摘 要:【目的】研究引進(jìn)哈薩克斯坦不同春小麥種質(zhì)的萌發(fā)和生理特性,為選育適宜我國西北旱區(qū)春小麥品種提供親本材料。
【方法】采用20%聚乙二醇(polyethylene glycol, PEG)高滲溶液模擬干旱脅迫條件,比較分析28份小麥種質(zhì)(其中引進(jìn)哈薩克斯坦春小麥種質(zhì)25份)苗期的根長、苗長、根鮮/干重、苗鮮/干重、發(fā)芽率、發(fā)芽勢及發(fā)芽指數(shù)的變化,利用隸屬函數(shù)、主成分分析綜合評價不同春小麥種質(zhì)苗期抗旱性。
【結(jié)果】與對照相比,干旱脅迫顯著降低種質(zhì)苗期的根長、苗長、根鮮重、苗鮮/干重、發(fā)芽勢和發(fā)芽率(P lt; 0.05),降低幅度為18.29%~52.17%;顯著增加根干重(P lt; 0.05),平均增加了66.67%。各性狀間存在不同程度的相關(guān)性,大多數(shù)性狀抗旱系數(shù)間存在顯著或極顯著相關(guān)。9個小麥苗期抗旱相關(guān)指標(biāo)可轉(zhuǎn)換為4個(苗鮮/干重、苗長和發(fā)芽率)獨(dú)立的綜合指標(biāo)可作為哈薩克斯坦春小麥苗期耐旱性評價的主效指標(biāo)。28份供試材料的加權(quán)抗旱指數(shù)進(jìn)行聚類分析,5份為抗旱性強(qiáng)種質(zhì),17份為抗旱性種質(zhì),6份為抗旱性弱種質(zhì)。
【結(jié)論】25份引進(jìn)哈薩克斯坦春小麥種質(zhì)中有5份種質(zhì),苗期具有較強(qiáng)的萌發(fā)特性和抗旱能力,適宜在我國西北旱區(qū)春小麥育種中提供抗旱親本材料。
關(guān)鍵詞:春小麥;引種;種質(zhì);苗期;抗旱性;隸屬函數(shù)
中圖分類號:S512"" 文獻(xiàn)標(biāo)志碼:A"" 文章編號:1001-4330(2024)06-1352-09
0 引 言
【研究意義】干旱是世界上最嚴(yán)重的自然災(zāi)害類型之一[1]。近年來,中國干旱受災(zāi)面積約占全國自然災(zāi)害影響面積的60%、占農(nóng)作物播種面積的9.0%,因干旱缺水導(dǎo)致的作物減產(chǎn)已經(jīng)超過其他非生物限制因素的總和[2-3]。小麥(Triticum aestivum L.)是我國主要糧食作物之一,小麥種質(zhì)資源抗旱性評價是挖掘利用優(yōu)異抗旱種質(zhì)資源的科學(xué)基礎(chǔ)[4-6],高效開展抗旱材料的篩選、評價和鑒定及優(yōu)異親本的選用是小麥抗旱育種的前提,也是在干旱條件下維持小麥穩(wěn)產(chǎn)最有效的途徑之一[5]。
【前人研究進(jìn)展】小麥抗旱性屬于多基因遺傳控制的復(fù)雜數(shù)量性狀,受環(huán)境條件影響較大,且在不同生長時期抗旱性也存在差異[7]。苗期既是小麥生育期的起始階段,也是評價小麥抗旱性強(qiáng)弱的重要時期[8-10],此階段抗旱性對幼苗建立和后期高產(chǎn)至關(guān)重要[11-12]。小麥苗期抗旱性評價具有形態(tài)指標(biāo)易于調(diào)查和測定、鑒定周期短等優(yōu)勢[13-15]。聚乙二醇(polyethylene glycol, PEG)通過改變?nèi)芤簼B透壓,進(jìn)而影響種子吸水速率,模擬自然土壤干旱環(huán)境[10],目前廣泛用于小麥[6]、水稻[16]、玉米[17]及燕麥[18]等作物萌發(fā)抗旱性鑒定[19]。在小麥苗期抗旱研究中,發(fā)芽率、發(fā)芽勢、發(fā)芽指數(shù)、胚芽鞘長度、最長胚根長、根和芽鮮、干重及根冠比等是重要評價指標(biāo)[20-22]。由于小麥抗旱機(jī)理的復(fù)雜性,采用單一抗旱指標(biāo)較難準(zhǔn)確全面地評判品種抗旱性[23],因此目前小麥苗期抗旱性采用灰度關(guān)聯(lián)、五級評分、聚類分析、模糊隸屬函數(shù)值及主成分分析等方法進(jìn)行綜合評價[24-25]。
【本研究切入點(diǎn)】引入國外種質(zhì)資源可拓寬育成品種的遺傳基礎(chǔ),為我國小麥育種提供優(yōu)良新品種和雜交育種的親本材料[26-27]。中亞是小麥的原始起源中心之一,哈薩克斯坦小麥種質(zhì)資源遺傳背景與我國小麥差異大,具有更為豐富的遺傳變異[28]。哈薩克斯坦水資源短缺,培育作物品種具有較強(qiáng)的耐旱性[29]。需要研究篩選抗旱性強(qiáng)的引進(jìn)哈薩克斯坦春小麥育種材料親本。【擬解決的關(guān)鍵問題】以20% PEG-6000溶液模擬干旱脅迫對引進(jìn)哈薩克斯坦25份春小麥種質(zhì)進(jìn)行苗期抗旱性鑒定,分析引進(jìn)哈薩克斯坦春小麥種質(zhì)苗期抗旱性,對其苗期耐旱性進(jìn)行聚類分級,篩選出抗旱型與干旱敏感型小麥類型,為我國西北地區(qū)春小麥育種提供更為豐富的優(yōu)異種質(zhì)資源。
1 材料與方法
1.1 材 料
供試材料28份,其中我國春小麥材料3份(洛旱7號、普冰322和普冰151)作為對照;引進(jìn)哈薩克斯坦春小麥種質(zhì)25份。所有春小麥材料于2019~2020年度種植于我國西北農(nóng)林科技大學(xué)曹新莊試驗農(nóng)場。田間管理按照當(dāng)?shù)氐脑耘啻胧┻M(jìn)行。收獲后,種子經(jīng)過精選晾曬后備用。
1.2 方 法
1.2.1 試驗設(shè)計
參照《小麥抗旱性鑒定評價技術(shù)規(guī)范GB/T 21127-2007》的方法,試驗以聚乙二醇溶液(PEG-6000)模擬干旱環(huán)境。
每份材料選取籽粒飽滿、無蟲害、色澤和大小基本一致的春小麥種子1 500粒。采用培養(yǎng)皿紙上發(fā)芽法,將種子用15%的次氯酸鈉溶液浸泡20 min后用無菌水沖洗5~7次,用濾紙吸干種子表面水分。將消毒后的種子均勻置于墊有2層濾紙的培養(yǎng)皿中,每個培養(yǎng)皿中放入100粒種子,分別加入10 mL的 0(CK)%、20%的PEG-6000溶液進(jìn)行水分脅迫處理,3次重復(fù)。
培養(yǎng)條件為22℃,2 000 μmol/(m2·s),14 h光照/10 h黑暗、相對濕度為70%,種子苗期間保持濾紙濕潤。每天補(bǔ)充相同的蒸餾水和PEG-6 000溶液。每隔24 h觀察記錄種子萌發(fā)情況,并記錄萌發(fā)種子的數(shù)目。3次重復(fù)中有1粒種子萌發(fā)時作為該處理下發(fā)芽的開始,以芽長達(dá)到種子1/2長或根長達(dá)到種子長度作為發(fā)芽標(biāo)準(zhǔn),調(diào)查每個處理的發(fā)芽數(shù),連續(xù)3 d不再有種子發(fā)芽作為發(fā)芽結(jié)束。
1.2.2 測定指標(biāo)
1.2.2.1 發(fā)芽率、發(fā)芽勢、發(fā)芽指數(shù)
7 d后結(jié)束萌發(fā),從各個重復(fù)中隨機(jī)選出5株幼苗,用直尺測量根長、苗長,用電子分析天平測量根鮮/干重、苗鮮/干重,測干重前先110℃ 烘2 h殺青,后85℃ 烘24 h至恒重。
發(fā)芽勢(GR,%)= 第4 d的正常發(fā)芽種子數(shù)/供試種子總數(shù)×100%;
發(fā)芽率(GE,%)= 第6 d累積的發(fā)芽數(shù)/供試種子總數(shù)×100%。
參照張達(dá)斌等[30]方法計算抗旱系數(shù)(Drought coefficient, Dc)與抗旱指數(shù) (Drought Index, Di)。
1.2.2.2 抗旱性隸屬函數(shù)的計算
采用模糊隸屬函數(shù)法計算28份供試材料苗期抗旱各指標(biāo)隸屬函數(shù)值,得出加權(quán)平均值,并進(jìn)行品種間比較,用以綜合評價抗旱性。
U(Dj)=(Dcj-Dcjmin)/(Dcjmax-Dcjmin) ""j = 1、2、3…
式中,U(Xj)為隸屬函數(shù)值,Dcj表示第j個指標(biāo)的抗旱系數(shù),Dcjmin和Dcjmax分別表示第j個指標(biāo)抗旱系數(shù)的最小值和最大值。
Wj=Pj/ni=1Pj." j = 1、2、3…
式中,Pj代表單個因子貢獻(xiàn)率,Wj為該因子在所有公因子中的重要程度。
Wj值表示第j個綜合指標(biāo)在所有綜合指標(biāo)中的重要程度,Pj 表示第j個綜合指標(biāo)的貢獻(xiàn)率。
D=nj=1[U(Dj)Wj], j = 1、2、3…
式中,D值表示每個品種的綜合抗旱系數(shù),其取值范圍為[0,1],D值越大,品種的耐旱性越強(qiáng)。
1.3 數(shù)據(jù)處理
利用Excel 2019、SPSS 25.0軟件進(jìn)行數(shù)據(jù)的整理與分析。
2 結(jié)果與分析
2.1 引進(jìn)哈薩克斯坦不同春小麥種質(zhì)萌發(fā)對干旱脅迫響應(yīng)的差異
研究表明,在20% PEG 干旱脅迫下,供試小麥發(fā)芽勢、發(fā)芽率、根鮮/干重、苗鮮/干重、根長和苗長的變幅不同。發(fā)芽勢介于10.67%~87.33%,變異系數(shù)為 36.01%;發(fā)芽率介于12.67%~90.00%,變異系數(shù)為33.79%;根鮮重介于0.02~0.19 g,變異系數(shù)為30.48%;苗鮮重介于0.13~0.32 g,變異系數(shù)為33.50%;根干重介于 0.03~0.07 g,變異系數(shù)為31.51%;苗干重介于 0.03~0.06 g,變異系數(shù)為22.19%;根長介于5.08~14.43 cm,變異系數(shù)為28.46%;苗長介于6.27~12.88 cm,變異系數(shù)為23.60%。與對照相比,20% PEG 脅迫處理下,供試材料苗期的發(fā)芽勢、發(fā)芽率、根鮮重、苗鮮/干重、根長和苗長顯著下降(Plt; 0.05),下降幅度范圍為18.29%~52.17%,根干重顯著增加(Plt; 0.05),分別平均增加了66.67%和51.52%。PEG脅迫抑制哈薩克斯坦春小麥苗期的發(fā)芽勢、根長和苗長,從而降低苗期的根鮮重、苗鮮/干重,抑制苗期生長。表1
2.2 引進(jìn)哈薩克斯坦不同春小麥種質(zhì)苗期各指標(biāo)的相關(guān)性
研究表明,在20% PEG脅迫下春小麥發(fā)芽勢與發(fā)芽率之間呈極顯著正相關(guān)(P<0.01);發(fā)芽勢與苗干重之間,根干重與苗鮮重、根長和苗長之間呈顯著正相關(guān)(P<0.01)。模擬干旱脅迫下哈薩克斯坦春小麥的不同指標(biāo)之間存在密切聯(lián)系,9個性狀指標(biāo)提供的耐旱信息交叉重疊。圖1
2.3 不同脅迫下春小麥各性狀間的主成分
研究表明,在20% PEG脅迫下,春小麥特征值在1.000以上的有3個,分別為3.30、1.65、15.1和1.10;前4個主成分因子貢獻(xiàn)率分別為41.25%、20.57%、13.88%和10.73%,累計貢獻(xiàn)率達(dá)到86.43%。表2
在 20% PEG脅迫下,第一主因子與苗鮮重相關(guān)性最大,相關(guān)系數(shù)為 0.88;第二主因子與苗干重相關(guān)性最大,相關(guān)系數(shù)為 0.57;第三主因子與苗長相關(guān)性最大,相關(guān)系數(shù)為0.71;第四主因子與發(fā)芽率相關(guān)性最大,相關(guān)系數(shù)為 0.64。將小麥9個苗期抗旱相關(guān)指標(biāo)轉(zhuǎn)換為4個(20% PEG脅迫)獨(dú)立的綜合指標(biāo)。表3
2.4 引進(jìn)哈薩克斯坦不同春小麥苗期抗旱性綜合評價及篩選
研究表明,不同供試材料的主效性狀對干旱的敏感性存在差異,苗鮮重的抗旱系數(shù)介于0.27~0.88,變異系數(shù)為29.41%;苗干重的抗旱系數(shù)介于0.54~1.76,變異系數(shù)為30.05%;苗長的抗旱系數(shù)介于0.44~2.18,變異系數(shù)為38.98%;發(fā)芽率的抗旱系數(shù)介于0.24~0.99,變異系數(shù)為35.23%。在20% PEG脅迫下,供試材料的綜合抗旱系數(shù)D值為0.10~0.81。不同抗旱等級的D值區(qū)間,≥0.64 為抗旱能力強(qiáng)、≥0.35 且<0.64為抗旱能力中等、 <0.35為抗旱能力弱。表4
2.5 引進(jìn)哈薩克斯坦不同春小麥種質(zhì)的苗期性狀抗旱性等級比較
研究表明,A 類5份材料在苗期與 B 類和 C 類相比具有較高發(fā)芽率、根鮮重、苗鮮重及苗長,增幅分別為15.48%~68.53%、23.52%~41.67%、25.00%~39.29%、14.21%~24.17%。與A 類和 B 類相比,C 類發(fā)芽勢和苗鮮重顯著降低(P lt; 0.05)。表5
3 討 論
3.1
近年來氣候變化增加了我國春小麥生產(chǎn)的不穩(wěn)定性,其中甘肅、新疆春麥種植區(qū)春季干旱頻發(fā)且持續(xù)時間長,影響春麥產(chǎn)量的穩(wěn)定、高效[31]。
造成小麥苗期抗旱指標(biāo)篩選的差異與試驗材料的抗旱性差異程度、試驗環(huán)境不同或研究分析方法不同等有關(guān)[13]。對引進(jìn)的105份哈薩克斯坦春小麥芽期抗旱性鑒定,發(fā)現(xiàn)在干旱脅迫處理下,根鮮/干重、胚芽鞘長等指標(biāo)的耐旱能力較強(qiáng),并選出芽期耐旱性較好的品種(系)有11個,豐富了我國春小麥抗旱育種種質(zhì)資源[32-34]。王敬東等[14]以寧夏灌區(qū)和雨養(yǎng)區(qū)40份春小麥為試驗材料,在15% PEG干旱脅迫下發(fā)現(xiàn)胚根長可作為春小麥苗期的抗旱鑒定指標(biāo)。張芳等[20]對83份新疆冬小麥種質(zhì)進(jìn)行了苗期抗旱性綜合評價,發(fā)現(xiàn)胚芽鞘長和最長根長可用于苗期抗旱性鑒定的篩選指標(biāo)。馮舉伶等[13]對119份春小麥種質(zhì)材料采用20% PEG水溶液模擬干旱脅迫,認(rèn)為發(fā)芽勢、發(fā)芽率、苗鮮/干重、苗長及葉鮮重與評價篩選小麥苗期抗旱性高度相關(guān)。在試驗研究中,隨著滲透脅迫的加劇,芽鮮重、芽長等指標(biāo)均顯著下降,與Qayyum等[35]的研究結(jié)果一致。苗鮮/干重、苗長和發(fā)芽率等4個指標(biāo)用于在20% PEG脅迫下苗期抗旱性鑒定的篩選依據(jù)。
3.2
小麥抗旱性是一個非常復(fù)雜的性狀,不同種質(zhì)資源和鑒定指標(biāo)對干旱脅迫的響應(yīng)敏感度不同。小麥的發(fā)芽勢、發(fā)芽率在PEG 脅迫下降低,表明PEG脅迫抑制了種子的發(fā)芽速度、發(fā)芽數(shù)量。試驗結(jié)果表明,在20% PEG脅迫下,各供試小麥種質(zhì)發(fā)芽率、發(fā)芽勢等指標(biāo)較對照均顯著下降,但不同種質(zhì)降低幅度不一致;而根長顯著增加,與吳妍等[36]的研究結(jié)果一致。
4 結(jié) 論
引進(jìn)哈薩克斯坦25份春小麥種質(zhì)中獲得5份抗旱性強(qiáng)的種質(zhì)為19XS001、19XS003、19XS004、19XS009和19XS005-1,苗期具有較強(qiáng)的萌發(fā)特性和抗旱能力,適宜在我國西北旱區(qū)春小麥育種中提供抗旱親本材料。
參考文獻(xiàn)(References)
[1]趙海燕, 張文千, 鄒旭愷, 等. 氣候變化背景下中國農(nóng)業(yè)干旱時空變化特征分析[J]. 中國農(nóng)業(yè)氣象, 2021, 42(1): 69-79.
ZHAO Haiyan, ZHANG Wenqian, ZOU Xukai, et al. Temporal and spatial characteristics of drought in China under climate change[J]. Chinese Journal of Agrometeorology, 2021, 42(1): 69-79.
[2] 王利民, 劉佳, 張有智, 等. 我國農(nóng)業(yè)干旱災(zāi)害時空格局分析[J]. 中國農(nóng)業(yè)資源與區(qū)劃, 2021, 42(1): 96-105.
WANG Limin, LIU Jia, ZHANG Youzhi, et al. Analysis of spatial and temporal patterns of agricultural drought disaster in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(1): 96-105.
[3] 張棋, 許德合, 丁嚴(yán). 基于SPEI和時空立方體的中國近40年干旱時空模式挖掘[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2021, 39(3): 194-201.
ZHANG Qi, XU Dehe, DING Yan. Spatio-temporal pattern mining of the last 40 years of drought in China based on SPEI index and spatio-temporal cube[J]. Agricultural Research in the Arid Areas, "2021, 39(3): 194-201.
[4] 白金順, 王雪翠, 王艷秋. 箭筈豌豆種質(zhì)資源萌發(fā)期抗旱指標(biāo)篩選及抗旱性評價[J]. 植物營養(yǎng)與肥料學(xué)報, 2020, 26(12): 2253-2263.
BAI Jinshun, WANG Xuecui, WANG Yanqiu. Screening of drought-resistance index and drought-resistance evaluation of common vetch(Vicia sativa L.) germplasms at germination stage[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2253-2263.
[5] 李龍, 毛新國, 王景一, 等. 小麥種質(zhì)資源抗旱性鑒定評價[J]. 作物學(xué)報, 2018, 44(7): 988-999.
LI Long, MAO Xinguo, WANG Jingyi, et al. Drought tolerance evaluation of wheat germplasm resources[J]. Acta Agronomica Sinica, 2018, 44(7): 988-999.
[6] 任毅, 顏安, 張芳, 等. 國內(nèi)外301份小麥品種(系)種子萌發(fā)期抗旱性鑒定及評價[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2019, 37(3): 1-14.
REN Yi, YAN An, ZHANG Fang, et al. Identification and evaluation of drought tolerance of 301 wheatvarieties (lines) at germination stage[J]. Agricultural Research in the Arid Areas, "2019, 37(3): 1-14.
[7] 王蘭芬, 武晶, 彭琳, 等. 綠豆種質(zhì)資源抗旱性鑒定評價[J]. 植物遺傳資源學(xué)報, 2019, 20(5): 1141-1150.
WANG Lanfen, WU Jing, PENG Lin, et al. Evaluation for drought-tolerance germplasm resource in mungbean[J]. Journal of Plant Genetic Resources, 2019, 20(5): 1141-1150.
[8] 王秀華, 于鴻翔, 孫福來, 等. 小麥萌發(fā)期抗旱和耐鹽性狀的QTL分析[J]. 西北植物學(xué)報, 2020, 40(2): 240-251.
WANG Xiuhua, YU Hongxiang, SUN Fulai, et al. QTL mapping of drought and salt tolerant traits in wheat at germination stage[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(2): 240-251.
[9] 王優(yōu)信, 延榮, 藺明月, 等. 冀中北小麥品種抗旱性篩選研究[J]. 植物遺傳資源學(xué)報, 2021, 22(1): 74-82.
WANG Youxin, YAN Rong, LIN Mingyue, et al. Screening for drought-resistant wheat varieties in northern central area of Hebei Province[J]. Journal of Plant Genetic Resources, 2021, 22(1): 74-82.
[10] Sallam A, Alqudah A M, Dawood M F A, et al. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research[J]. International Journal of Molecular Sciences, 2019, 20(13): 3137.
[11] 孫可蒙, 隋曉青, 王玉祥, 等. PEG模擬干旱脅迫下12份新疆野生無芒雀麥種質(zhì)萌發(fā)期抗旱性評價[J]. 草原與草坪, 2020, 40(6): 102-107, 117.
SUN Kemeng, SUI Xiaoqing, WANG Yuxiang, et al. Evaluation of drought resistance for 12 Bromus inermis germplasms in Xinj iang under PEG stress at germination stage[J]. Grassland and Turf, 2020, 40(6): 102-107, 117.
[12] 施成曉, 陳婷, 王昌江, 等. 干旱脅迫對不同抗旱性小麥種子萌發(fā)及幼苗根芽生物量分配的影響[J]. 麥類作物學(xué)報, 2016, 36(4): 483-490.
SHI Chengxiao, CHEN Ting, WANG Changjiang, et al. Effect of drought stress on seed germination and biomass allocation of root and shoot of different drought resistant wheat cultivars[J]. Journal of Triticeae Crops, 2016, 36(4): 483-490.
[13] 馮舉伶, 姚立蓉, 汪軍成, 等. 119份春小麥種質(zhì)萌發(fā)期抗旱性鑒定及抗旱相關(guān)基因表達(dá)特性分析[J/OL]. 麥類作物學(xué)報 2022, (3), 2021: 1-11. (2021-11-23). https://kns.cnki.net/kcms/detail/61.1359.S.20211123.1132.026.html.
FENG Juling, YAO Lirong, WANG Juncheng, et al. Drought resistance identification and drought-resistance related gene expression analysis of 119 spring wheat germplasms at germination stage[J/OL]. Journal of Triticeae Crops, 2021: 1-11. (2021-11-23). https://kns.cnki.net/kcms/detail/61.1359.S.20211123.1132.026.html.
[14] 王敬東, 馬斯霜, 白海波, 等. PEG脅迫下春小麥萌發(fā)期抗旱指標(biāo)的遺傳力[J]. 中國農(nóng)學(xué)通報, 2020, 36(28): 6-12.
WANG Jingdong, MA Sishuang, BAI Haibo, et al. Genetic ability of drought resistance indexes of spring wheat at germination stage under PEG stress[J]. Chinese Agricultural Science Bulletin, 2020, 36(28): 6-12.
[15] 王志恒, 鄒芳, 楊秀柳, 等. PEG-6000模擬干旱對春小麥種子萌發(fā)的影響[J]. 種子, 2019, 38(7): 12-17.
WANG Zhiheng, ZOU Fang, YANG Xiuliu, et al. Effects of PEG-6000 on seed germination of spring wheat under simulated drought conditions[J]. Seed, 2019, 38(7): 12-17.
[16] 田又升, 謝宗銘, 吳向東, 等. 水稻種質(zhì)資源萌發(fā)期抗旱性綜合鑒定[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2015, 33(4): 173-180.
TIAN Yousheng, XIE Zongming, WU Xiangdong, et al. Identification of drought tolerance of rice germplasm during germination period[J]. Agricultural Research in the Arid Areas, 2015, 33(4): 173-180.
[17] 成鍇, 蘇曉慧, 栗建枝, 等. PEG-6000脅迫下玉米品種萌發(fā)期抗旱性鑒定與評價[J]. 玉米科學(xué), 2017, 25(5): 85-90.
CHENG Kai, SU Xiaohui, LI Jianzhi, et al. Identification and evaluation of maize drought resistance under PEG-6000 stress at germination stage[J]. Journal of Maize Sciences, "2017, 25(5): 85-90.
[18] 柏曉玲, 周青平, 陳仕勇, 等. PEG模擬干旱脅迫對6種燕麥品種種子萌發(fā)的影響[J]. 西南民族大學(xué)學(xué)報(自然科學(xué)版), 2015, 41(2): 133-137.
BAI Xiaoling, ZHOU Qingping, CHEN Shiyong, et al. Effects of PEG simulated drought stress on seed germination of six oat cultivars[J]. Journal of Southwest University for Nationalities (Natural Science Edition), 2015, 41(2): 133-137.
[19] 郝俊峰, 張玉霞, 賈玉山, 等. PEG-6000脅迫下苜蓿萌發(fā)期抗旱性鑒定與評價[J]. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版), 2020, 48(11): 23-32.
HAO Junfeng, ZHANG Yuxia, JIA Yushan, et al. Identification and evaluation of drought resistance of alfalfa at germination stage under PEG-6000 stress[J]. Journal of Northwest A amp; F University (Natural Science Edition), 2020, 48(11): 23-32.
[20] 張芳, 顏安, 任毅, 等. 新疆冬小麥萌發(fā)期抗旱性綜合評價[J]. 植物遺傳資源學(xué)報, 2019, 20(1): 100-112.
ZHANG Fang, YAN An, REN Yi, et al. Evaluation on drought resistance of winter wheat cultivars in Xinjiang[J]. Journal of Plant Genetic Resources, 2019, 20(1): 100-112.
[21] 張樹林, 劉玉玲, 田麗, 等. 不同小麥新品系萌發(fā)期抗旱性的篩選與鑒定[J]. 分子植物育種, 2018, 16(21): 7138-7147.
ZHANG Shulin, LIU Yuling, TIAN Li, et al. Screening and identification of drought resistance of different new wheat lines during germination period[J]. Molecular Plant Breeding, 2018, 16(21): 7138-7147.
[22] 趙佳佳, 喬玲, 武棒棒, 等. 山西省小麥苗期根系性狀及抗旱特性分析[J]. 作物學(xué)報, 2021, 47(4): 714-727.
ZHAO Jiajia, QIAO Ling, WU Bangbang, et al. Seedling root characteristics and drought resistance of wheat in Shanxi Province[J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[23] Li L, Mao X G, Wang J Y, et al. Genetic dissection of drought and heat-responsive agronomic traits in wheat[J]. Plant, Cell amp; Environment, 2019, 42(9): 2540-2553.
[24] 汪妤, 李紅霞, 張暢通. 小麥種質(zhì)資源苗期抗旱性評價[J]. 中國科技論文, 2017, 12(12): 1364-1370.
WANG Yu, LI Hongxia, ZHANG Changtong. Drought-resistance evaluation on wheat germplasm at seedling stage[J]. China Sciencepaper, 2017, 12(12): 1364-1370.
[25] 陳衛(wèi)國, 張政, 史雨剛, 等. 211份小麥種質(zhì)資源抗旱性的評價[J]. 作物雜志, 2020,(4): 53-63.
CHEN Weiguo, ZHANG Zheng, SHI Yugang, et al. Drought-tolerance evaluation of 211 wheat germplasm resources[J]. Crops, 2020,(4): 53-63.
[26] 王永剛, 張勝軍, 劉亞麗, 等. 新疆冬小麥品種資源萌發(fā)期耐旱性鑒定與篩選[J]. 新疆農(nóng)業(yè)科學(xué), 2021, 58(11): 2024-2034.
WANG Yonggang, ZHANG Shengjun, LIU Yali, et al. Identification and screening of drought tolerance in winter wheat cultivars in Xinjiang during germination period[J]. Xinjiang Agricultural Sciences, 2021, 58(11): 2024-2034.
[27] 張一鐸, 胡立芹, 張明, 等. 405份CIMMYT引進(jìn)小麥種質(zhì)的遺傳多樣性分析[J]. 植物遺傳資源學(xué)報, 2015, 16(5): 961-967.
ZHANG Yiduo, HU Liqin, ZHANG Ming, et al. Genetic diversity of 405 wheat lines from CIMMYT[J]. Journal of Plant Genetic Resources, 2015, 16(5): 961-967.
[28] 曾潮武, 梁曉東, 李建疆. 中亞引進(jìn)春小麥種質(zhì)資源主要農(nóng)藝性狀的遺傳多樣性分析[J]. 作物雜志, 2017,(2): 67-71.
ZENG Chaowu, LIANG Xiaodong, LI Jianjiang. Genetic diversity analysis on main characters of spring wheat germplasms in central Asia[J]. Crops, 2017,(2): 67-71.
[29] Shavrukov Y, Zhumalin A, Serikbay D, et al. Expression level of the DREB2-type gene, identified with amplifluor SNP markers, correlates with performance, and tolerance to dehydration in bread wheat cultivars from northern Kazakhstan[J]. Frontiers in Plant Science, 2016, 7: 1736.
[30] 張達(dá)斌, 黃文鳳, 惠蕾, 等. PEG脅迫下旱地油菜綠肥苗期抗旱性篩選和評價[J]. 植物營養(yǎng)與肥料學(xué)報, 2022, 28(1): 168-180.
ZHANG Dabin, HUANG Wenfeng, HUI Lei, et al. Evaluation of drought resistance of Brassica green manure crops using seedling growth indices[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 168-180.
[31] 聶志剛, 任新莊, 李廣, 等. 基于APSIM的甘肅春小麥干旱致災(zāi)風(fēng)險評價[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2018, 36(6): 194-200.
NIE Zhigang, REN Xinzhuang, LI Guang, et al. Assessment of drought risk on spring wheat in Gansu using APSIM[J]. Agricultural Research in the Arid Areas, "2018, 36(6): 194-200.
[32] 齊月, 王鶴齡, 張凱, 等. 氣候變化對黃土高原半干旱區(qū)春小麥生長和產(chǎn)量的影響——以定西市為例[J]. 生態(tài)環(huán)境學(xué)報, 2019, 28(7): 1313-1321.
QI Yue, WANG Heling, ZHANG Kai, et al. Effects of climate change on growth and yield of spring wheat in semi-arid region of the Loess Plateau: a case study of Dingxi city[J]. Ecology and Environmental Sciences, 2019, 28(7): 1313-1321.
[33] 祁嘉郁, 巴特爾·巴克. 基于水分虧缺指數(shù)的北疆春小麥不同生育階段干旱時空特征[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2021, 39(4): 171-178.
QI Jiayu, Bteer Bake. Temporal and spatial characteristics of drought in different growth stages of spring wheat in northern Xinjiang based on crop water deficit index[J]. Agricultural Research in the Arid Areas, 2021, 39(4): 171-178.
[34] 張龑, 王永剛, 肖菁, 等. 引進(jìn)春小麥品種(系)芽期抗旱性評價[J]. 新疆農(nóng)業(yè)科學(xué), 2020, 57(12): 2186-2196.
ZHANG Yan, WANG Yonggang, XIAO Jing, et al. Evaluation of drought resistance of introduced spring wheat varieties (lines) at bud stage[J]. Xinjiang Agricultural Sciences, 2020, 57(12): 2186-2196.
[35] Qayyum A, Al Ayoubi S, Sher A, et al. Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange[J]. Saudi Journal of Biological Sciences, "2021, 28(9): 5238-5249.
[36] 吳妍, 張歲岐, 劉小芳, 等. 水分脅迫及復(fù)水條件下外源Ca2+對玉米幼苗根系水力導(dǎo)度及生長的影響[J]. 作物學(xué)報, 2010, 36(6): 1044-1049.
WU Yan, ZHANG Suiqi, LIU Xiaofang, et al. Effect of calcium on maize seedling root hydraulic conductivity and growth under water stress and rehydration conditions[J]. Acta Agronomica Sinica, 2010, 36(6): 1044-1049.
Evaluation of drought resistance of different spring wheat germplasm introduced from Kazakhstan during seedling stage under 20% PEG stress
Abstract:【Objective】 The germination characteristics and physiological characteristics of differen spring wheat germplasm introductd from Kazakhstan in the hope of providing reliable parent materials for breeding spring wheat varieties in the northwest arid region in China.
【Methods】 "20% polyethylene glycol (polyethylene glycol, PEG) hypertonic solution was used to simulate drought stress conditions, the root length, seedling length, fresh root/dry weight, seeding fresh/dry weight, germination rate, germination potential and germination index of 28 test materials at seedling stage(among them,25 spring wheat germplasm were introduced Kaxakhstan) were compared and analyzed. In addition, the comprehensive evaluation of drought resistance during germination was carried out by membership function, principal component analysis.
【Results】 "The results showed that compared with the control, the root length, seedling length, fresh root weight, fresh/dry weight, germination vigor and germination rate of Kazakhstan spring wheat germplasm under drought stress treatment were decreased significantly (P lt; 0.05), ranging from 18.29% to 52.17%, while root dry weight were significantly increased (P lt; 0.05), with an average increase of 66.67%, respectively. There were different degrees of correlation between the indicators, and most of the indicators had significant or extremely significant correlations between the drought resistance coefficients. The 9 drought resistance-related indicators of wheat seedling stage could be converted into 4 independent comprehensive indicators (fresh seedling/dry weight, seedling length and germination rate), which might be used as main indicator for drought tolerance evaluation of Kazakhstan spring wheat germplasm at seedling stage. Cluster analysis was performed on the weighted drought resistance index of 28 tested materials. 5 germplasms were classified as strong drought-resistant varieties, 17 were medium drought-resistant varieties, and 6 were weak drought-resistant varieties.
【Conclusion】 "25 accessions from Kazakhstan were introduced, 5 germplasms were suitable for providing drought-resistant parent materials in spring wheat breeding in the northwest arid region in China.
Key words:spring wheat; introduction;germplasm;seeding stage; drought resistance; membership function