摘要 對塔里木盆地西北緣下寒武統(tǒng)玉爾吐斯組硅質(zhì)巖開展巖石學以及元素與硅同位素地球化學研究,探討硅質(zhì)巖的成因及沉積模式。巖石學觀察表明,玉爾吐斯組中段硅質(zhì)巖主要由隱晶硅質(zhì)和微晶石英組成,未見碎屑石英,排除了陸源輸入對硅質(zhì)巖沉積的影響。玉爾吐斯組下段硅質(zhì)巖相對富Fe且具有顯著的Eu正異常,反映了硅質(zhì)巖可能主要來源于海底熱液;而中段硅質(zhì)巖顯示Y/Ho比值較高、中等Ce負異常、LREE虧損和Y正異常,說明硅質(zhì)來源主要為海水,這也符合中段硅質(zhì)巖具有總體偏向熱水來源的δ30Si值。此外,氧化還原敏感元素指標表明,玉爾吐斯組硅質(zhì)巖的沉積環(huán)境為表層海水氧化,而底層海水缺氧甚至硫化。研究認為,玉爾吐斯組硅質(zhì)巖的沉積模式為:下段硅質(zhì)巖由大量富硅熱液在上升流作用下直接沉積,之后熱液活動減弱,氧化還原分層海洋促進海水中溶解的硅和鐵循環(huán)耦合,硅質(zhì)以Fe3+-Si膠體形式共沉積,當硫化水域盛行時鐵和硅循環(huán)解耦,沉積黑色頁巖,形成中段硅質(zhì)巖和黑色頁巖互層。
關鍵詞 塔里木盆地;早寒武世;玉爾吐斯組;硅質(zhì)巖;沉積環(huán)境
中圖分類號:P593 DOI:10.16152/j.cnki.xdxbzr.2024-04-013
Genesis of Early Cambrian cherts of the YurtusFormation in northwestern Tarim Basin
CAO Xuyang1, HAN Yigui1, JU Pengcheng1, LU Lihui1, SHAO Dong1, SHI Zhen2
Abstract This study employed petrological, elemental and silicon isotopic geochemical studies of the cherts from the lowest Cambrian Yurtus Formation in the northwestern margin of the Tarim Basin.The genesis and sedimentary model of the cherts were discussed. Petrological observations indicate that the cherts in the middle Yurtus Formation are mostly composed of cryptocrystalline and microcrystalline quartz without clastic quartz, which excludes the influence of terrigenous input on the chert deposition.The cherts in the lower Yurtus Formation are relatively Fe-rich and have a significantly positive Eu anomaly, which suggests that the cherts were likely originated from submarine hydrothermal fluids.In contrast, the middle Yurtus Formation cherts show high Y/Ho ratio, moderate negative Ce anomaly, LREE depletion, and positive Y anomaly, indicating that the cherts were mainly sourced from seawater.This is also consistent with their δ30Si values that bias to hot water sources. In addition, the redox-sensitive element proxies indicate that the sedimentary environment of the cherts of the Yurtus Formation was probably oxidized for the surface seawater, while is anoxic or even euxinic for the bottom seawater. This study proposes that a sedimentary model for the cherts of the Yurtus Formation as follows: the cherts in the lower section were directly sourced from large amounts of silica-rich hydrothermal fluids under the influence of upwelling. Subsequently, the hydrothermal activities weakened and the redox-stratified ocean facilitated the coupled cycling of dissolved silicon and iron in seawater, and the silicon was co-deposited in the form of Fe3+-Si colloidal. During the dominance of the euxinic zone, the iron and silicon cycle was decoupled, leading to the deposition of black shale and the formation of interbedded cherts and black shales in the middle section.
Keywords Tarim Basin; Early Cambrian; Yurtus Formation; chert; sedimentary environment
埃迪卡拉紀—寒武紀過渡時期是地球演化歷史的重要轉(zhuǎn)折階段,伴隨著Rodinia超大陸的裂解和Gondwana大陸的聚合[1],陸架地區(qū)海洋發(fā)生動態(tài)氧化還原分層,這些事件對古環(huán)境和古生物演化影響深遠[2-3]。這一時期的另一特征是全球范圍內(nèi)廣泛發(fā)育硅質(zhì)巖沉積,包括印度、南美、俄羅斯以及中國的華南和西北地區(qū),反映了全球海洋硅循環(huán)的重要變化[4-5]。硅質(zhì)巖結構致密、化學性質(zhì)穩(wěn)定,與長期碳循環(huán)耦合且能有效記錄海洋生物的地球化學信息[5],因此是了解地球和古環(huán)境演化的重要載體。前人對埃迪卡拉紀—寒武紀轉(zhuǎn)折時期硅質(zhì)巖開展了大量研究,認為其主要形成于大陸架斜坡至盆地環(huán)境,且橫向上沉積特征較為穩(wěn)定[6-7]。然而,關于這一時期硅質(zhì)巖的硅質(zhì)來源主要是海水還是熱液,以及沉積方式、與生物作用的相關性仍有諸多爭議[7-11]。
塔里木盆地西北緣阿克蘇地區(qū)發(fā)育一套下寒武統(tǒng)含磷硅質(zhì)巖和黑色頁巖(玉爾吐斯組),前人對其硅質(zhì)巖成因和所反映的古海洋環(huán)境仍有不同觀點。Zhou等根據(jù)玉爾吐斯組硅質(zhì)巖之下的富硅脈群的沉積特征及硅質(zhì)脈體中包裹體的測溫數(shù)據(jù),推斷玉爾吐斯組這套層狀硅質(zhì)巖主要為熱液沿著硅質(zhì)網(wǎng)脈進入海水而沉積[12];而Guan等依據(jù)硅質(zhì)巖的低鍺/硅(Ge/Si)比值和微量元素特點,認為玉爾吐斯組這套硅質(zhì)巖的硅質(zhì)來源幾乎不受熱液影響,都來源于海水[13]。Zhao等通過微量元素和穩(wěn)定同位素地球化學研究,提出玉爾吐斯組硅質(zhì)巖主要是在缺氧環(huán)境中有機物降解導致pH值降低,促進海水中的二氧化硅直接沉積[14]。He等通過關鍵元素含量變化判斷這套黑色地層的下段受熱液影響較大,向上熱液活動減弱,底水富集有機物,元素的富集主要受氧化還原條件影響[15]。為了進一步理解埃迪卡拉紀—寒武紀轉(zhuǎn)折期硅質(zhì)巖的成因和海洋硅循環(huán)的特征,本研究聚焦玉爾吐斯組硅質(zhì)巖,開展野外地質(zhì)、鏡下微觀分析以及地球化學研究,結合前人研究成果,探討硅質(zhì)巖的硅質(zhì)來源、沉積環(huán)境、沉積模式及其與生物演化之間的關系。
1 區(qū)域地質(zhì)概況
塔里木克拉通位于中國西北地區(qū),其結晶基底形成于新元古代早期,其上覆蓋了新元古代中—晚期以來的沉積蓋層[16-18]〔見圖1(a)、(b)〕。塔里木西北部阿克蘇地區(qū)埃迪卡拉紀—寒武紀過渡時期沉積地層發(fā)育完整,主要包括埃迪卡拉系奇格布拉克組白云巖,其頂部出露古喀斯特巖,表明在埃迪卡拉紀—寒武紀過渡時期發(fā)生了沉積間斷[19],下寒武統(tǒng)玉爾吐斯組以平行不整合覆蓋于奇格布拉克組之上〔見圖1(c)〕。玉爾吐斯組最初被歸為上覆肖爾布拉克組中的含磷層段[20],經(jīng)后期野外勘查與研究,高振家等將肖爾布拉克組底部含磷和發(fā)育小殼化石的層位劃分出來,命名為玉爾吐斯組[20]。Yao等在玉爾吐斯組底部證實了早寒武世Asteridium-Heliosphaeridium-Comasphaeridium化石組合,并認為玉爾吐斯組下段沉積時間對應華南地區(qū)的早梅樹村期[21]。玉爾吐斯組中上段地層中含有大量軟舌螺等小殼化石,因此,玉爾吐斯組地層的上段可能對應華南地區(qū)的上梅樹村階至下筇竹寺階[21-23]。玉爾吐斯組在阿克蘇地區(qū)出露于多個剖面,整體上可分為下、中、上三段,下段為層狀硅質(zhì)巖,中段為硅質(zhì)巖和黑色頁巖互層,上段為層狀灰?guī)r,不同剖面各段地層的厚度、巖性、顏色略有差異[24]。什艾日克剖面位于阿克蘇西南約
30 km處,其地理位置及采樣點位見〔見圖1(b)〕,埃迪卡拉系頂部奇格布拉克組白云巖發(fā)育喀斯特巖溶,玉爾吐斯組以平行不整合覆蓋在奇格布拉克組之上〔見圖2(a)、(b)〕。玉爾吐斯組中段底部發(fā)育磷結核和重晶石結核,上段為層狀灰?guī)r,可見灰?guī)r孔隙被方解石充填〔見圖1(c)、圖2〕。本研究主要針對玉爾吐斯組中、下段硅質(zhì)巖開展研究。
2 樣品及測試方法
本研究的樣品采自新疆阿克蘇地區(qū)具有代表性的什艾日克剖面,此剖面玉爾吐斯組出露較為完整,化學風化較弱,比較適合進行巖石學和地球化學研究。選擇新鮮、干凈的樣品進行切割,用環(huán)氧樹脂固定在載玻片上,磨平至約0.5 mm厚,拋光并干燥,用光學顯微鏡觀察和電子顯微鏡測試。進行電子顯微鏡測試前,薄片表面噴碳以保證導電性。使用Thermo Scientific Helios G4 UC聚焦雙離子束顯微鏡在20 kV的加速電壓和4.8 mm的工作距離下,通過掃描電子顯微鏡(SEM)觀察礦物形貌,同時使用能量色散X射線光譜(EDS)來確定其元素成分,該實驗在西北大學大陸動力學國家重點實驗室完成。
使用位于中國科學院地球化學研究所(貴陽)的FEI Scios雙光束系統(tǒng)制備用于透射電子顯微鏡(TEM)分析的箔片。首先在黃鐵礦晶體上選擇約12 μm×10 μm×1 μm的區(qū)域,在所選區(qū)域鍍厚度約為0.5 μm的鉑(Pt)保護膜以減少可能造成的損壞或污染,并在兩邊挖出銑槽。隨后使用顯微操作器切割并取出箔片焊接到銅網(wǎng)上,進一步清理和減薄至100 nm以下用于TEM分析。在南京大學內(nèi)生金屬礦床成礦機制研究國家重點實驗室,使用FEI Tecnai F20 TEM儀器在200 kV電壓下對黃鐵礦箔片進行形貌觀察和元素成分分析。在高角度環(huán)形暗場像模式下通過掃描透射電子顯微鏡(STEM)-EDS對所選區(qū)域元素成分進行分析。
全巖主、微量所使用的粉末樣品都是挑選干凈、無污染樣品研磨至粒徑約為74 μm使用。主、微量測試均在南京聚譜檢測科技有限公司進行,主、微量元素分別使用ICP-OES和ICP-MS完成測量。稱取40 mg全巖粉末置于聚四氟乙烯溶樣彈中,加入0.5 ml濃硝酸和1.0 ml濃氫氟酸密封后放入195 ℃烘箱加熱72 h確保消解。原地質(zhì)礦產(chǎn)部巖石類GSR、水系沉積物GSD標物作為主量元素的質(zhì)控盲樣,使得分析精度均優(yōu)于5%,對于大多數(shù)微量元素分析精度都優(yōu)于10%。硅同位素在中國科學技術大學使用來自Thermo-Fisher Scientific的Neptune Plus型多接收電感耦合等離子體質(zhì)譜儀(MC-ICP-MS,美國ThermoFisher公司)進行分析[25]。
3 實驗結果
3.1 巖石學觀察
什艾日克剖面玉爾吐斯組硅質(zhì)巖以常見下寒武統(tǒng)層狀硅質(zhì)巖為典型特征,剖面下段為層狀硅質(zhì)巖,中段發(fā)育深色硅質(zhì)巖與黑色頁巖互層〔見圖2(a)、(d)〕。光學顯微鏡觀察表明,絕大多數(shù)硅質(zhì)巖主要以隱晶硅質(zhì)、微晶石英和少部分玉髓膠結有機質(zhì)團塊為主〔見圖3(a)、(b)〕,缺乏其它明顯副礦物。硅質(zhì)巖中偶爾可見由石英顆粒充填形成的脈體〔見圖3(c)〕及硅質(zhì)脈交代有機質(zhì)團塊(〔見圖3(a)〕。
硅質(zhì)巖可見大量圓狀—橢圓狀有機質(zhì)團塊,顏色越深代表有機質(zhì)含量越高,越淺說明硅質(zhì)交代越強[26]〔見圖3(a)、(d)〕,部分有機質(zhì)團塊〔圖3(b)紅色虛線內(nèi)〕由黃鐵礦/赤鐵礦顆粒與硅化的藍細菌絲狀體組成。另外,通過掃透射電子顯微鏡-能量色散X射線光譜(STEM-EDS)識別出微米級的硅質(zhì)脈貫穿黃鐵礦晶體(見圖4)。
3.2 地球化學特征
什艾日克剖面中段硅質(zhì)巖主量元素分析結果表明(見表1),樣品Y09-18、Y09-20的SiO2質(zhì)量分數(shù)(分別78.41%,78.48%)相對較低,但MgO和CaO質(zhì)量分數(shù)都較高,可能代表樣品中碳酸鹽組分相對高導致燒失量(分別12.34%,10.77%)較大。其余樣品均具有較高SiO2質(zhì)量分數(shù),在87.05%~97.43%(平均值為94.20%)(見圖5),說明樣品硅化程度較高。其他主量元素如Al、Na、K、Ti、Mn的質(zhì)量分數(shù)均較低,總體沒有顯著或系統(tǒng)變化。硅質(zhì)巖微量元素分析結果見表1,其中釩(V)、鎳(Ni)、鈧(Sc)、鉻(Cr)、鈾(U)、釷(Th)氧化還原敏感元素被用作討論硅質(zhì)巖沉積古環(huán)境。V/(V+Ni)比值為0.73~0.98;V/Sc比值為135.66~1041.60;V/Cr比值為1.95~21.76;U/Th比值13.67~93.27。稀土元素鈰(Ce)、銪(Eu)異常計算公式分別是:Ce/Ce*=CeN/((PrN)2/NdN);Eu/Eu*=EuN/(SmN×(SmN/NdN)1/2)[27],N表示元素濃度以后太古代澳大利亞頁巖值(PAAS)[28]進行標準化。PAAS標準化的什艾日克剖面玉爾吐斯組中段硅質(zhì)巖稀土元素數(shù)據(jù)見表1。由表1可知,REE配分曲線顯示左傾模式,輕稀土元素(LREE)虧損,所有樣品顯示中等Ce負異常、釔(Y)正異常,個別樣品(Y09-2、Y09-4、Y09-16)Eu正異常明顯。Ce/Ce*值為0.51~0.78(平均值為0.62),Eu/Eu*值為1.03~3.74(平均值為1.57),Y/鈥(Ho)值為32.41~49.44(平均值為41.49)。 硅質(zhì)巖樣品硅同位素測試結果見表2。 由表2可知, 什艾日克剖面玉爾吐斯組中段硅質(zhì)巖δ30Si值為-0.53‰~+0.13‰,變化范圍很小。
4 討論
4.1 玉爾吐斯組硅質(zhì)巖的物質(zhì)來源與演變
4.1.1 巖石學和主微量元素地球化學特征
野外觀察表明,在阿克蘇地區(qū)什艾日克剖面,下寒武統(tǒng)玉爾吐斯組之下的埃迪卡拉系奇格布拉克組被大量硅質(zhì)脈體所切割〔見圖2(b)、(c)〕,推測這些脈體可能為玉爾吐斯組下段硅質(zhì)巖的形成提供了硅源。顯微鏡下巖石薄片觀察顯示,絕大多數(shù)硅質(zhì)巖都由隱晶硅質(zhì)、微晶石英和玉髓膠結有機質(zhì)團塊組成,未發(fā)現(xiàn)碎屑石英〔見圖3(a)、(b)、(d)、(e)〕,表明硅質(zhì)巖沉積環(huán)境沒有受陸源碎屑硅輸入的影響[5]。此外,玉爾吐斯組中段的硅質(zhì)中可見少量硅質(zhì)脈體〔見圖3(a)、(c)〕,且通過STEM-EDS在黃鐵礦晶體中也識別出微米級硅質(zhì)脈體(見圖4),說明中段硅質(zhì)巖在成巖過程中僅受微弱熱液作用的影響。
研究表明,Al含量是表征大陸風化輸入的重要指標,而Fe和Mn主要在熱液中富集,因此Al-Fe-Mn的關系圖解可以衡量海洋沉積物形成過程中受熱液活動的影響程度[29]。什艾日克剖面玉爾吐斯組下段硅質(zhì)巖在Al-Fe-Mn三端元圖中全部位于熱液沉積物區(qū)域(見圖6),表明下段硅質(zhì)巖主要為熱液成因[15, 30]。相反,中段的硅質(zhì)巖除底部兩個樣品(Y09-2、Y09-4)外,絕大部分樣品位于非熱液沉積物區(qū)域(見圖6),說明中段硅質(zhì)巖主要來源于海水。因此,什艾日克剖面玉爾吐斯組自下段至中段,硅質(zhì)巖的物質(zhì)來源由熱液來源為主轉(zhuǎn)變?yōu)橐院K练e為主。
沉積巖的稀土元素(REE)可以有效記錄古海水的化學特征。由于Y比Ho通過顆粒表面反應從海水中去除的速度慢,所以現(xiàn)代海水具有較高的Y/Ho比值(48~80),而熱液流體的Y/Ho比值比較低(約為27)[31]。測試結果(見表1)表明,玉爾吐斯組中段硅質(zhì)巖的Y/Ho比值較高,為32.41~49.44(平均值41.49),最高值超過現(xiàn)代開闊海水值的下限(48)。然而,中段底部硅質(zhì)巖Y09-2至Y09-6.5的Y/Ho比值未具有明顯的海水特征,說明熱液活動減弱但還存在一定程度熱液對海水的影響;繼續(xù)向上,硅質(zhì)巖的Y/Ho比值與海水接近(見圖5),指示硅質(zhì)巖整體可能受微弱熱液活動影響,主要為海水沉積。
特定環(huán)境形成沉積物中REE+Y的相對豐度會根據(jù)陸源、熱液等貢獻發(fā)生系統(tǒng)性變化。熱液沉積物顯示明顯Eu正異常、輕稀土元素(LREE)富集的REE+Y模式[32],而河流的REE+Y模式較為多樣化,表現(xiàn)為LREE的輕度虧損或中稀土(MREE)的富集,但沒有明顯的單元素異常[33]?,F(xiàn)代海水的REE+Y配分模式是LREE相對重稀土元素(HREE)虧損,且具有明顯的Ce負異常和Y正異?!惨妶D7(a)〕。玉爾吐斯組什艾日克剖面沉積古地理位置為大陸架斜坡[26],REE組成容易受陸源碎屑的影響,在解釋其稀土元素特征之前,需評估陸源物質(zhì)的影響。首先,什艾日克剖面中段硅質(zhì)巖PAAS歸一化的REE+Y模式與典型河流模式不同;其次,Ce/Ce*、Eu/Eu*和Y/Ho與Al濃度沒有系統(tǒng)相關性,表明玉爾吐斯組硅質(zhì)巖稀土元素沒有明顯受到陸源碎屑物質(zhì)的影響,主要為海水來源。玉爾吐斯組下段和中段底部(Y09-2、Y09-4)硅質(zhì)巖REE模式圖(見圖7)顯示顯著Eu正異常且對應硅質(zhì)巖樣品Ba濃度較高[15,34],可能代表下段和中段最底部硅質(zhì)巖受強烈富Ba熱液影響(見圖5)。但是,自中段底部向上,硅質(zhì)巖(Y09-16除外)整體顯示LREE虧損,中等Ce負異常和Y正異常的氧化海水特征〔見圖7(a)〕,表明玉爾吐斯組中段硅質(zhì)巖沉積時熱液活動減弱,以海水沉積為主[35]。
4.1.2 硅同位素組成特征
硅同位素在近地表條件下分餾較為敏感,使進入海洋的硅具有不同的δ30Si值,因此硅質(zhì)巖的硅同位素組成可以反映硅質(zhì)的來源[36]。不同沉積過程產(chǎn)生的δ30Si值范圍有重疊(如熱液沉積物中δ30Si值為-3‰~0.5‰;熱水來源硅質(zhì)巖的δ30Si值為-1.5‰~0.8‰;生物成因硅質(zhì)巖的δ30Si值為-1.1‰~1.7‰;現(xiàn)代海水的δ30Si值為-0.5‰~3‰)[36-37]。將沉積物的δ30Si與Al2O3結合起來可以區(qū)分火山物質(zhì)的貢獻[4](見圖8)。
本研究測得玉爾吐斯組什艾日克剖面中段硅質(zhì)巖5個樣品的δ30Si值變化在-0.53‰~0.13‰(見表2),結合庫勒剖面硅質(zhì)巖的硅同位素測試結果,判定研究區(qū)δ30Si值為-0.6‰~1.0‰,Al2O3含量較低(lt;2%),在δ30Si-Al2O3圖中(見圖8)位于海水與熱液沉積重疊的區(qū)域。熱液流體與海水混合后,在更廣泛的地理區(qū)域可以表現(xiàn)出輕微的熱液信號[37],這也可能是玉爾吐斯組中段硅質(zhì)巖δ30Si值整體偏低的原因。同時,結合硅質(zhì)巖的Al-Fe-Mn三端元圖、Y/Ho比值和REE+Y配分特征,更多證據(jù)指示玉爾吐斯組下段硅質(zhì)巖受熱液貢獻較大,為熱液沉積,中段硅質(zhì)巖沉積時熱液活動減弱,轉(zhuǎn)變?yōu)橐院K练e為主。
4.2 硅質(zhì)巖沉積的氧化還原條件與古環(huán)境
本研究中,什艾日克剖面的硅質(zhì)巖和黑色頁巖在鏡下可見紋層結構〔見圖3(a)、(f)〕,表明沉積物未遭受生物擾動,而且硅質(zhì)巖抗風化能力強,因此玉爾吐斯組硅質(zhì)巖可以采用氧化還原敏感微量元素及其比值反演水體的氧化還原信息[38]。氧化還原敏感微量元素(Th、U、V、Sc、Ni和Ce等)及其比值可以反映區(qū)域或者全球古海洋的氧化還原條件[39]。在氧化條件下,海水中溶解的Ce3+被氧化為不溶的Ce4+,導致海水中Ce質(zhì)量分數(shù)下降[40],因此Ce異常(Ce/Ce*)可以用于表征古海水的氧化還原狀態(tài)[41]。V和Ni對氧化還原條件都很敏感,V比Ni在缺氧環(huán)境中更易富集于海水中[42],因此V/(V+Ni)經(jīng)常被用作古氧化還原指標[43-44]。在氧化條件下,U以UO22+形式易于溶解,但在還原條件下容易沉淀,而Th在水體中不受氧化還原條件影響,因此U/Th被認為可以反映氧化還原條件,其比值gt;1.25代表缺氧條件[45]。V和Sc在還原條件下均不易溶,但在缺氧環(huán)境下沉積物中V的富集要遠遠超過Sc[46];此外,V/Cr比值也可以用作指示氧化還原條件的指標[47]。
什艾日克剖面玉爾吐斯組中段硅質(zhì)巖的氧化還原敏感元素指標見表1,相關分類標準見表3。Murray等根據(jù)硅質(zhì)巖沉積位置與其Ce/Ce*值的相關關系,將硅質(zhì)巖劃分為3大類,分別是大洋中脊(0.29)、深海盆地(0.55)和大陸架區(qū)域(1.30)[48]。本研究獲得玉爾吐斯組中段硅質(zhì)巖的Ce/Ce*值為0.51~0.78(平均值為0.62),表明硅質(zhì)巖很可能沉積于大陸架至深海盆地之間更偏向于深海盆地的缺氧環(huán)境,這與什艾日克剖面硅質(zhì)巖Ce負異常指示氧化環(huán)境相悖。但是,Ce異常更多被用于表征淺水區(qū)域的氧化還原指標[49]。早寒武世塔里木板塊陸架地區(qū)海洋氧化還原特征是表層海水氧化、底層缺氧的分層狀態(tài)[14],早寒武世廣泛的海進將底層缺氧海水中溶解的Ce3+帶入上層氧化海水[50],氧化為難溶的Ce4+,并吸附在氧化物/氫氧化物上從水體中清除[51],這可能是玉爾吐斯組硅質(zhì)巖顯示Ce負異常的原因。在華南地區(qū)早寒武世硅質(zhì)巖[11, 52]和玉爾吐斯組其他剖面[15, 53]研究中也出現(xiàn)相似的Ce負異?,F(xiàn)象。玉爾吐斯組中段硅質(zhì)巖的V/Sc比值遠大于24,代表了顯著的缺氧環(huán)境[52];V/Cr比值2.08~21.76(除過Y09-2和Y09-14略小于2),指示厭氧至缺氧環(huán)境。硅質(zhì)巖的U/Th比值(13.67~96.27,平均為36.80)雖然變化范圍較大,但遠超過1.25(見圖5),同為典型的缺氧環(huán)境。同樣,該組中段硅質(zhì)巖的V/(V+Ni)比值絕大多數(shù)在0.81以上(平均值為0.88),在V/(V+Ni)和U/Th判別圖中顯示缺氧條件。另外,收集什艾日克剖面下段硅質(zhì)巖和庫勒剖面層狀硅質(zhì)巖氧化還原敏感元素數(shù)據(jù),在V/(V+Ni)和U/Th判別圖中均顯示缺氧條件(見圖9)。因此,以上各氧化還原敏感元素指標一致表明,阿克蘇地區(qū)下寒武統(tǒng)硅質(zhì)巖沉積于表層海水氧化、底層持續(xù)缺氧甚至硫化的環(huán)境,這與華南地區(qū)甚至全球早寒武世陸架地區(qū)海洋氧化還原結構相符合[2]。
4.3 阿克蘇地區(qū)早寒武世硅質(zhì)巖的沉積模式
根據(jù)上述研究結果并結合前人研究成果,本研究提出阿克蘇地區(qū)下寒武統(tǒng)硅質(zhì)巖的沉積過程和模式:巖石學和地球化學證據(jù)表明,玉爾吐斯組下段層狀硅質(zhì)巖的硅質(zhì)主要來源于熱液活動,這說明在埃迪卡拉紀—寒武紀轉(zhuǎn)折時期,塔里木板塊西北部逐漸從裂谷盆地轉(zhuǎn)化為被動大陸邊緣盆地[55],與伸展構造有關的同沉積斷層和喀斯特巖溶構成了深部熱液活動的良好通道[12, 56],海進上升流把富硅質(zhì)的熱液帶入陸架地區(qū),形成了玉爾吐斯組下段具有熱液成因特征的硅質(zhì)巖〔見圖10(a)〕。這一認識也與玉爾吐斯組其他剖面的研究結果相一致[14, 34]。
在玉爾吐斯組中段硅質(zhì)巖和黑色頁巖沉積期間(見圖10),深部熱液活動減弱,硅質(zhì)巖的地球化學指標主要顯示海水的特征,推測硅質(zhì)巖的沉積方式很可能為海水中溶解態(tài)硅的直接無機沉積,而非生物的硅匯作用。因為在早寒武世早期,硅藻等吸收硅的生物還未出現(xiàn),放射蟲和硅質(zhì)海綿的豐度很低[57-58],而且在顯微鏡下,硅質(zhì)巖中很少發(fā)現(xiàn)此類固硅生物的化石證據(jù)。
Li等認為,華南地區(qū)埃迪卡拉紀—寒武紀轉(zhuǎn)折時期留茶坡組層狀硅質(zhì)巖具有低的Ge/Si比值(0.2~0.5 μmol/mol)[5],結合REE特征分析表明,這套硅質(zhì)巖為海水沉積。留茶坡組硅質(zhì)巖的Ge/Si比值明顯低于現(xiàn)代海洋的Ge/Si比值(0.72 μmol/mol)[59-60],這可能歸因于這一時期陸架地區(qū)的動態(tài)氧化還原分層促進鐵的氧化還原循環(huán),表層海洋鐵氧化物/氫氧化物吸附Ge,導致大量的Ge以非SiO2匯的形式埋藏,同時鐵的氧化還原循環(huán)能有效將海水中的硅輸送到沉積物中,從而形成低于現(xiàn)代海洋Ge/Si比值的層狀硅質(zhì)巖[5]。近期,對玉爾吐斯組硅質(zhì)巖的研究也顯示,其Ge/Si比值(0.15~0.39 μmol/mol)與留茶坡組硅質(zhì)巖相似[13, 61]。另外,塔里木盆地早寒武世也具有氧化還原分層海洋組成的動態(tài)氧化大陸架環(huán)境,并且存在持續(xù)的缺氧底水[14, 19, 26],有利于快速的鐵氧化還原循環(huán)。鐵氧化物/氫氧化物的還原主要受有機物促進的微生物鐵還原控制[62],玉爾吐斯組硅質(zhì)巖的高有機質(zhì)含量為快速鐵循環(huán)提供了所需要的還原劑[19, 34]。因此,結合玉爾吐斯組中段硅質(zhì)巖與黑色頁巖互層的獨特沉積組合〔見圖1(c)〕,推測玉爾吐斯組中段地層沉積模式是:鐵氧化物/氫氧化物作為載體將海水中的硅以Fe3+-Si膠體形式輸送到底水,有機質(zhì)的還原作用使膠體中的Fe3+被還原為Fe2+并使硅質(zhì)發(fā)生沉積,然后Fe2+返回海水并被氧化,開始新的循環(huán),且硅質(zhì)巖的沉積量取決于鐵的氧化還原循環(huán)速度〔見圖10(b)〕。當大陸架區(qū)域因生產(chǎn)力提高、有機質(zhì)顆粒沉降速度加快等原因造成底水硫化環(huán)境盛行,將導致氧化還原界面升高,鐵與硅的耦合循環(huán)沉積模式失效[63],促使有機質(zhì)含量高的黑色頁巖沉積〔見圖10(c)〕[5, 14]。塔里木盆地西北緣下寒武統(tǒng)玉爾吐斯組硅質(zhì)巖的形成,表現(xiàn)為下段主要為熱液沉積、中段轉(zhuǎn)變?yōu)殍F和硅循環(huán)耦合的無機海水沉積模式。
5 結論
塔里木西北部阿克蘇地區(qū)下寒武統(tǒng)玉爾吐斯組發(fā)育下段層狀硅質(zhì)巖、中段硅質(zhì)巖與黑色頁巖互層,鏡下薄片觀察顯示硅質(zhì)巖主要由隱晶硅質(zhì)和微晶石英組成,同時發(fā)育極少硅質(zhì)脈體,未見其它陸源副礦物,說明硅質(zhì)巖硅質(zhì)主要為海水自生或受海底熱液影響。玉爾吐斯組下段硅質(zhì)巖相對富Fe貧Al并顯示顯著的Eu異常,表明下段硅質(zhì)巖主要為熱液沉積;而中段硅質(zhì)巖相對富Al貧Fe,與現(xiàn)代海水顯示一致的REE+Y特征(LREE虧損、中等Ce負異常和Y正異常)并具有較高的Y/Ho比值,說明中段硅質(zhì)巖沉積時熱液活動逐漸減弱,轉(zhuǎn)變?yōu)楹K腥芙獾墓柚苯映练e,這與指示熱水來源的δ30Si值相一致。氧化還原敏感元素表明,玉爾吐斯組硅質(zhì)巖沉積于表層海水氧化、底層缺氧的環(huán)境。早寒武世,塔里木盆地陸架地區(qū)發(fā)育全球性的動態(tài)氧化還原分層海洋,且此時期放射蟲和硅質(zhì)海綿的豐度不足,本研究推測玉爾吐斯組中段硅質(zhì)巖沉積模式為早寒武世氧化還原分層海洋和底水有機質(zhì)的快速積累加快了硅和鐵的氧化還原循環(huán),從而促進了硅質(zhì)巖沉積;當陸架地區(qū)硫化水域盛行時,硅鐵循環(huán)解耦,沉積黑色頁巖。
致謝:感謝西北大學大陸動力學國家重點實驗室代靜靜老師在實驗過程中的指導和幫助,感謝中國科學技術大學殼幔物質(zhì)與環(huán)境重點實驗室郝記華教授和工作人員在硅同位素測試過程中給予的支持和幫助。
參考文獻
[1]ZHAO G C, WANG Y J, HUANG B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J].Earth-Science Reviews, 2018, 186: 262-286.
[2]LI C, SHI W, CHENG M, et al. The redox structure of Ediacaran and early Cambrian oceans and its controls[J].Science Bulletin, 2020, 65(24): 2141-2149.
[3]LYONS T W, DIAMOND C W, PLANAVSKY N J, et al. Oxygenation, life, and the planetary system during earth’s middle history: An overview[J].Astrobiology, 2021, 21(8): 906-923.
[4]GAO P, LI S J, LASH G G, et al. Silicification and Si cycling in a silica-rich ocean during the Ediacaran-Cambrian transition[J].Chemical Geology, 2020, 552: 119787.
[5]LI C Q, DONG L, MA H R, et al. Formation of the massive bedded chert and coupled Silicon and Iron cycles during the Ediacaran-Cambrian transition[J].Earth and Planetary Science Letters, 2022, 594: 117721.
[6]FISCHER W W, KNOLL A H. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation[J].Geological Society of America Bulletin, 2009, 121(1/2): 222-235.
[7]YE Y, FRINGS P J, BLANCKENBURG F V, et al. Silicon isotopes reveal a decline in oceanic dissolved silicon driven by biosilicification: A prerequisite for the Cambrian Explosion?[J].Earth and Planetary Science Letters, 2021, 566: 116959.
[8]CHANG H J, CHU X L, FENG L J, et al. Terminal Ediacaran anoxia in deep-ocean: Trace element evidence from cherts of the Liuchapo Formation, South China[J].Science in China Series D (Earth Sciences), 2009, 52(6): 807-822.
[9]RAMSEYER K, AMTHOR J E, MATTER A, et al. Primary silica precipitate at the Precambrian/Cambrian boundary in the south Oman salt basin, sultanate of Oman[J].Marine and Petroleum Geology, 2013, 39(1): 187-197.
[10]DONG L, SHEN B, LEE C T, et al. Germanium/silicon of the Ediacaran-Cambrian Laobao cherts: Implications for the bedded chert formation and paleoenvironment interpretations[J].Geochemistry, Geophysics, Geosystems, 2015, 16(3): 751-763.
[11]TATZEL M, BLANCKENBURG F V, OELZE M, et al. Late Neoproterozoic seawater oxygenation by siliceous sponges[J].Nature Communications, 2017, 8(1): 1-9.
[12]ZHOU X Q, CHEN D Z, QING H R, et al. Submarine silica-rich hydrothermal activity during the earliest Cambrian in the Tarim Basin, Northwest China[J].International Geology Review, 2014, 56(15): 1906-1918.
[13]GUAN Z X, DENG S B, LIU P X, et al. Germanium/silica ratio and trace element composition of Early Cambrian siliceous rocks in Keping: Implications for the siliceous rocks’ formation and paleoenvironment interpretations[J].Acta Geochimica, 2020, 39: 797-810.
[14]ZHAO G Y, DENG Q, ZHANG H Z, et al. Trace elements and stable isotopic geochemistry of two sedimentary sections in the lower Cambrian strata from the Tarim Basin, northwest China: Implications for silicification and biological evolution[J].Marine and Petroleum Geology, 2023, 147: 105991.
[15]HE T H, LU S F, LI W H, et al. Paleoweathering, hydrothermal activity and organic matter enrichment during the formation of earliest Cambrian black strata in the northwest Tarim Basin, China[J].Journal of Petroleum Science and Engineering, 2020, 189: 106987.
[16]ZHAO G C, CAWOOD P A. Precambrian geology of China[J].Precambrian Research, 2012, 222: 13-54.
[17]HAN Y G, ZHAO G C, SUN M, et al. Late Paleozoic subduction and collision processes during the amalgamation of the Central Asian Orogenic Belt along the South Tianshan suture zone[J].Lithos, 2016, 247: 1-12.
[18]LU L H, HAN Y G, ZHAO G C, et al. Depositional processes of Marinoan-age diamictites and cap carbonates in northwestern Tarim, China: Implications for chemical weathering following the Marinoan deglaciation[J].Geological Society of America Bulletin, 2024, 136(5/6): 2443-2459.
[19]ZHU G Y, LI T T, ZHAO K, et al. Mo isotope records from Lower Cambrian black shales, northwestern Tarim Basin (China): Implications for the early Cambrian ocean[J].Geological Society of America Bulletin, 2022, 134(1/2): 3-14.
[20]高振家, 吳紹祖, 李永安, 等. 新疆阿克蘇—柯坪地區(qū)震旦紀—寒武紀地層研究[J].科學通報, 1981, 26(12): 741-743.
GAO Z J, WU S Z, LI Y A, et al. Research on Sinian-Cambrian stratigraphy in Aksu-Keping area, Xinjiang[J].Chinese Science Bulletin, 1981, 26(12): 741-743.
[21]YAO J X, XIAO S H, YIN L M, et al. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, northwest China): Systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs[J].Palaeontology, 2005, 48(4): 687-708.
[22]錢逸, 馮偉民, 李國祥, 等. 新疆寒武紀早期單殼類軟體動物化石分類學與生物地層學[J].微體古生物學報, 2009, 26(3): 193-210.
QIAN Y, FENG W M, LI G X, et al. Taxonomy and biostratigraphy of the early Cambrian univalved mollusc fossils from Xinjiang[J].Acta Micropalaeontologica Sinica, 2009, 26(3): 193-210.
[23]DONG L, XIAO S H, SHEN B, et al. Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu Area (Tarim Block, Northwestern China)[J].Journal of Paleontology, 2009, 83(1): 30-44.
[24]ZHOU X Q, CHEN D Z, ZHANG L Y, et al. Silica-rich seawater in the early Cambrian: Sedimentological evidence from bedded cherts[J].Terra Nova, 2021, 33(5): 494-501.
[25]楊林, 石震, 于慧敏,等. 多接收電感耦合等離子體質(zhì)譜法測定巖石和土壤等國家標準物質(zhì)的硅同位素組成[J].巖礦測試, 2023, 42(1): 136-145.
YANG L, SHI Z, YU H M, et al. Determination of silicon isotopic compositions of rock and soil reference materials by MC-ICP-MS[J].Rock and Mineral Analysis, 2023, 42(1): 136-145.
[26]ZHU B, YANG T, WANG J, et al. Multiple controls on the paleoenvironment of the early Cambrian black shale-chert in the northwest Tarim Basin, NW China: Trace element, iron speciation and Mo isotopic evidence[J].Marine and Petroleum Geology, 2022, 136: 105434.
[27]LAWRENCE M G, GREIG A, COLLERSON K D, et al. Rare earth element and yttrium variability in South East Queensland waterways[J].Aquatic Geochemistry, 2006, 12(1): 39-72.
[28]MCLENNAN S M. Rare earth elements in sedimentary rocks:Influence of provenance and sedimentary processes[J].Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
[29]ADACHI M, YAMAMOTO K, SUGISAKI R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity[J].Sedimentary Geology, 1986, 47(1/2): 125-148.
[30]張春宇, 管樹巍, 吳林, 等. 塔西北地區(qū)早寒武世玉爾吐斯組熱液作用及沉積模式[J].地學前緣, 2019, 26(1): 202-211.
ZHANG C Y, GUAN S W, WU L, et al. Hydrothermal activity and depositional model of the Yurtus Formation in the early Cambrian, NW Tarim, China[J].Earth Science Frontiers, 2019, 26(1), 202-211.
[31]NOZAKI Y, ZHANG J, AMAKAWA H. The fractionation between Y and Ho in the marine environment[J].Earth and Planetary Science Letters, 1997, 148(1/2): 329-340.
[32]BAU M, DULSKI P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J].Chemical Geology, 1999, 155(1/2): 77-90.
[33]GOLDSTEIN S J,JACOBSEN S B.Rare earth elements in river waters[J].Earth and Planetary Science Letters,1988,89(1):35-47.
[34]FANG Y, SU J, WANG X M, et al. The transition from hydrothermal oxic conditions to restricted euxinia in the lower Cambrian Yurtus Formation black shale, Tarim Basin[J].Marine and Petroleum Geology, 2023, 156: 106420.
[35]ALIBO D S, NOZAKI Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation[J].Geochimica et Cosmochimica Acta, 1999, 63(3/4): 363-372.
[36]DOUTHITT C B. The geochemistry of the stable isotopes of silicon[J].Geochimica et Cosmochimica Acta, 1982, 46(8): 1449-1458.
[37]丁悌平, 蔣少涌, 萬德芳, 等. 硅同位素地球化學[M].北京: 地質(zhì)出版社, 1994.
[38]楊宗玉, 羅平, 劉波, 等. 早寒武世早期熱液沉積特征: 以塔里木盆地西北緣玉爾吐斯組底部硅質(zhì)巖系為例[J].地球科學, 2019, 44(11): 3845-3870.
YANG Z Y, LUO P, LIU B, et al. Depositional characteristics of early Cambrian hydrothermal fluid: A case study of siliceous rocks from Yurtus Formation in Aksu Area of Tarim Basin, Northwest China[J].Earth Science, 2019, 44(11): 3845-3870.
[39]MORFORD J L, EMERSON S. The geochemistry of redox sensitive trace metals in sediments[J].Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735-1750.
[40]BAU M, KOSCHINSKY A. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J].Geochemical Journal, 2009, 43(1): 37-47.
[41]WRIGHT J, SCHRADER H, HOLSER W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J].Geochimica et Cosmochimica Acta, 1987, 51(3): 631-644.
[42]BECHTEL A, SUN Y, PTTMANN W, et al. Isotopic evidence for multi-stage base metal enrichment in the Kupferschiefer from the Sangerhausen Basin, Germany[J].Chemical Geology, 2001, 176(1/4): 31-49.
[43]ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J].Chemical geology, 2004, 206(3/4): 289-318.
[44]AKINLUA A, ADEKOLA S A, SWAKAMISA O, et al. Trace element characterisation of Cretaceous Orange Basin hydrocarbon source rocks[J].Applied Geochemistry, 2010, 25(10): 1587-1595.
[45]ANDERSON R F, FLEISHER M Q, LEHURAY A P. Concentration, oxidation state, and particulate flux of uranium in the Black Sea[J].Geochimica et Cosmochimica Acta, 1989, 53(9): 2215-2224.
[46]YAMAUCHI T, KAMON J, WAKI H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J].Nature medicine, 2001, 7(8): 941-946.
[47]KIMURA H, WATANABE Y S. Oceanic anoxia at the Precambrian-Cambrian boundary[J].Geology, 2001, 29(11): 995-998.
[48]MURRAY R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J].Sedimentary Geology, 1994, 90(3/4): 213-232.
[49]ZHANG K, SHIELDS G A. Sedimentary Ce anomalies: Secular change and implications for paleoenvironmental evolution[J].Earth-Science Reviews, 2022, 229: 104015.
[50]KHAN S A, KHAN K F, DAR S A. REE geochemistry of Early Cambrian phosphorites of Masrana and Kimoi blocks, Uttarakhand, India[J].Arabian Journal of Geosciences, 2016, 9: 1-10.
[51]SHIELDS G, STILLE P, BRASIER M D, et al. Stratified oceans and oxygenation of the late Precambrian environment: A post glacial geochemical record from the Neoproterozoic of" Mongolia[J].Terra Nova, 1997, 9(5/6): 218-222.
[52]GUO Q J, SHIELDS G A, LIU C Q, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 194-216.
[53]DENG Q, WANG H Z, WEI Z W, et al. Different accumulation mechanisms of organic matter in Cambrian sedimentary successions in the western and northeastern margins of the Tarim Basin, NW China[J].Journal of Asian Earth Sciences, 2021, 207: 104660.
[54]RIQUIER L, TRIBOVILLARD N, AVERBUCH O, et al. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): Two oxygen-deficient periods resulting from different mechanisms[J].Chemical Geology, 2006, 233(1/2): 137-155.
[55]TURNER S A. Sedimentary record of Late Neoproterozoic rifting in the NW Tarim Basin, China[J].Precambrian Research, 2010, 181(1/4): 85-96.
[56]YU B S, DONG H L, WIDOM E, et al. Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history[J].Journal of Asian Earth Sciences, 2009, 34(3): 418-436.
[57]RACKI G. Silica-secreting biota and mass extinctions: survival patterns and processes[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154(1/2): 107-132.
[58]RACKI G, CORDEY F. Radiolarian palaeoecology and radiolarites: Is the present the key to the past?[J].Earth-Science Reviews, 2000, 52(1/2/3): 83-120.
[59]BARONAS J J, HAMMOND D E, MCMANUS J, et al. A global Ge isotope budget[J].Geochimica et Cosmochimica Acta, 2017, 203: 265-283.
[60]KING S L, FROELICH P N, JAHNKE R A. Early diagenesis of germanium in sediments of the Antarctic South Atlantic: In search of the missing Ge sink[J].Geochimica et Cosmochimica Acta, 2000, 64(8): 1375-1390.
[61]王志宏, 丁偉銘, 李劍, 等. 塔里木盆地西緣下寒武統(tǒng)玉爾吐斯組沉積地球化學及有機質(zhì)富集機制研究[J].北京大學學報 (自然科學版), 2020, 56(4): 667-678.
WANG Z H, DING W M, LI J, et al. Paleoenvironment interpretation of early Cambrian Yurtus Formation, Tarim Basin, and its mechanism for organic carbon accumulation[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(4): 667-678.
[62]CANFIELD D E, THAMDRUP B, HANSEN J W. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction[J].Geochimica et Cosmochimica Acta, 1993, 57(16): 3867-3883.
[63]BERNSTEIN L R. Germanium geochemistry and mineralogy[J].Geochimica et Cosmochimica Acta, 1985, 49(11): 2409-2422.
(編 輯 雷雁林)
收稿日期:2024-03-25
基金項目:國家自然科學基金(42072264);陜西省自然科學基礎研究計劃項目(2023JC-XJ-05)。
第一作者:曹旭陽,男,從事沉積古環(huán)境研究,caoxy0102@163.com。
通信作者:韓以貴,男,教授,博士生導師,從事造山帶演化與超大陸重建研究,hanyigui@nwu.edu.cn。