• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于IB-LBM的水下運(yùn)動(dòng)分析

    2023-12-31 00:00:00劉祖鋒
    科技創(chuàng)新與應(yīng)用 2023年20期

    摘 "要:近水面水下運(yùn)動(dòng)與深水運(yùn)動(dòng)不同,當(dāng)近水物體運(yùn)動(dòng)時(shí),自由面表面形狀將隨時(shí)間不斷變化,自由面對(duì)物體產(chǎn)生的影響是不可忽略的。近些年來(lái),處理近水兩相運(yùn)動(dòng)問(wèn)題的數(shù)值計(jì)算方法有很多種,該文采用隱式直接力格式的浸入邊界方法與基于偽勢(shì)模型的格子玻爾茲曼方法,其具有其他處理N-S方程的數(shù)值計(jì)算方法的獨(dú)特優(yōu)點(diǎn),可以處理連續(xù)或非連續(xù)流體問(wèn)題。并且驗(yàn)證氣泡上升模型,模擬近水面水下運(yùn)動(dòng)問(wèn)題,得到水下方塊對(duì)近水面的影響過(guò)程。該方法是對(duì)氣液兩相流問(wèn)題及近水面處理問(wèn)題的一次嘗試。

    關(guān)鍵詞:格子玻爾茲曼方法;浸入邊界法;自由面;兩相流;水下運(yùn)動(dòng)

    中圖分類號(hào):O355 " " " "文獻(xiàn)標(biāo)志碼:A " " " " "文章編號(hào):2095-2945(2023)20-0026-07

    Abstract: The underwater motion near the surface is different from the deep water motion. When the object is moving near the water, the shape of the free surface will change with time, and the influence of freedom on the object can not be ignored. In recent years, there are many numerical methods to deal with the two-phase motion of near water. In this paper, the immersion boundary method of implicit direct force scheme and the Lattice Boltzmann Method (LBM) based on pseudo-potential model are adopted. It has the unique advantages of other numerical methods for dealing with N-S equation, and can deal with continuous or discontinuous fluid problems. The bubble rising model is verified, the underwater motion near the surface is simulated, and the influence process of the underwater square on the near surface is obtained. This method is an attempt to deal with the problem of gas-liquid two-phase flow and near water surface.

    Keywords: Lattice Boltzmann Method (LBM); immersion boundary method; free surface; two-phase flow; underwater sports

    得益于計(jì)算機(jī)的快速發(fā)展,計(jì)算流體力學(xué)在航空航天和船舶與海洋工程等領(lǐng)域得到了廣泛的應(yīng)用。與傳統(tǒng)的計(jì)算流體力學(xué)方法相比,格子玻爾茲曼方法[1-6]作為一種介觀方法,通過(guò)流體粒子的碰撞遷移來(lái)描述流體演化過(guò)程,演化過(guò)程簡(jiǎn)單清晰,計(jì)算效率高?;谥苯亲鴺?biāo)網(wǎng)格,網(wǎng)格處理簡(jiǎn)單,邊界條件易于實(shí)施,多應(yīng)用于復(fù)雜邊界流場(chǎng)問(wèn)題和多相流問(wèn)題,再利用浸入邊界方法[7-10]處理復(fù)雜幾何外形及動(dòng)邊界問(wèn)題的巨大優(yōu)勢(shì),本文采用基于浸入邊界方法的格子玻爾茲曼方法(IB-LBM)方法,來(lái)模擬近水面水下運(yùn)動(dòng)問(wèn)題。

    近水面水下運(yùn)動(dòng)與深水運(yùn)動(dòng)不同,自由面對(duì)物體產(chǎn)生的影響是不可忽略的。當(dāng)近水物體做俯仰運(yùn)動(dòng)時(shí),自由面表面形狀將隨時(shí)間不斷變化,側(cè)面表現(xiàn)出近水面對(duì)水下物體產(chǎn)生的影響。近些年來(lái),處理近水兩相運(yùn)動(dòng)問(wèn)題的數(shù)值計(jì)算方法有很多種,比如VOF方法[11],邊界元方法[12]等,這些方法有著各自的優(yōu)缺點(diǎn)。本文采用的是基于介觀角度和粒子碰撞特性的格子玻爾茲曼方法,其具有其他處理N-S方程的數(shù)值計(jì)算方法的獨(dú)特優(yōu)點(diǎn),可以處理連續(xù)或非連續(xù)流體問(wèn)題,基于分子動(dòng)力學(xué)與統(tǒng)計(jì)學(xué)理論,將流場(chǎng)抽象成微觀粒子,通過(guò)粒子間的碰撞遷移,求解格點(diǎn)上的分布函數(shù),來(lái)得到流場(chǎng)的速度密度及壓強(qiáng)的分布。

    本文將浸入邊界方法與兩相格子玻爾茲曼方法相結(jié)合,采用隱式直接力格式的浸入邊界方法[13]與基于偽勢(shì)模型[14-16]的格子玻爾茲曼方法,驗(yàn)證了氣泡上升模型,模擬了近水面水下運(yùn)動(dòng)問(wèn)題,得到水下方塊對(duì)近水面的影響過(guò)程。該方法是對(duì)氣液兩相流問(wèn)題及近水面處理問(wèn)題的一次嘗試。

    1 "計(jì)算模型

    1.1 "偽勢(shì)模型

    偽勢(shì)模型是一種多相格子玻爾茲曼模型,其是由Shan和Chen于1993年提出的,也被稱為Shan-Chen模型。與單相格子模型相比,該模型考慮到了流體粒子間的分子間作用力,該力可由勢(shì)能函數(shù)的梯度求得,因而被稱為偽勢(shì)模型。

    4 "水下運(yùn)動(dòng)算例

    4.1 "氣泡上升

    本文采用格子玻爾茲曼方法中的偽勢(shì)模型,模擬氣泡上升問(wèn)題,設(shè)置初始?xì)馀輧?nèi)密度為0.2,外圈密度為1.0。作用域大小為1×1,氣泡半徑為0.2,中心位置坐標(biāo)為(0.5,0.5)。松弛算子?撰1,2取0.6。兩相間偽勢(shì)力系數(shù)g12取0.1。本次計(jì)算將計(jì)算域劃分為128×128個(gè)網(wǎng)格。時(shí)間步長(zhǎng)取2 000。作用域四周邊界處理均取反彈格式。誤差為?著=fi(x,t+?駐t)-fi(x,t),當(dāng)重力g取10時(shí),得到結(jié)果如圖2至圖5所示。

    從結(jié)果圖中可以觀察到氣泡發(fā)生的細(xì)微變化,結(jié)果收斂。由于氣泡的移動(dòng)變化比較小,本文加大了重力g的選取,下文系列圖取重力值為100,可以發(fā)現(xiàn)氣泡產(chǎn)生明顯的變化。t=0~0.085時(shí)密度變化圖像如圖6所示。t=0~0.085時(shí)誤差變化圖像如圖7所示。

    調(diào)整了參數(shù)之后,氣泡有明顯的上浮趨勢(shì),與Bhaga和Weber等[23-24]的模擬相符合,不足之處為所選的密度比太小,密度比變大時(shí)容易發(fā)散。實(shí)驗(yàn)結(jié)果圖如圖8所示。

    4.2 "水下方塊下落

    本文采用基于直接力格式的IB-LBM方法,模擬水下方塊下落過(guò)程。模型圖示如圖9所示,外作用域大小為2×2。方塊大小取為0.36×0.36,中心位置坐標(biāo)為(1,1)。水面高度為1.2。上部充滿密度為0.6的液體,下部為密度為1的第二相液體。整個(gè)作用域網(wǎng)格劃分為256×256個(gè)網(wǎng)格。重力g取為10,g12取為0.26。

    假設(shè)方塊是以1 m/s的速度勻速下落,時(shí)間步數(shù)取為1 000。另外,假設(shè)上部第一相格點(diǎn)處體積分?jǐn)?shù)為0,下部第二相處格點(diǎn)體積分?jǐn)?shù)為1,則初始時(shí)刻模型體積分?jǐn)?shù)圖像如圖10至圖15所示。

    由圖10至圖15可知,本次算例得到了一個(gè)較為完整的水下方塊運(yùn)動(dòng)的全過(guò)程,從體積分?jǐn)?shù)圖上看,水面的變化與實(shí)際運(yùn)動(dòng)相符合。與Bergmann等[12]的實(shí)驗(yàn)結(jié)果(圖16)進(jìn)行驗(yàn)證,兩者結(jié)果較為一致。由于物體運(yùn)動(dòng)速度較小和算法理論的原因,液面并未出現(xiàn)飛濺破碎現(xiàn)象,但是出現(xiàn)了水面下陷的冠狀外形。對(duì)于物體穿越水面問(wèn)題,本文在界面處理上還無(wú)法模擬成功,但是對(duì)于低速低雷諾數(shù)小密度比的單相內(nèi)運(yùn)動(dòng),可以得到較為吻合的結(jié)果。

    5 "結(jié)論

    本文針對(duì)物體水下運(yùn)動(dòng)問(wèn)題,采用了基于直接力格式的IB-LBM模型。并對(duì)低雷諾數(shù)下小密度比情況下的液下運(yùn)動(dòng)問(wèn)題進(jìn)行模擬,得到的結(jié)果與實(shí)驗(yàn)結(jié)果較為吻合,并采用偽勢(shì)模型,對(duì)氣泡上升問(wèn)題進(jìn)行了模擬分析,得到結(jié)果與實(shí)際運(yùn)動(dòng)情形相一致。由于所取格子數(shù)較少及理論上的限制,對(duì)于穿越水面問(wèn)題,并沒(méi)有進(jìn)行模擬。邊界處理上,四周采用了反彈格式,對(duì)于物體邊界,使用基于直接力格式的浸入邊界方法,并采用理查森迭代方法進(jìn)行求解迭代收斂解。兩相的相互作用模型采用了格子玻爾茲曼方法的偽勢(shì)模型。該方法對(duì)于低速情況下的小密度比問(wèn)題,可以得到較為吻合的結(jié)果。由于物體是運(yùn)動(dòng)的而非靜止的,這要求每個(gè)時(shí)間步下,都要進(jìn)行網(wǎng)格生成,計(jì)算時(shí)間上會(huì)略長(zhǎng),但是計(jì)算結(jié)果精度上依舊保留了二階精度。

    參考文獻(xiàn):

    [1] CHEN S Y, DOOLEN. Lattice boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998(30):329-364. [2] ROSIS A D, COREIXAS C . Multiphysics flow simulations using D3Q19 lattice boltzmann methods based on central moments[J]. Physics of Fluids, 2020, 32(11):117101.

    [3] KARKI P, PERUMAL D A, YADAV A K . Comparative studies on air, water and nanofluids based rayleigh-benard natural convection using lattice Boltzmann method: CFD and exergy analysis[J]. Journal of Thermal Analysis and Calorimetry, 2022(2):1487-1503.

    [4] 高銓,邱翔,夏玉顯,等.基于LBM的壁湍流跨尺度能量傳遞結(jié)構(gòu)統(tǒng)計(jì)[J].力學(xué)學(xué)報(bào),2021,53(5):1257-1267.

    [5] 白冰,張濤,李漢卿,等.基于不可壓LBM的汽液兩相流數(shù)值研究[J].工程熱物理學(xué)報(bào),2020,41(8):1952-1959.

    [6] 任彥霖,劉趙淼,逄燕,等.基于LBM的鋁微滴斜柱沉積水平偏移研究[J].力學(xué)學(xué)報(bào),2021,53(6):1599-1608.

    [7] PESKIN C S. The immersed boundary method[J]. Acta Numerica, 2002:1-36.

    [8] MITTAL R, IACCARINO G. Immersed boundary methods[J].Annual Review of Fluid Mechanics,2005,37(1): 239-261.

    [9] HUANG W X, TIAN F B. Recent trends and progress in the immersed boundary method[J].ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989—1996 (203-210), 2019, 233(23-24):095440621984260.

    [10] 楊明,劉巨保,岳欠杯,等.渦激誘導(dǎo)并列雙圓柱碰撞數(shù)值模擬研究[J].力學(xué)學(xué)報(bào),2019,51(6):1785-1796.

    [11] KLEEFSMAN K M T, FEKKEN G, VELDMAN A E P, et al. A volume-of-fluid based simulation method for wave impact prob-lems[J].I Joumal of Computational Physics, 2005, 206: 363-393.

    [12] BERGMANN R, DEVARAY V D M, GEKLE, et al. Controlled impact of a disk on a water surface: Cavity dynamics[J]. Jourmal of Fluid Mechanics, 2009, 633: 381-409.

    [13] 佟瑩,夏健,陳龍,等.基于隱式擴(kuò)散的直接力格式浸沒(méi)邊界格子Boltzmann方法[J].力學(xué)學(xué)報(bào),2022,54(1):94-105.

    [14] SHAN X W, CHEN H D. Lattice Boltzmann model for simulating flows with multiple phases and components [J]. Phys. Rev. E, 1993, 47(3): 1815-1819.

    [15] SHAN X W, DOOLEN G. Multicomponent lattice-Boltzmann model with interparticle interaction [J]. J. Stat. Phys., 1995, 81(1/2): 379-393.

    [16] SHAN X W. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models [J]. Phys. Rev. E, 2006, 73(4): 047701.

    [17] PORTER M L, COON E T, KANG Q, et al. Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios[J]. Phys. Rev. 2012,E86: 036701.

    [18] QIAN Y D, HUMIERES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhys. Lett. 1992,17:479-484.

    [19] HE X, CHEN S, DOOLEN G D. A novel thermal model for the lattice Boltzmann method in incompressible limit[J]. J. Comp.Phys. 1998a ,146:282-300.

    [20] HE X, SHAN X, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J]. Phys. Rev. 1998b, E 57 (1):R14.

    [21] SHAN X, CHEN H. Simulations of non-ideal gases and liquid-gas phase transitions by the lattice-Boltzmann equation[J]. Phys. Rev. 1994, E49:2941-2948.

    [22] HUANG R , WU H . Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow[J]. Journal of Computational Physics, 2016, 327:121-139.

    [23] BHAGA D, WEBER M. Bubbles in viscous liquids: shapes, wakes and velocities[J]. Journal of Fluid Mechanics,1981,105:61-85.

    [24] GUPTA A, KUMAR R. Lattice Boltzmann simulation to study multiple bubble dynamics[J]. International Jourmal of Heat and Mass Transfer,2008: 51(21-22):5192-5203.

    [25] HUA J, LOU J. Numerical simulation of bubble rising in viscous liquid[J]. Journal of Computational Physics,2007,222(2):769-795.

    [26] HUANG H B, HUANG J J ,LU X Y. A mass-conserving axisymmetric multipbase lattice Boltzmann method and its application in simulation of bubble rising[J]. Journal of Computational Physics,2014a, 269:386 402.

    龙里县| 监利县| 海南省| 盐山县| 长宁县| 米易县| 四平市| 绥芬河市| 长治县| 抚松县| 虹口区| 鄂伦春自治旗| 双城市| 英超| 高台县| 台中市| 长治县| 都安| 阿坝县| 乌兰察布市| 宾阳县| 祁连县| 咸丰县| 大城县| 桃源县| 通化市| 安溪县| 台北市| 密山市| 石首市| 巴马| 乌拉特前旗| 康定县| 安新县| 社会| 苍溪县| 梧州市| 江山市| 牡丹江市| 平邑县| 朝阳县|