• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    圈長為偶的單圈圖(加權(quán))Mostar指標(biāo)的下界

    2024-01-01 00:00:00甄倩倩劉蒙蒙

    摘要: 通過圖變換, 給出當(dāng)單圈圖的圈長為偶數(shù)時其Mostar指標(biāo)和加權(quán)Mostar指標(biāo)的下界, 并刻畫達(dá)到下界的極值圖.

    關(guān)鍵詞: Mostar指標(biāo); 加權(quán)Mostar指標(biāo); 單圈圖; 極值圖

    中圖分類號: O157.5" 文獻(xiàn)標(biāo)志碼: A" 文章編號: 1671-5489(2024)04-0765-09

    Lower Bounds for" (Weighted) Mostar Index of Unicyclic Graphs with" Even Cycle Lengths

    ZHEN Qianqian, LIU Mengmeng

    (School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract: By using graph transformation, we give the lower bounds for the Mostar index and the weighted Mostar index of unicyclic graphs" when the cycle length

    of unicyclic graphs is even, and characterize the extremal graphs that achieve the lower bounds.

    Keywords:" Mostar index; weighted Mostar index; unicyclic graph; extremal graph

    圖的拓?fù)渲笜?biāo)常用于描述有機化合物的藥理特征、 物理特征和化學(xué)特征, 研究最廣泛的拓?fù)渲笜?biāo)是Wiener指標(biāo)[1]. 此后," Gutman[2]在Wien

    er指標(biāo)的基礎(chǔ)上進(jìn)行推廣, 得到了Szeged指標(biāo); Ilic'等[3]提出了加權(quán)Szeged指標(biāo); Dolic'

    等[4]引入了Mostar指標(biāo), 它量化了特定邊及整個圖周邊性的程度. 目前, 對Mostar指標(biāo)的研究, 特別是關(guān)于一些簡單連通圖界值問題的研究已得到很多結(jié)果[4-11]. 例

    如: 文獻(xiàn)[4]給出了單圈圖Mostar指標(biāo)的上界和下界; 文獻(xiàn)[5]計算了固定直徑時單圈圖Mostar指標(biāo)的上界;" 文獻(xiàn)[12]提出了邊Mostar指標(biāo); 文獻(xiàn)[13]定義

    了加權(quán)Mostar指標(biāo), 并計算了石墨烯、 α型石墨炔和石墨炔的加權(quán)Mostar指標(biāo); 文獻(xiàn)[14]計算了單圈圖加權(quán)Mostar指標(biāo)的上界和下界; Kandan等[15]計算了錐齒輪圖和廣義齒輪圖的加權(quán)Mosta

    r指標(biāo); Imran等[16]研究了酞菁、 三嗪和納米分子圖的加權(quán)Mostar指標(biāo). 此外, 文獻(xiàn)[17]總結(jié)了Mostar指標(biāo)近年的研究成果.

    本文在單圈圖的圈長為偶數(shù)時, 討論其Mostar指標(biāo)和加權(quán)Mostar指標(biāo)的下界.

    1 預(yù)備知識

    本文所有圖均為無向有限的簡單連通圖. 給定一個圖G, 用V(G)表示其頂點集, E(G)表示其邊集, 令n=V(G)是圖G的頂點數(shù), 又稱階數(shù). Tn和Pn分別指階數(shù)為n的樹和路[18].

    設(shè)e=uv是G中的一條邊, 定義集合:

    Nu(e)={x∈V(G): d(x,u)lt;d(x,v)},Nv(e)={x∈V(G): d(x,u)gt;d(x,v)}.

    令nu=Nu(e), nv=Nv(e). Mostar指標(biāo)定義為

    M(G)=∑e=uv∈E(G)nu-nv.

    加權(quán)Mostar指標(biāo)定義為

    w+M(G)=∑e=uv∈E(G)(du+dv)nu-nv.

    令Cn(T1,T2,…,Tk)是含有圈Ck=v1v2…vkv1的單圈圖, 其中T1,T2,…,Tk是懸掛在圈Ck各頂點上的樹, 樹Ti(i=1,2,…,k)稱為圈Ck上的懸掛分支. 給定正整數(shù)a和b, P(s,m,a,b)

    是指在單圈圖的頂點vs和vm處懸掛路Pa和路Pb, 其中a和b均為路長.

    引理1[4] 設(shè)Tn是一個n階樹, 則M(Pn)≤M(Tn), 等號成立當(dāng)且僅當(dāng)PnTn.

    引理2[14] 設(shè)Tn是一個n階樹, 則w+M(Pn)≤w+M(Tn), 等號成立當(dāng)且僅當(dāng)PnTn.

    2 偶長單圈圖Mostar指標(biāo)的下界

    設(shè)G是n個頂點的單圈圖, k為單圈圖的圈長, 當(dāng)n=k時, M(G)=0; 當(dāng)n=k+1時, M(G)=2k-1. 下面考慮當(dāng)n≥k+2時單圈圖Mostar指標(biāo)的下界, 從n的奇偶性兩種情形討論.

    引理3 設(shè)G=Cn(P1,P2,…,Pk), 則圈Ck上的懸掛路分支越少, ∪ki=1Pi上的邊對Mostar指標(biāo)的貢獻(xiàn)越小.

    證明: 設(shè)Pm和Pl是圈Ck上任意兩點v和v′上的兩條懸掛路分支, 設(shè)Pm=u1u2…um, Pl=v1v2…vl, 其中1≤

    m≤l. 令G′=G-um-1um+vlum, 如圖1所示, 當(dāng)m=1時, um-1=v.

    下證G中懸掛路分支Pm和Pl上的邊對Mostar指標(biāo)的貢獻(xiàn)和大于G′中懸掛路分支Pm-1和Pl+1上的邊對Mostar指標(biāo)的貢獻(xiàn)和. G中懸掛路分支P

    m和Pl上的邊對Mostar指標(biāo)的貢獻(xiàn)為

    n-2+n-4+…+n-2(m-1)+n-2m+n-2+n-4+…+n-2l;

    G′中懸掛路分支Pm-1和Pl+1上的邊對Mostar指標(biāo)的貢獻(xiàn)為

    n-2+n-4+…+n-2(m-1)+n-2+n-4+…+n-2l+n-2(l+1).

    二者做差得n-2m-n-2(l+1). 因為n≥l+m+k≥l+m+4, 所以ngt;2m, ngt;l+m+2, 從而

    當(dāng)n≥2l+2時, n-2m-n-2(l+1)=2l-2m+2gt;0; 當(dāng)nlt;2l+2時, n-2m-n-2(l+1)=2n-2m-2l-2gt;0.

    顯然, 除懸掛路分支Pm和Pl, 其余懸掛路上的邊對Mostar指標(biāo)的貢獻(xiàn)不變, 根據(jù)上述變換的結(jié)果知, 懸掛路分支越少, ∪ki=1Pi上的邊對Mostar指標(biāo)的貢獻(xiàn)越小.

    引理4 設(shè)G0Pi,i+k2,n-k2,n-k2, 則

    M(G0)=n2-k2-2n+2k2,n為偶數(shù),n2-k2-2n+4k-12,n為奇數(shù).(1)

    證明: 當(dāng)n為偶數(shù)時, 有

    M(G0)=2×(n-2+n-4+…+k)=2×n-2+k2×n-k2=n2-k2-2n+2k2.

    當(dāng)n為奇數(shù)時, 有

    M(G0)= "1×k+n-2+n-4+…+k-1+n-2+…+k+1= "k+n-2+k-12×n-k+12+n-2+k+12×n-k-12= "n2-k2-2n+4k-12.

    定理1 設(shè)GCn(T1,T2,…,Tk), G0Pi,i+k2,n-k2,n-k2, 則

    M(G)≥M(G0),(2)

    等號成立當(dāng)且僅當(dāng)GG0, 如圖2所示.

    證明: 根據(jù)引理1知, M(Cn(T1,T2,…,Tk))≥M(Cn(P1, P2,…,Pk)). 下面分析懸掛路分支的條數(shù).

    當(dāng)懸掛路分支不少于3條時, 根據(jù)引理4的證明知, 圖G0圈上的邊對Mostar指標(biāo)的貢獻(xiàn)為0(n為偶數(shù))或1(n為奇數(shù)), 而圖Cn(P1,P2,…,Pk

    )圈上的邊對Mostar指標(biāo)的貢獻(xiàn)不可能比0(n為偶數(shù))或1(n為奇數(shù))更小. 再根據(jù)引理3知, 懸掛路分支減少, 其上的邊對Mostar指標(biāo)的貢獻(xiàn)和減小, 則圖G0的Mostar指標(biāo)小.

    當(dāng)懸掛路分支為2條時, 若2條路不在圈Ck的2個對稱點分布, 則圈上至少存在一條邊e=vivj, 使得邊e對Mostar指標(biāo)的貢獻(xiàn)nvi-nvj≥n-k≥2. 下面考慮懸掛路分布在圈Ck的2個對稱點上的情形.

    設(shè)圖G′Pi,i+k2,n-k2-x,

    n-k2+x, 其中0lt;x≤n-k2. 當(dāng)x=n-k2時, 圈Ck上懸掛一條路. 下面證明M(G0)lt;M(G′).

    當(dāng)n為偶數(shù)時, 考慮下列兩種情形.

    情形1) n≤2k. 計算可得

    M(G′)= "2xk+n-2+n-4+…+k-2x+n-2+n-4+…+k+2x= "2xk+n-2+k-2x2×n-k+2x2+n-2+k+2

    x2×n-k-2x2= "n2-2n-k2+2k-4x2+4xk2.

    因為x≤n-k2, n≤2k, 所以x≤k2, 從而

    M(G′)-M(G0)=n2-2n-k2+2k-4x2+4xk2-n2-k2-2n+2k2=2x(k-x)gt;0.

    情形2) ngt;2k.

    ① 當(dāng)0lt;x≤k2時, 計算和情形1)同理.

    ② 當(dāng)k2lt;x≤n-k2時, 有

    M(G′)= "2kx+2+4+…+n-2+2+4+…+2x-k+n-2+n-4+…+k+2x= "n2-2n+4x2.

    因此

    M(G′)-M(G0)=4x+k2-2k2gt;0.

    當(dāng)n為奇數(shù)時, 分如下兩種情形討論.

    情形1) nlt;2k. 計算可得

    M(G′)= "(2x+1)k+n-2+n-4+…+k-1-2x+n-2+n-4+…+k+1+2x= "2kx+k+n-2+k-1-2x2×n-k+1+2x2

    +n-2+k+1+2x2×n-k-1-2x2= "n2-2n-k2+4k-4x2+4kx-4x-12.

    因為x≤n-k-12, n≤2k-1, 所以x≤k-22, 從而

    M(G′)-M(G0)= "n2-2n-k2+4k-4x2+4kx-4x-12-n2-k2-2n+4k-12= "2kx-2x-2x2=2x(k-x-1)gt;0.

    情形2) ngt;2k.

    ① 當(dāng)0lt;xlt;k2時, 計算和情形1)同理.

    ②" 當(dāng)k2≤x≤n-k-12時, 有

    M(G′)= "(2x+1)k+n-2+n-4+…+1+1+3+…+1+2x-k+ "n-2+n-4+…+k+1+2x=n2+4x-2n+32.

    因此M(G′)-M(G0)=4x-4k+k2+42gt;0.

    3 偶長單圈圖加權(quán)Mostar指標(biāo)的下界

    設(shè)G是n個頂點的單圈圖, k為單圈圖的圈長, 當(dāng)n=k時, w+M(G)=0; 當(dāng)n=k+1時, w+M(G)=8k-2. 下面考慮當(dāng)n≥k+2時單圈圖加權(quán)Mostar指標(biāo)的下界, 從n的奇偶性兩種情形討論.

    引理5 設(shè)G=Cn(P1,P2,…,Pk), 則圈Ck上的懸掛路分支越少, ∪ki=1Pi上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)越小.

    證明: 設(shè)Pm和Pl是圈Ck上任意兩點v和v′上的2條懸掛路分支, 設(shè)Pm=u1u2…um, Pl=v1v2…vl, 其中1≤m≤l. 令G′=G-um-1um+vlum, 當(dāng)m=1時, um-1=v.

    下證G中懸掛路Pm和Pl上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)和大于G′中懸掛路Pm-1和Pl+1上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)和.

    情形1) m=1, l=1. 此時, G中Pm和Pl上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)和為4n-2+4n-2=8n-16; G′中Pm-1和Pl+1上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)和為3n-2+5n-4=8n-26.

    情形2) m=1, lgt;1. 此時, G中Pm和Pl上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)和為

    4n-2+3n-2+4n-4+…+4n-2(l-1)+5n-2l;

    G′中Pm-1和Pl+1上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)和為

    3n-2+4n-4+…+4n-2l+5n-2(l+1).

    二者做差得4n-2+n-2l-5n-2l-2.

    當(dāng)n≥2l+2時, 4n-2+n-2l-5n-2l-2=8l+2gt;0; 當(dāng)n≤2l時, 因為n≥l+m+k≥l+5, 所以4n-2+n-2l-5n-2l-2=8n-8l-18gt;0; 當(dāng)n=2l+1時, 4n-2+n-2l-5n-2l-2=8l-8gt;0.

    情形3) m≥2. 此時, G中Pm和Pl上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)和為

    3n-2+ "4n-4+…+4n-2(m-1)+5n-2m+3n-2+ "4n-4+…+4n-2(l-1)+5n-2l;

    G′中Pm-1和Pl+1上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)和為

    3n-2+ "4n-4+…+4n-2(m-2)+5n-2(m-1)+3n-2+ "4n-4+…+4n-2l+5n-2(l+1).

    二者做差得-n-2m+2+5n-2m+n-2l-5n-2l-2.

    當(dāng)n≥2l+2時, -n-2m+2+5n-2m+n-2l-5n-2l-2=8l-8m+8gt;0;" 當(dāng)n≤2l時, 因為n≥l+m+k≥l+m+4, 所以n-l-m≥4, 從而

    -n-2m+2+5n-2m+n-2l-5n-2l-2=8n-8m-8l-12gt;0;

    當(dāng)n=2l+1時, 因為n≥l+m+k≥l+m+4, 所以lgt;m+3, 從而

    -n-2m+2+5n-2m+n-2l-5n-2l-2=8l-8m-2gt;0.

    顯然, 除懸掛路分支Pm和Pl, 其余懸掛路上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)不變, 根據(jù)上述變換的結(jié)果可知, 懸掛路分支越少, ∪ki=1Pi上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)越小.

    引理6 設(shè)G0Pi,i+k2,n-k

    2,n-k2, 則

    w+M(G0)=2n2-2k2-6n+6k+4,n為偶數(shù),2n2-2k2-6n+10k+6,n為奇數(shù).(3)

    證明: 1) n是偶數(shù).

    ① 當(dāng)n=k+2時, w+M(G0)=4×(k+2-2)×2=8k.

    ② 當(dāng)ngt;k+2時, 有

    w+M(G0)= "2×[3(n-2)+4(n-4)+…+4(k-2)+5k]= "2×4×n-2+k2×n-k2-(n-2)+k

    =2n2-2k2-6n+6k+4.(4)

    將n=k+2代入式(4)可得w+M(G0)=8k.

    2) n是奇數(shù).

    ① 當(dāng)n=k+3時,有w+M(G0)=4(k-4)+20+7(k+3-2)+5(k+3-4)=16k+6.

    ② 當(dāng)ngt;k+3時, 有

    w+M(G0)= "20+4×(k-4)+3(n-2)+4(n-4)+…+4(k-3)+5(k-1)+ "[3(n-2)+4(n-4)+…+4(k-1)+5(k+1)]= "4k+4+4×n+k-32×n-k+12-(n-2)+k-1+ "4×n+k-12×n-k-12-(n-2)+k+1= "2n2-2k2-6n+10k+6.(5)

    將n=k+3代入式(5)可得w+M(G0)=16k+6.

    定理2 設(shè)G=Cn(T1,T2,…,Tk), G0Pi,i+k2,n-k2,n-k2, 則

    w+M(G)≥w+M(G0),(6)

    等號成立當(dāng)且僅當(dāng)GG0.

    證明: 根據(jù)引理2知, w+M(Cn(T1, T2,…,Tk))≥w+M(Cn(P1,P2,…,Pk)), 下面分析懸掛路分支的條數(shù).

    當(dāng)懸掛路分支不少于3條時, 根據(jù)引理6的證明知, n為偶數(shù)時, 圖G0圈上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)為0, 而圖Cn(P1,P2,…,Pk)圈上的邊

    對加權(quán)Mostar指標(biāo)的貢獻(xiàn)不可能小于0. 同理, 當(dāng)n為奇數(shù)時, 圖G0圈上不與路相關(guān)聯(lián)的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)為4, 與路關(guān)聯(lián)的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)為5

    , 而圖Cn(P1,P2,…,Pk)圈上不與路相關(guān)聯(lián)的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)不可能小于4, 與路關(guān)聯(lián)的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)不可能小于5. 再根據(jù)引理5知,

    懸掛路分支減少, 其上的邊對加權(quán)Mostar指標(biāo)的貢獻(xiàn)和減小, 則圖G0的加權(quán)Mostar指標(biāo)小.

    當(dāng)懸掛路分支為2條時, 若2條路不在圈Ck的2個對稱點分布, 則圈上至少存在一條邊e=vivj, 使得邊e對加權(quán)Mostar指標(biāo)的貢獻(xiàn)nvi-nvj≥4(n-k)≥8. 下面考慮懸掛路分布在圈Ck的2個對稱點上的情況.

    設(shè)圖G′Pi,i+k2,n-k2-x,

    n-k2+x, 其中0lt;x≤n-k2. 當(dāng)

    x=n-k2時, 圈Ck上懸掛1條路. 下面證明w+M(G0)lt;w+M(G′).

    當(dāng)n是偶數(shù)時, 分3種情形討論.

    情形1) k+2≤n≤2k.

    ① 當(dāng)0lt;x≤n-k-42時, 有

    w+M(G′)= "40x+8x(k-4)+3(n-2)+4(n-4)+…+5(k-2x)+ "3(n-2)+4(n-4)+…+5(k+2x)= "8kx+8x+4×n-2+k-2x2×n-k+2x2

    + "4×n-2+k+2x2×n-k-2x2-2n+2k+4= "2n2-6n-2k2+6k+4-8x2+8kx+8x.

    因為x≤n-k-42, n≤2k, 所以x≤k-42, 從而

    w+M(G′)-w+M(G0)= "2n2-6n-2k2+6k+4-8x2+8kx+8x- "(2n2-2k2-6n+6k+4)=8x(k+1-x)gt;0.

    ② 當(dāng)x=n-k-22時, 有

    w+M(G′)= "(n-k-2)(4k+4)+4(n-2)+3(n-2)+4(n-4)+…+ 5(2k+2-n)= 8nk-8k2+6n-14k-12,

    從而w+M(G′)-w+M(G0)= "8nk-6k2+12n-20k-2n2-16= "(3k-n)(2n-2k-4)+8n-8k-16gt;0.

    ③ 當(dāng)x=n-k2時, 有

    w+M(G′)= "2×5×(n-k)+(k-2)×4×(n-k)+3(n-2)+4(n-4)+…+ 5(2k-n)= 8nk-8k2-4n+4k+2,

    從而w+M(G′)-w+M(G0)=8nk-6k2+2n-2k-2-2n2=(3k-n)(2n-2k)+2n-2k-2gt;0.

    情形2) n≥2k+4.

    ① 當(dāng)0lt;x≤k2時, 計算和情形1)中①同理.

    ② 當(dāng)k2lt;x≤n-k-42時, 有

    w+M(G′)= "8kx+8x+3(n-2)+4(n-4)+…+4×2+0+4×2+4×4+…+ "5(2x-k)+3(n-2)+4(n-4)+…+5(k+2x)= "2n2-6n+20x+4,

    從而w+M(G′)-w+M(G0)=20x+2k2-6kgt;0.

    ③ 當(dāng)x=n-k-22時, 有

    w+M(G′)= "(n-k-2)(4k+4)+4(n-2)+3(n-2)+4(n-4)+…+2×4+0+ "2×4+4×4+…+5(n-2k-2)=2n2+4n-10k-16,

    從而w+M(G′)-w+M(G0)=2k2+10n-16k-20gt;0.

    ④ 當(dāng)x=n-k2時, 有

    w+M(G′)= "10(n-k)+4(n-k)(k-2)+3(n-2)+4(n-4)+…+4×2+0+ "4×2+4×4+…+5(n-2k)=2n2-8k+2n+2,

    從而w+M(G′)-w+M(G0)=2k2-14k+8n-2gt;0.

    情形3) n=2k+2.

    ① 當(dāng)0lt;x≤n-k-42時, 計算和情形1)中①同理.

    ② 當(dāng)x=n-k-22=k2時, 計算和情形1)中②同理.

    ③ 當(dāng)x=k+22時, 計算和情形2)中④同理.

    當(dāng)n是奇數(shù)時, 考慮如下情形.

    情形1) k+3≤nlt;2k.

    ① 當(dāng)0lt;x≤n-k-52時, 有

    w+M(G′)= "(4k+4)(2x+1)+3(n-2)+4(n-4)+…+5(k-1-2x)+ "3(n-2)+4(n-4)+…+5(k+1+2x)= "(4k+4)(2x+1)+(n-2x+k-3)(n+2x-k+1)+k-1-2x-(n-2)

    + "(n+2x+k-1)(n-2x-k-1)-(n-2)+k+1+2x= "2n2-2k2-6n+10k+8kx-8x2+6.

    因為x≤n-k-52, n≤2k-1, 所以x≤k-62, 從而

    w+M(G′)-w+M(G0)=8x(k-x)gt;0.

    ② 當(dāng)x=n-k-32時, 有

    w+M(G′)= "(4k+4)(n-k-2)+4(n-2)+3(n-2)+4(n-4)+…+5(2k-n+2)= "8nk+6n-8k2-14k-12,

    從而w+M(G′)-w+M(G0)= "8nk+12n-6k2-2n2-24k-18= "(3k-n)(2n-2k-6)+6(n-k-3)gt;0.

    ③ 當(dāng)x=n-k-12時, 有

    w+M(G′)= "10(n-k)+4×(n-k)(k-2)+3(n-2)+4(n-4)+…+5(2k-n)= "8nk-8k2-4n+4k+2,

    從而w+M(G′)-w+M(G0)= "8nk-6k2-2n2+2n-6k-4= "(2k-n)(2n-2k)+(2k+2)(n-k-2)gt;0.

    情形2) n≥2k+3.

    ① 當(dāng)0lt;x≤k-22時, 計算和情形1)中①同理.

    ② 當(dāng)k-22lt;x≤n-k-52時, 有

    w+M(G′)= "(4k+4)(2x+1)+3(n-2)+4(n-4)+…+4×1+4×1+4×3+…+ "5(1+2x-k)+3(n-2)+4(n-4)+…+5(k+1+2x)= "2n2-6n+20x+16,

    從而w+M(G′)-w+M(G0)=2k2-10k+20x+10gt;0.

    ③ 當(dāng)x=n-k-32時, 有

    w+M(G′)= "(4k+4)(n-k-2)+3(n-2)+4(n-4)+…+4×1+ "4×1+…+5(n-2k-2)+4(n-2)=2n2+4n-10k-14,

    從而w+M(G′)-w+M(G0)=2k2-20k+10n-20gt;0.

    ④ 當(dāng)x=n-k-12時, 有

    w+M(G′)= "2×5×(n-k)+4×(n-k)×(k-2)+4×1+4×3+…+ "3×(n-2)+4×1+4×3+…+5×(n-2k)= "2n2-8k+2n+4,

    從而w+M(G′)-w+M(G0)=2k2+8n-18k-2gt;0.

    情形3) n=2k+1.

    ① 當(dāng)0lt;x≤n-k-52時, 計算和情形1)中①同理.

    ② 當(dāng)x=n-k-32=k-22時, 計算和情形1)中②同理.

    ③ 當(dāng)x=n-k-12時, 計算和情形2)中④同理.

    綜上, 本文得到了當(dāng)單圈圖的圈長為偶數(shù)時, 其Mostar指標(biāo)和加權(quán)Mostar指標(biāo)的下界, 并給出了相應(yīng)的極值圖.

    參考文獻(xiàn)

    [1] WIENER H. Structural Determination of Paraffin Boiling Points [J]. J Am Chem Soc, 1947, 69(1): 17-20.

    [2] GUTMAN I. A Formula for the Wiener Number of Trees and Its Extension to Graphs Containing Cycles [J]. Graph Theory Notes NY, 1994, 27(9): 9-15.

    [3] ILIC' A, MILOSAVLJEVIC' N. The Weighte

    d Vertex PI Index [J]. Math Comput Modelling, 2013, 57(3/4): 623-631.

    [4] DOLIC' T, MARTINJAK I, KREKOVSKI R, et al. Mostar Index [J]. J Math Chem, 2018, 56(10): 2995-3013.

    [5] LIU G, DENG K. The Maximum Mostar Indices of Unicyclic Graphs with Given Diameter [J]. Appl Math Comput, 2023, 439: 127636-1-127636-9.

    [6] HAYAT F, ZHOU B. On Cacti with Large Mostar Index [J]. Filomat, 2019, 33(15): 4865-4873.

    [7] DEHGARDI N, AZARI M. More on Mostar Index [J]. Appl Math E-Notes, 2020, 20: 316-322.

    [8] GAO F, XU K, DOLIC'" T. On the Difference of Mostar

    Index and Irregularity of Graphs [J]. Bull Malays Math Sci Soc, 2021, 44(2): 905-926.

    [9] GHORBANI M, RAHMANI S, ESLAMPOOR M. Some New Results on Mostar Index of Graphs [J]. Iranian J Math Chem, 2020, 11(1): 33-42.

    [10] DENG K, LI S. Chemical Trees with Extremal Mostar Index [J]. Match Commun Math Comput Chem, 2021, 85: 161-180.

    [11] DENG K, LI S. On the Extremal Values for the Mostar

    Index of Trees with Given Degree Sequence [J] Appl Math Comput, 2021, 390: 125598-1-125598-11.

    [12] AROCKIARAJ M, CLEMENT J, TRATNIK N. Mostar Indices

    of Carbon Nanostructures and Circumscribed Donut Benzenoid Systems [J]. Int J Quantum Chem, 2019, 119(24): e26043-1-e26043-11.

    [13] AROCKIARAJ M, CLEMENT J, TRATNIK N. Weighted Mostar Indices as Measu

    res of Molecular Peripheral Shapes with Applications to Graphene, Graphyne and Graphdiyne Nanoribbons [J]. SAR QSAR Environ Res, 2020, 31(3): 187-208.

    [14] 甄倩倩. 樹和單圈圖的帶和權(quán)Mostar指標(biāo) [J]. 蘭州交通大學(xué)學(xué)報, 2023, 42(3

    ): 139-143. (ZHEN Q Q. Sum-Weighted Mostar Index of Trees and Unicyclic Graphs [J]. Journal of Lanzhou Jiaotong University, 2023, 42(3): 139-143.)

    [15] KANDAN P, SUBRAMANIAN S, RAJESH P. Weighted Mostar Indices of Certain Graphs [J]. Adv Math Sci J, 2021, 10(9): 3093-3111.

    [16] IMRAN M, AKHTER S, YASMEEN F, et al. The Weighted M

    ostar Invariants of Phthalocyanines, Triazine-Based and Nanostar Dendrimers [J]. Polycycl Aromat Comp, 2023, 43(1): 772-789.

    [17] ALI A, DOLIC'" T. Mostar Index: Results and Perspectives [J]. Appl Math Comput, 2021, 404: 126245-1-126245-19.

    [18] BONDY J, MURTY U S R. Graph Theory [M]. New York: Springer, 2008: 99-114.

    (責(zé)任編輯: 李 琦)

    凤翔县| 夏邑县| 乐陵市| 江山市| 开封市| 民权县| 咸宁市| 綦江县| 吉木乃县| 吉林省| 清水县| 曲麻莱县| 苗栗市| 咸宁市| 清镇市| 临夏县| 昌乐县| 万载县| 清涧县| 手游| 六枝特区| 哈巴河县| 桐梓县| 宝鸡市| 德化县| 新巴尔虎右旗| 益阳市| 建湖县| 库车县| 湟中县| 琼海市| 长春市| 安福县| 霍邱县| 万山特区| 固安县| 宜良县| 龙山县| 班玛县| 白沙| 林甸县|