraries with an average 300 bp insert length.Over 10 million clean reads were passed through quality control with a 150 bp each read length.

    We assembled the plastid genome using GetOrganelle pipeline(https://github.com/Kinggerm/GetOrganelle) and editingde novoassembly graph using Bandage (Coil et al.,2015).The plastid genome ofGinkgo biloba(MN443423.1) (Yang et al.,2021) was downloaded from NCBI and used as the reference sequence.PGA(https://github.com/quxiaojian/PGA) (Qu et al.,2019),Geneious 9.1.4 (Biomatters Ltd.,Auckland,New Zealand),and ARAGORN program were jointly used for annotating the plastid genome in comparison with references.The circular genome map ofG.bilobawas illustrated with the Organellar Genome DRAW tool(OGDRAW,available online:http://ogdraw.mpimp-golm.mpg.de/)(Lohse et al.,2013).

    The plastid genome sequences from the finalized data set of all parents and F1 individuals were aligned with MAFFT v.7.0.0(Katoh and Standley,2013) with manual adjustment when necessary.Using DnaSP 6(Rozas et al.al.,2017),we determined the substitutions numbers and types of the sequences,and also performed comparative analyses of the nucleotide diversity (Pi) among the complete plastid genomes of the parents and offsprings based on a sliding window analysis.All the protein coding genes (PCGs) were extracted and aligned using MAFFT v.7.0.0.Using DnaSP 6 and MEGA v.11.0 (Tamura et al.,2021),we estimated the genetic distance between the parents and offsprings based on Kimura 2-parameter (K2-P’s) model.

    The original reads were mapped to plastid genome references using BWA-0.7.17-R1188 (Li,2013) to detect the SNPs between the parents and the offsprings.The generated bam files were sorted and variant calls were performed by Samtools-1.7 and Bcftools v.1.9,respectively (Danecek et al.,2021;Li,2009,2011).Sequence similarities between the parents and offsprings were used as reference indicators.To identify SNPs among parents and F1 individuals,we inspected the alignment results in Geneious and generated haplotype files using DnaSP 6.All the SNPs were statistic to identify the polymorphism between the parents and offsprings.

    All parents and F1 individuals were used to reconstruct phylogenetic relationships in order to trace plastid genome inheritance.Cycas revoluta(JN867588) was used as outgroup.Maximum parsimony (MP) method was applied for phylogenetic analyses by PAUP* v.4.0 (Swofford,2002).Bootstrap values were calculated in PAUP* with 1000 bootstrap replicates.Neighbor-Joining (NJ)method was also used to conduct phylogenetic analysis among all parents and F1 individuals by MEGA v.11.0 (Tamura et al.,2021).Additionally,using GetOrganelle pipeline,we assembled nuclear ribosomal RNA sequences (18S-ITS1-5.8S-ITS2-26S) and extracted the ITS regions,which were further used to reconstruct phylogenetic trees as a control.

    A total number of 2 × 150 bp pair-end reads of 6,504,575-35,285,882 were produced with 1.95-10.59 Gb of clean data.All reads data were deposited in the NCBI Sequence Read Archive(SRA)(Table S3).The size of the complete plastid genome is from 156,970 bp to 156,999 bp,which is supposed to be smaller than cycads ranging from 161,815 to 166,341 bp (Wu and Chaw,2015).The plastid genome displays a typical quadripartite structure,including a pair of IRs of 17,733 bp each in length,separated by LSC region ranging from 99,248 bp to 99,267 bp and SSC region from 22,257 bp to 22,266 bp(Fig.1 and Table S2).The GC content of the plastid genome is 39.6%,within that range of gymnosperms from 34.3% to 40.11% (Wu and Chaw,2015).The plastid genome encodes 134 predicted functional genes when duplicated genes in the IR regions were only counted once.A total of 85 PCGs,41 tRNA genes and eight rRNA genes are identified among all the individuals(Table S2).The remaining non-coding regions include introns,intergenic spacers,and pseudogenes.Each of the four genes (two PCGs and two tRNA genes)contains only one intron.

    Fig.1.Phylogenomic analysis for all parents and F1 offsprings in three genetic crosses(G1,G2 and G3)of Ginkgo bilboa based on Maximum Parsimony(MP)method.Cycas revoluta was used as an outgroup.Numbers above the branches represent bootstrap values.

    The IRs can be normally identified by a central unit of eight rRNA genes includingrrn4.5,rrn5,rrn16 andrrn23.InGinkgo biloba,the IRs were detected to be composed of 13 genes,including three PCGs,six tRNA genes,and four rRNA genes.In comparison with other gymnosperms,the length of IRs inG.bilobais shorter thanCycas revoluta(25,066 bp;JN867588),Nothotsuga longibracteata(25,918 bp) andEphedra sinica(20,743 bp),but longer thanCycas taitungensis(15,830 bp)and some conifers that lost IRs.Due to the lack ofycf2 gene,the IRs inG.bilobaare relatively shorter than that of the most angiosperms.Consequently,the LSC/IR junction region,which is supposed to retain the completeycf2 gene and the adjoiningpsbA orrpl23-rps3 gene cluster in order,has been changed and produces a pseudolized Ψrpl23 gene.

    The average nucleotide variability(Pi)value was estimated to be 0.75 × 10-5among parents and offsprings based on the comparative analysis with DnaSP 6(Fig.S2).The nucleotide variability(Pi)is overall low with only eight genes displaying relatively high values(Pi>0.0001),which arepsbK-I,trnG-R,infA-rps8,ycf2,trnL-ndhB,ndhAintron,ycf1,andndhB-trnL.The first four loci are present in the LSC,while two genesndhAintron andycf1 in SSC.Therefore,the highest variation was found in the LSC region withPiranging from 0.0001 to 0.0014,followed by the SSC region(Fig.S2).The IRs had much lower nucleotide diversity,each of which possesses only one gene showingPi>0.0001.Those eight highly variable loci are thus suggested as phylogenetic informative markers for population research ofGinkgo biloba.

    Based on theK2-P’sparameter model,we calculated the genetic distance among the parents and offsprings using 86 PCGs.TheK2-P’sgenetic distance is major generated by that between male parent and offsprings,with the value of(0.06-1.27)×10-4among the three genetic crosses (Table 1).TheK2-P’sgenetic distance between female parent and offsprings is extremely weak with overall values to be 0.We aligned the plastid genome sequences for allGinkgoparents and off springs to detect the SNPs and check the numbers of offsprings that are consistent with female or male parent.Notably,all offsprings show SNPs identical to their female parent (Table 1).Consequently,all offsprings possess the same haplotypes with female parent based on three genetic crosses(Table S4).

    Table 1 K2-P’s genetic distance and the number of SNPs among all parents and offsprings.

    We performed phylogenetic analyses for each cross,in order to detect the evolutionary relationship of the parent and offsprings based on MP and NJ trees (Figs.1,S3 and S4).In each cross,all F1 individuals grouped with their female parent,forming a monophyly with a high bootstrap value,while the male parent was divergent from them based on MP and NJ analysis(Fig.1).As for the control based on ITS data in G1 and G2 crosses,some individuals of the F1 individuals grouped with female parent,while others with male parents.No result was shown for G3 cross as there is no variation detected in ITS among the individuals.

    The plastid genome ofGinkgo bilobais revealed to be a circular molecule about 156,978 bp with a pair of IRs(35,466 bp)separated by large single-copy (LSC: 99,254 bp) and small single-copy (SSC:22,258 bp) regions with GC content 39.6% (Fig.S1),which is consistent with the result given by Lin et al.(2012)and Lubna et al.(2021),although the total lengths differ slightly.The plastid genome ofG.bilobais characterized by the shortened IR region due to the complete loss ofycf2,which is about 7,269 bp in length(Lin et al.,2012;Lubna et al.,2021).This gene is detected to be informative at population level with relatively high nucleotide diversity(Pi>0.0001).It is also suggested to be an information phylogenetic marker for ferns and gymnosperms,as it shows two copies in the IR regions inCycasandGenetum,but only one copy in LSC or SSC region inG.bilobaandPinus,respectively(Lin et al.,2012).Therefore,the evolution ofycf2 gene demonstrates to be potential in phylogenetic analysis and speciation of plant species.

    In the current study,altogether 134 genes were identified including 85 PCGs,41 tRNAs and four rRNAs.The total number of the genes is consistent with the previous research(Lin et al.,2012).However,when we compared with the data set in GenBank deposited by Lin et al.(2012),about ten genes were missing in the annotations of the plastid genome.After annotations for all genes,the generpl23 was also revealed to be pseudolized.This gene is detected to be pseudo due to the truncated 5’ region as in comparison withCycas(Lin et al.,2012;Lubna et al.,2021).The generpl23 is commonly found in angiosperms,but lost in some gymnosperms,therefore,the pseudorpl23 demonstrates strong evolutionary implications in plant species as well.

    As is known,the inheritance of plastid genome differs from that of the nuclear genome.Maternal inheritance,which is the most common form of seed plant organelle transmission,demonstrates the transfer of chloroplasts from the female parent to the progeny.Maternal inheritance of chloroplast occurs when the organelles are only present in the cytoplasm of the egg cells during the fertilization of eggs in seed plants (Vaughn et al.,1980).Though paternal inheritance of plastid genome is widely distributed in gymnosperms,several species have been reported to show maternalinheritance,includingGinkgo,Gnetum,andCycas(Neale et al.,1989;Mogensen,1996).However,the evidence for uniparental inheritance of gymnosperms is mostly based on cytological method previously.The current study is further confirmed plastid genome inheritance inGinkgobased on genomic data using next generation sequencing.

    Concerning the investigations of organelle inheritance of plant species,traditional methods including hybridization experiment,electron microscopy,DAPI fluorescence microscopy or genetic markers demonstrate several disadvantages.First,the cytological methods only show the process of the transfer of chloroplasts without any further investigation in the offsprings.No molecular evidence is available to prove the phylogenetic relationship among the parents and offsprings.Second,the traditional molecular markers,such as PCR-RFLP or SSRs,are less informative and effective than SNPs based on genomic data.With the development of next-generation sequencing technologies,a rapid and successful achievement has been promoted in the database of genomic data,among which is plastid genome(Wang et al.,2018).Genomic data shows a strong potentiality to be applied in the exploration of molecular mechanism of organelle inheritance (Villanueva-Corrales et al.,2021).Additionally,artificial crosses help to control the origins of male and female parents,which make possible to compare the genomic constituent among parents and offsprings.The combination of manually genetic crosses and chloroplast genomic data is an efficient way to investigate the inheritance mode of the chloroplasts in land plants.In our study,strong molecular evidence has been provided for maternal inheritance mode of its plastid genomes.Therefore,we suggested artificial crosses together with subsequent verification of SNPs among parents and progenies to be a recommendable way to directly infer organelle genome inheritance in land plants.

    Data availability

    The high-quality sequencing data of current study were deposited in the NCBI under Bioproject accession number PRJNA866875.Other supporting data were provided within the article.

    Author contributions

    W.G.was the principal investigator and wrote the manuscript.R.Z.contributed mainly to field work,including sample collections and artificial pollinations.M.F.and H.K.contributed equally to lab work,data analysis,and figures.M.F.edited the manuscript and had discussion with H.K.and M.L.

    Declaration of competing interest

    The authors declared no conflict of interest.

    Acknowledgements

    We are very grateful to Miss Juan Zhou and Dr.Wanzhen Liu for their assistance in field work.This work is supported by the National Natural Science Foundation of China (32270218 and 31970231).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.pld.2023.09.001.

    欧美激情 高清一区二区三区| 久久久久久久精品吃奶| 亚洲精品久久成人aⅴ小说| 亚洲精品国产区一区二| 天堂中文最新版在线下载| 黄色视频,在线免费观看| 亚洲精华国产精华精| 中文字幕另类日韩欧美亚洲嫩草| 一区在线观看完整版| 男女下面插进去视频免费观看| 免费女性裸体啪啪无遮挡网站| 亚洲人成77777在线视频| 一个人免费在线观看的高清视频| 国产欧美亚洲国产| 大香蕉久久网| 国产成人精品在线电影| 美女高潮喷水抽搐中文字幕| 久久狼人影院| 亚洲精品一二三| 十八禁网站免费在线| 国产91精品成人一区二区三区| 国产蜜桃级精品一区二区三区 | 午夜精品国产一区二区电影| 日韩中文字幕欧美一区二区| 国产亚洲av高清不卡| 一二三四在线观看免费中文在| 757午夜福利合集在线观看| 成年人午夜在线观看视频| 欧美日韩瑟瑟在线播放| 欧美日韩国产mv在线观看视频| 国产精品免费大片| 99久久综合精品五月天人人| 久久九九热精品免费| videosex国产| 老熟妇仑乱视频hdxx| 精品卡一卡二卡四卡免费| 国产99久久九九免费精品| 淫妇啪啪啪对白视频| 夫妻午夜视频| 熟女少妇亚洲综合色aaa.| 久久久久视频综合| 最新在线观看一区二区三区| x7x7x7水蜜桃| 很黄的视频免费| 亚洲成国产人片在线观看| 久久人人爽av亚洲精品天堂| 国产精品免费视频内射| 国产一区在线观看成人免费| 狠狠狠狠99中文字幕| 在线观看日韩欧美| 在线播放国产精品三级| 国产精品久久久久成人av| 日日夜夜操网爽| 成年版毛片免费区| 搡老岳熟女国产| 亚洲精品美女久久av网站| 免费人成视频x8x8入口观看| 国产亚洲欧美98| xxx96com| 亚洲一区中文字幕在线| a级毛片黄视频| 激情视频va一区二区三区| 午夜影院日韩av| 99re在线观看精品视频| а√天堂www在线а√下载 | 国产精品国产高清国产av | 欧美亚洲日本最大视频资源| 国产日韩欧美亚洲二区| 婷婷成人精品国产| 亚洲五月色婷婷综合| 天天影视国产精品| 露出奶头的视频| 又大又爽又粗| 狂野欧美激情性xxxx| 日日摸夜夜添夜夜添小说| 国产精品1区2区在线观看. | 两个人免费观看高清视频| 免费高清在线观看日韩| 国产欧美日韩综合在线一区二区| 人人妻人人添人人爽欧美一区卜| 日韩中文字幕欧美一区二区| 亚洲成人国产一区在线观看| 亚洲一区二区三区欧美精品| 在线观看免费日韩欧美大片| 黑人欧美特级aaaaaa片| 麻豆乱淫一区二区| 亚洲片人在线观看| 国产男女超爽视频在线观看| 国产精品成人在线| 最近最新中文字幕大全电影3 | 午夜精品久久久久久毛片777| 久久这里只有精品19| 人妻丰满熟妇av一区二区三区 | 一进一出抽搐gif免费好疼 | 国产蜜桃级精品一区二区三区 | 在线国产一区二区在线| 悠悠久久av| 老司机靠b影院| 国产91精品成人一区二区三区| 大型av网站在线播放| 国产精品免费大片| 丰满饥渴人妻一区二区三| 亚洲成av片中文字幕在线观看| 欧美日韩视频精品一区| 亚洲色图综合在线观看| tube8黄色片| а√天堂www在线а√下载 | 亚洲av日韩精品久久久久久密| 精品国产一区二区久久| 曰老女人黄片| 深夜精品福利| 免费在线观看亚洲国产| 欧美日韩av久久| 国产精品久久久人人做人人爽| 午夜亚洲福利在线播放| 性少妇av在线| 在线观看舔阴道视频| 欧美 日韩 精品 国产| 亚洲视频免费观看视频| 高清毛片免费观看视频网站 | 香蕉国产在线看| 免费久久久久久久精品成人欧美视频| 亚洲欧美精品综合一区二区三区| 热99国产精品久久久久久7| www.熟女人妻精品国产| 欧美人与性动交α欧美软件| 国产一区有黄有色的免费视频| 国产亚洲欧美在线一区二区| 久9热在线精品视频| 成人影院久久| 亚洲精品国产区一区二| 人妻一区二区av| 欧美在线一区亚洲| 成人黄色视频免费在线看| 国产高清videossex| 成年女人毛片免费观看观看9 | 午夜福利影视在线免费观看| av天堂在线播放| 韩国精品一区二区三区| av视频免费观看在线观看| 久久亚洲真实| 欧美精品av麻豆av| 水蜜桃什么品种好| 他把我摸到了高潮在线观看| 大香蕉久久网| 久久精品成人免费网站| 欧美另类亚洲清纯唯美| 黄色成人免费大全| 亚洲精品久久成人aⅴ小说| 欧美激情 高清一区二区三区| 俄罗斯特黄特色一大片| www.自偷自拍.com| 成人三级做爰电影| 国产成人一区二区三区免费视频网站| 精品熟女少妇八av免费久了| 最新在线观看一区二区三区| 成年女人毛片免费观看观看9 | 国产欧美日韩精品亚洲av| 国产有黄有色有爽视频| 日韩大码丰满熟妇| 在线av久久热| 黄色丝袜av网址大全| 午夜成年电影在线免费观看| 99久久99久久久精品蜜桃| 国产精品 欧美亚洲| 国产精品秋霞免费鲁丝片| 首页视频小说图片口味搜索| 91大片在线观看| 日日摸夜夜添夜夜添小说| 国产精品免费大片| 午夜日韩欧美国产| 欧美日韩av久久| 婷婷精品国产亚洲av在线 | 变态另类成人亚洲欧美熟女 | 十八禁网站免费在线| 亚洲欧美一区二区三区黑人| 美女扒开内裤让男人捅视频| 多毛熟女@视频| 免费在线观看日本一区| 曰老女人黄片| 天天躁夜夜躁狠狠躁躁| 精品一区二区三卡| 国产三级黄色录像| 成人手机av| 国产激情久久老熟女| 窝窝影院91人妻| 王馨瑶露胸无遮挡在线观看| 午夜激情av网站| 怎么达到女性高潮| 亚洲国产精品合色在线| 老汉色∧v一级毛片| 国产真人三级小视频在线观看| 亚洲国产精品sss在线观看 | 人人妻人人澡人人爽人人夜夜| 国产成人系列免费观看| 午夜福利乱码中文字幕| 99精品欧美一区二区三区四区| 免费黄频网站在线观看国产| 日韩欧美三级三区| 男女之事视频高清在线观看| 超色免费av| 国产极品粉嫩免费观看在线| 成熟少妇高潮喷水视频| 高清av免费在线| 久久草成人影院| 黑人欧美特级aaaaaa片| 91九色精品人成在线观看| 日韩中文字幕欧美一区二区| 婷婷成人精品国产| 国产淫语在线视频| 国产av精品麻豆| 麻豆av在线久日| 午夜精品在线福利| 大片电影免费在线观看免费| 免费一级毛片在线播放高清视频 | 国产成人系列免费观看| 中国美女看黄片| 黄片播放在线免费| 高清欧美精品videossex| 久久国产乱子伦精品免费另类| 黄频高清免费视频| 久久久久精品国产欧美久久久| 动漫黄色视频在线观看| 国产av精品麻豆| 婷婷丁香在线五月| 建设人人有责人人尽责人人享有的| 精品乱码久久久久久99久播| 99久久国产精品久久久| 色婷婷久久久亚洲欧美| 80岁老熟妇乱子伦牲交| 久久香蕉激情| 欧美日韩瑟瑟在线播放| 亚洲美女黄片视频| 啦啦啦 在线观看视频| 亚洲欧美激情综合另类| 久久久久国产精品人妻aⅴ院 | 午夜亚洲福利在线播放| 一级片'在线观看视频| 国产精品免费视频内射| videosex国产| 免费av中文字幕在线| 亚洲五月色婷婷综合| 老汉色av国产亚洲站长工具| 国产97色在线日韩免费| av免费在线观看网站| 日本精品一区二区三区蜜桃| 两人在一起打扑克的视频| 欧美乱色亚洲激情| 久久精品国产清高在天天线| 免费在线观看黄色视频的| 9191精品国产免费久久| 久久精品国产亚洲av香蕉五月 | 亚洲欧美精品综合一区二区三区| 美女高潮喷水抽搐中文字幕| 国产区一区二久久| 黄网站色视频无遮挡免费观看| av有码第一页| 首页视频小说图片口味搜索| 亚洲中文日韩欧美视频| 国产精品久久久人人做人人爽| 亚洲欧美激情综合另类| 成人三级做爰电影| 久久久久国产精品人妻aⅴ院 | 真人做人爱边吃奶动态| 国产一区二区三区综合在线观看| 中文字幕最新亚洲高清| 国产真人三级小视频在线观看| 欧美日韩一级在线毛片| 久久婷婷成人综合色麻豆| 一级片免费观看大全| 亚洲午夜理论影院| 大香蕉久久网| 国产精品电影一区二区三区 | 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区| 国产成人av教育| 一边摸一边做爽爽视频免费| 国产精品久久久久久人妻精品电影| 男男h啪啪无遮挡| 18禁国产床啪视频网站| 黑人猛操日本美女一级片| 午夜影院日韩av| 日韩有码中文字幕| 成人av一区二区三区在线看| 亚洲色图 男人天堂 中文字幕| 亚洲午夜精品一区,二区,三区| 极品教师在线免费播放| 中文字幕高清在线视频| 久久久水蜜桃国产精品网| 欧美精品av麻豆av| 午夜免费成人在线视频| 免费女性裸体啪啪无遮挡网站| 国产高清激情床上av| 中文字幕人妻丝袜一区二区| 母亲3免费完整高清在线观看| 一级片'在线观看视频| 岛国毛片在线播放| 视频区图区小说| 色婷婷久久久亚洲欧美| 1024香蕉在线观看| 无人区码免费观看不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 大香蕉久久网| 国产97色在线日韩免费| 国产精品亚洲一级av第二区| 国产三级黄色录像| 精品欧美一区二区三区在线| 亚洲欧美精品综合一区二区三区| 热99久久久久精品小说推荐| 亚洲人成电影免费在线| 国产精品久久久久久精品古装| 国产黄色免费在线视频| 九色亚洲精品在线播放| 国产精品久久久久久人妻精品电影| 香蕉久久夜色| 欧美激情高清一区二区三区| 日韩免费高清中文字幕av| 国产一区二区激情短视频| 久久人妻av系列| av视频免费观看在线观看| av网站在线播放免费| 波多野结衣av一区二区av| 精品久久久久久电影网| 人人妻,人人澡人人爽秒播| 欧美色视频一区免费| 国产亚洲一区二区精品| 黄片大片在线免费观看| 亚洲欧美激情在线| 亚洲一区二区三区欧美精品| 一边摸一边做爽爽视频免费| 亚洲五月婷婷丁香| 久热爱精品视频在线9| 国产精品久久久久久人妻精品电影| 欧美 亚洲 国产 日韩一| 久久久国产精品麻豆| 久久 成人 亚洲| www.999成人在线观看| 国产高清国产精品国产三级| 免费在线观看完整版高清| 欧美精品av麻豆av| 欧美黄色片欧美黄色片| 怎么达到女性高潮| 国产精品九九99| 午夜免费鲁丝| 岛国毛片在线播放| 色综合婷婷激情| 啦啦啦 在线观看视频| 亚洲精品久久午夜乱码| www.999成人在线观看| 黑人欧美特级aaaaaa片| 捣出白浆h1v1| 真人做人爱边吃奶动态| 黑丝袜美女国产一区| 色综合婷婷激情| 色94色欧美一区二区| 美女福利国产在线| 午夜福利在线免费观看网站| 亚洲午夜理论影院| 精品国产乱码久久久久久男人| 色播在线永久视频| 黄色视频,在线免费观看| 黑人操中国人逼视频| 久久国产精品大桥未久av| 看片在线看免费视频| 黄色视频不卡| 9191精品国产免费久久| 国产伦人伦偷精品视频| 老司机亚洲免费影院| 满18在线观看网站| a级毛片黄视频| cao死你这个sao货| 黑人巨大精品欧美一区二区mp4| 亚洲一区二区三区欧美精品| 亚洲精品在线美女| 日韩有码中文字幕| 日本五十路高清| 女人精品久久久久毛片| 欧美在线黄色| 日韩欧美在线二视频 | 50天的宝宝边吃奶边哭怎么回事| 日韩三级视频一区二区三区| 亚洲成人手机| 国产精品av久久久久免费| 国产成+人综合+亚洲专区| 国产亚洲精品久久久久5区| 国产精品乱码一区二三区的特点 | 叶爱在线成人免费视频播放| 色婷婷久久久亚洲欧美| 麻豆av在线久日| 亚洲欧美激情在线| 午夜精品久久久久久毛片777| 午夜视频精品福利| 老司机午夜十八禁免费视频| 搡老岳熟女国产| 校园春色视频在线观看| 亚洲片人在线观看| 日韩欧美在线二视频 | 午夜日韩欧美国产| 久久香蕉国产精品| 91大片在线观看| 啦啦啦免费观看视频1| 18禁黄网站禁片午夜丰满| 国产精品免费视频内射| 电影成人av| 国产视频一区二区在线看| 最新的欧美精品一区二区| 天堂俺去俺来也www色官网| 国产精华一区二区三区| 大型黄色视频在线免费观看| 亚洲精品乱久久久久久| 欧美在线黄色| 91麻豆av在线| 国产免费av片在线观看野外av| 91大片在线观看| 亚洲av成人av| 亚洲欧美一区二区三区久久| 在线看a的网站| 亚洲精品一卡2卡三卡4卡5卡| 国产成人影院久久av| 国产一区二区三区视频了| 中文欧美无线码| 亚洲五月色婷婷综合| 久久九九热精品免费| 亚洲三区欧美一区| 午夜精品久久久久久毛片777| 亚洲精品中文字幕在线视频| 色精品久久人妻99蜜桃| 免费日韩欧美在线观看| 黄色视频,在线免费观看| 在线观看免费高清a一片| a级片在线免费高清观看视频| 18禁裸乳无遮挡动漫免费视频| 999精品在线视频| 国产精品偷伦视频观看了| av免费在线观看网站| 狠狠狠狠99中文字幕| 欧美乱码精品一区二区三区| 久久香蕉国产精品| 国产免费男女视频| 久久亚洲真实| 热re99久久精品国产66热6| 波多野结衣一区麻豆| 国产精品影院久久| 777米奇影视久久| 欧美黑人精品巨大| 高潮久久久久久久久久久不卡| 岛国毛片在线播放| 免费在线观看视频国产中文字幕亚洲| 久久久久久免费高清国产稀缺| 如日韩欧美国产精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 久久久久国产一级毛片高清牌| 在线观看免费视频网站a站| xxx96com| 一个人免费在线观看的高清视频| 真人做人爱边吃奶动态| 一二三四社区在线视频社区8| 国内久久婷婷六月综合欲色啪| 午夜免费成人在线视频| 国产精品成人在线| 国产精品1区2区在线观看. | aaaaa片日本免费| 国产成人欧美| 两性夫妻黄色片| 国产精品亚洲一级av第二区| 啪啪无遮挡十八禁网站| 老司机深夜福利视频在线观看| 国产国语露脸激情在线看| 欧美日韩黄片免| 超色免费av| 亚洲五月色婷婷综合| 一级片免费观看大全| 欧美不卡视频在线免费观看 | 美女午夜性视频免费| 18禁裸乳无遮挡动漫免费视频| 极品少妇高潮喷水抽搐| 老司机午夜十八禁免费视频| 老熟女久久久| 两人在一起打扑克的视频| 亚洲精品久久成人aⅴ小说| 我的亚洲天堂| 成在线人永久免费视频| 精品福利观看| 欧美色视频一区免费| 村上凉子中文字幕在线| 色尼玛亚洲综合影院| 久久久水蜜桃国产精品网| 国产成+人综合+亚洲专区| 亚洲精品自拍成人| 日韩免费av在线播放| 大码成人一级视频| 丰满的人妻完整版| 丝袜美足系列| а√天堂www在线а√下载 | 99久久精品国产亚洲精品| 美女午夜性视频免费| 精品一区二区三区av网在线观看| 欧美日韩亚洲综合一区二区三区_| 国产精品1区2区在线观看. | 欧美日韩黄片免| 国产亚洲欧美98| 精品国产美女av久久久久小说| 久久热在线av| 成在线人永久免费视频| 精品少妇一区二区三区视频日本电影| 国产成人一区二区三区免费视频网站| 18禁观看日本| 久久久久视频综合| 人人妻人人爽人人添夜夜欢视频| 成人永久免费在线观看视频| 人成视频在线观看免费观看| 999精品在线视频| 亚洲精品乱久久久久久| 他把我摸到了高潮在线观看| 黄色毛片三级朝国网站| 久久99一区二区三区| 色婷婷久久久亚洲欧美| 在线观看午夜福利视频| 在线观看www视频免费| 亚洲欧美激情综合另类| 午夜免费观看网址| 中文字幕高清在线视频| 亚洲五月天丁香| 国产高清视频在线播放一区| 一级片'在线观看视频| 天堂√8在线中文| 久久精品亚洲精品国产色婷小说| 18在线观看网站| 日韩制服丝袜自拍偷拍| 高清在线国产一区| 天天添夜夜摸| 麻豆成人av在线观看| 亚洲人成伊人成综合网2020| 久久久精品免费免费高清| 精品高清国产在线一区| 1024视频免费在线观看| 丝瓜视频免费看黄片| www.熟女人妻精品国产| 天天添夜夜摸| 黄网站色视频无遮挡免费观看| 国产麻豆69| 亚洲视频免费观看视频| 国产亚洲精品一区二区www | 成人国产一区最新在线观看| 亚洲人成电影免费在线| 黑人巨大精品欧美一区二区蜜桃| 国产激情久久老熟女| 亚洲av日韩精品久久久久久密| 一本大道久久a久久精品| 亚洲精品中文字幕一二三四区| 国产精品99久久99久久久不卡| 欧美日韩一级在线毛片| 久久久精品免费免费高清| 亚洲成人手机| 高清毛片免费观看视频网站 | 91麻豆精品激情在线观看国产 | 亚洲美女黄片视频| 我的亚洲天堂| 天天操日日干夜夜撸| 免费在线观看影片大全网站| 美女扒开内裤让男人捅视频| 90打野战视频偷拍视频| 国产亚洲精品久久久久久毛片 | 一级a爱片免费观看的视频| 一级毛片女人18水好多| а√天堂www在线а√下载 | 人妻久久中文字幕网| 19禁男女啪啪无遮挡网站| 水蜜桃什么品种好| 99热网站在线观看| 天堂动漫精品| 成年版毛片免费区| aaaaa片日本免费| 人妻一区二区av| 欧美日韩瑟瑟在线播放| 18禁黄网站禁片午夜丰满| 他把我摸到了高潮在线观看| 亚洲一区二区三区不卡视频| 91国产中文字幕| 在线视频色国产色| 精品国产乱子伦一区二区三区| 99国产精品一区二区蜜桃av | 夫妻午夜视频| 久久中文字幕人妻熟女| 婷婷成人精品国产| 夫妻午夜视频| 国产有黄有色有爽视频| 亚洲国产欧美日韩在线播放| 夫妻午夜视频| 精品国产乱码久久久久久男人| 美女视频免费永久观看网站| 欧美中文综合在线视频| 国产精品一区二区在线观看99| 丰满饥渴人妻一区二区三| 人妻久久中文字幕网| 人人妻人人澡人人爽人人夜夜| 精品国产超薄肉色丝袜足j| 亚洲avbb在线观看| 亚洲性夜色夜夜综合| 在线观看www视频免费| 美女扒开内裤让男人捅视频| 国产精品自产拍在线观看55亚洲 | 色婷婷av一区二区三区视频| 99re6热这里在线精品视频| 午夜激情av网站| 最新在线观看一区二区三区| 久久久水蜜桃国产精品网| 在线观看66精品国产| 可以免费在线观看a视频的电影网站| 亚洲精品国产精品久久久不卡| 在线观看免费视频日本深夜| 91麻豆av在线| 国产男女超爽视频在线观看| 美女视频免费永久观看网站| 在线播放国产精品三级|